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1 Introduction.

Most results presented in this Introduction are classical. They are discussed here in detail in the hope that it may facilitate further reading of this survey for researchers in probability with different backgrounds. A writing convention.

1. Each time we write an equality in law between r.v.'s and that on one or the other side of this equality, several r.v.'s occur, we always assume that these r.v.'s are independent, without mentioning it systematically.

2. It will be convenient, in some instances, to speak of a r.v. instead of its law and vice versa. We hope that no confusion will ensue.

1.1 The Gamma process.

All through this paper, the reference process is the standard Gamma process (γ t , t ≥ 0), which is a subordinator without drift, and with Lévy measure dx x e -x (x > 0). Thus, its

Lévy-Khintchine representation writes see [START_REF]Bertoin Lévy processes[END_REF] :

E[e -λγt ] = exp -t ∞ 0 (1 -e -λx ) dx x e -x (λ, t ≥ 0) (1.1) = exp -t log(1 + λ) = 1 (1 + λ) t (1.2)
where formula (1.2) is obtained from (1.1) and from the elementary Frullani formula see [Leb], p. 6 :

∞ 0 (1 -e -λx ) dx x ∞ 0 e -xz ν(dz) = ∞ 0 log 1 + λ z ν(dz) (1.3)
where, in general, ν denotes a positive measure on R + , which is σ-finite. Here, ν(dz) = δ 1 (dz) is the Dirac measure at 1, but formula (1.3) shall be useful in the sequel. For each t > 0 fixed, γ t follows a gamma law with parameter t :

P (γ t ∈ da) = e -a Γ(t) a t-1 da (a ≥ 0) (1.4)
This process (γ t , t ≥ 0) enjoys a large number of remarkable properties which make it a "worthy companion" of Brownian motion. In particular, Emery and Yor [EY] establish a parallel between Brownian motion and its bridges on one hand, and the Gamma process and its bridges on the other hand. See also Vershik, Yor and Tsilevich [VYT] and Yor [Y] for a survey of many properties of the gamma process.

1.2 Wiener-Gamma integrals and GGC variables.

1.2.a Many times throughout this work, we shall use properties of the integrals :

Γ(h) := ∞ 0 h(s) dγ s (1.5)
where h : R + -→ R + is a Borel function such that :

∞ 0 log 1 + h(u) du < ∞ (1.6)
Under this hypothesis (1.6), Γ(h) is finite a.s. (see Proposition 1.1 below). We call Γ(h) a Wiener-Gamma integral, in analogy with the Wiener integrals

∞ 0 f (u) dB u , f ∈
L 2 (R + , du) which constitute the Gaussian space generated by Brownian motion (B u , u ≥ 0). 1.2.b We say, following [B1], p. 29 , that a positive r.v. Γ is a generalized gamma convolution (GGC) -without translation term -if there exists a positive Radon measure µ on ]0, ∞[ such that :

E[e -λΓ ] = exp - ∞ 0 (1 -e -λx ) dx x ∞ 0 e -xz µ(dz) (1.7) = exp - ∞ 0 log 1 + λ z µ(dz) (1.8) 
with :

]0,1]

|log x| µ(dx) < ∞ and

[1,∞[ µ(dx) x < ∞ (1.9)
The measure µ is called Thorin's measure associated with Γ. Thus, from the Lévy-Khintchine formula, a GGC r.v. is infinitely divisible. In fact, since its Lévy density

l Γ (x) = 1 x ∞ 0
e -xz µ(dz) satisfies : x -→ x l(x) is decreasing, then Γ is a self decomposable r.v. see, e.g. [Luk] . Such a self-decomposable r.v. Γ, assumed to be non degenerate, admits a density f Γ such that f Γ (x) > 0 for every x > 0 see [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]p.404] . The study of GGC variables was initiated by O. Thorin in a series of papers see for instance [Thor] .

The following proposition is classical. The reader may refer to Lijoi and Regazzini [LR].

1.2.c GGC variables and Wiener-Gamma representations. Proposition 1.1 The class of positive GGC variables coincides with the class of Wiener-Gamma integrals. More precisely :

1. If Γ(h) = ∞ 0 h(u) dγ u , then : E(e -λ e Γ(h) ) = exp - ∞ 0 log 1 + λ x µ h (dx) (1.10)
where µ h denotes the image of Lebesgue's measure on R + under the application :

s -→ 1 h(s)
• In other terms :

∞ 0 e -x h(s) ds = ∞ 0 e -xz µ h (dz) (x > 0) (1.11)
We note that, in (1.11), h may vanish on some measurable set.

2. Let Γ denote a GGC r.v. with Thorin measure µ. Let F µ (x) := ]0,x] µ(dy)

(x ≥ 0)
and denote by F -1 µ its right continuous inverse, in the sense of the composition of functions. Then :

Γ (law) = Γ(h), with h(u) = 1 F -1 µ (u)
(1.12)

Proof of Proposition 1.1 Let Γ(h) := ∞ 0 h(u) dγ u . It is easily obtained, by approximation of Γ h by Riemann sums, using also the fact that the Lévy measure of the process (γ t , t ≥ 0) equals dx x e -x , that :

E(e -λ e Γ(h) ) = exp - ∞ 0 du ∞ 0 (1 -e -λxh(u) ) dx x e -x = exp - ∞ 0
(1 -e -λy ) dy y

∞ 0 e -y h(u) du (1.13) after making the change of variable xh(u) = y. We observe, from (1.11) and (1.12), the equivalence of the conditions :

∞ 0 log 1 + h(u) du < ∞ ⇔ log 1 + 1 x µ h (dx) < ∞ ⇔ ]0,1] |log x| µ h (dx) < ∞ and [1,∞[ µ h (dx) x < ∞
Remark 1.2 1. Formula (1.13) may be obtained in a slightly different manner : the process (γ s -γ s -:= e s , s ≥ 0) of jumps of the subordinator (γ t , t ≥ 0) is a Poisson point process whose intensity measure n equals the Lévy measure of (γ t , t ≥ 0) see [START_REF]Bertoin Lévy processes[END_REF] :

n(dx) = 1 x e -x dx (1.14)
Thus, from the exponential formula [RY], p. 476 :

E exp -λ 0<s≤t f (s, e s ) = exp - t 0 ds ∞ 0
(1 -e -λf (s,u) )n(du) one gets :

E[exp-λ ∞ 0 h(s)dγ s ] = E(exp-λ Σ s>0 h(s)(∆γ s )) = exp - ∞ 0 ds ∞ 0
(1 -e -λh(s)u ) e -u u du , which agrees with the expression in (1.13).

2. Let h, k : R + -→ R + two Borel functions which satisfy (1.6) and assume that Γ(h)

(law)
= Γ(k). Relation (1.13) and the uniqueness of the Lévy measure in the Lévy-Khintchine representation imply : the images by h and k of Lebesgue's measure on R + are identical. Thus, choosing for k the increasing rearrangement h * , (resp. : the decreasing rearrangement h * ) of h, we obtain that there exists essentially a unique increasing function h * , (resp. a unique decreasing function h * ) such that :

Γ(h) (law) = Γ(h * ) = Γ(h * )
(1.15)

From Proposition 1.1, Γ(h) is a GGC r.v. and we shall denote by µ h the Thorin measure associated with Γ(h).

1.3 m-Wiener-Gamma integrals, (m, G) GGC r.v.

In this work, we shall often consider a GGC r.v. whose associated Thorin measure has finite total mass. Thus, we shall now particularize Proposition 1.1 in this case. 1.3.a Let m > 0 and h : [0, m] → R + a Borel function such that :

m 0 log 1 + h(u) du < ∞ (1.16)
We call m-Wiener integral of h the r.v. :

Γ m (h) := m 0 h(u)dγ u (1.17) Since (γ u , 0 ≤ u ≤ m) and (γ m -γ (m-u)-, 0 ≤ u ≤ m)
have the same law, we deduce from (1.17), after making the change of variable m -u = v :

Γ m (h) (law) = m 0 h(u)dγ u (law) = m 0 h(m -u)dγ u (1.18)
We note, in relation with (1.15) above, that if h is increasing, resp. decreasing, then u → h(m -u) is decreasing, resp. increasing. 1.3.b Let m > 0 and G be a positive r.v. such that :

E log + (1/G) < ∞ (1.19)
We say that a positive r.v. Γ is (m, G) GGC if :

E(e -λΓ ) = exp -m ∞ 0 (1 -e -λx ) dx x E(e -xG ) (1.20)
Of course, from (1.7), a (m, G) GGC r.v. is a GGC r.v. whose Thorin measure µ equals :

µ(dx) = m P G (dx) (1.21)
where P G denotes the law of G and we have :

µ ]0, ∞[ = m (1.22) Under (1.21), it is clear that : ]0,1] |log x| µ(dx) < ∞ and [1,∞[ µ(dx) x < ∞ ⇔ E log + (1/G) < ∞ (1.23)
We denote Γ m (G) the (law of the) r.v. Γ defined by (1.20). Hence :

E[e -λΓm(G) ] = exp -m ∞ 0 (1 -e -λx ) dx x E(e -xG ) (1.24) = exp -m E log 1 + λ G (1.25)
1.3.c G or 1/G ? How to choose ? We have used the notation Γ m (G) due to the relation (1.24). Of course, the relation (1.25) invites, on the contrary, to adopt the notation Γ m (1/G). However, we shall not adopt this latter notation as the notation Γ m (G) is used by L. Bondesson [B1] who has contributed in an essential manner to the study of the GGC variables.

1.3.d Proposition 1.1, when the Thorin measure has a finite total mass m, admits the following translation. Proposition 1.3 A r.v. is a (m, G) GGC if and only if it is a m-Wiener integral. More precisely :

1) If Γ m (G) (law) = Γ m (h), then h(u) = 1 F -1 G (u/m) u ∈ [0, m] (1.26)
where F -1 G denotes the right continuous inverse, in the sense of composition of functions, of F G , the cumulative distribution function of G.

2) If

Γ m (h)

(law) = Γ m (G), then G (law) = 1 h(U m ) (1.27)
where U m denotes a uniform r.v. on [0, m].

1.3.e Some classical results

We gather here some results which are due to L. Bondesson [B1] and which we shall use in the sequel. Let m > 0 and G satisfy (1.19). Then, denoting f Γm(G) the density of Γ m (G) :

• f Γm(G) (x) = x m-1 Γ(m) g(x) (x > 0) (1.28)
where g is a completely monotone function [B1], p. 49 . Moreover [B1], p. 50 g admits a limit on the right of 0 and :

g(0 + ) = exp m E (log G) (1.29)
We note that, since by hypothesis

E log + (1/G) < ∞, g(0 + ) is finite if and only if E log + (G) < ∞.
In Section 2 of this work (see Theorem 2.1) we give an explicit form of g when E |log G| < ∞.

• m may be determined from the knowledge of f Γm(G) :

m = sup α ≥ 0 ; lim x↓0 + f Γm(G) (x) x α-1 = 0 (1.30)
see [B1], p. 51).

1.4 m-Wiener Gamma integrals, m Dirichlet means, Gamma (m) mixtures.

1.4.a The preceding discussion leads us to introduce, for every m > 0, the Dirichlet process with parameter m, denoted : (D (m) u , 0 ≤ u ≤ m) and defined as :

(D (m) u , 0 ≤ u ≤ m) = γ u γ m , 0 ≤ u ≤ m (1.31)
The Dirichlet process may be traced back to at least D. Freedman [Freed] and was popularized in Bayesian nonparametric statistics by T. Ferguson [Ferg] .

It is well known, and it is an easy consequence of the properties of the "beta-gamma algebra" that this process (D

(m) u , 0 ≤ u ≤ m) is independent from the r.v. γ m , hence from (γ v , v ≥ m)
. This allows to write, for h which satisfies (1.16) :

m 0 h(u) dγ u (law) = γ m • m 0 h(u) d u (D (m) u ) (1.32)
Thus, from Proposition 1.3, we may write for G which satisfies (1.19) :

Γ m (G) (law) = γ m • D m (G) (1.33) with D m (G) := m 0 1 F -1 G (u/m) d u (D (m) u ) (1.34)
It follows that for every (m, G) GGC r.v., the r.v. Γ m (G) is a Gamma (m) mixture, i.e. it may be written as :

Γ m (G) (law) = γ m • Z (1.35)
where Z is a positive r.v.

1.4.b The relation (1.35) determines the law of Z. Indeed, let Z and Z two positive r.v. such that :

γ m • Z (law) = γ m Z
Then, for every s ∈ R :

E[γ is m ] E[Z is ] = E[γ is m ] E[Z is ] Hence : E(Z is ) = E(Z is ) and Z (law) = Z 1.4.c Remark 1.4
(We shall not use the present Remark in the sequel of this paper). We come back to the notation of point 1 of Remark 1.2 and we denote : (J

(m) 1 ≥ J (m) 2 ≥ • • •
) the sequel of the lengths of jumps of the process (γ u , u ≤ m) ranked in decreasing order. It is not difficult to see that since the intensity measure of the Poisson point process (s, e s ), s ≥ 0 is ds e -x

x dx, then the jump times (U

(m) 1 , U (m) 
2 , • • • ) constitute a sequence of i.i.d r.v.'s with uniform law on [0, m] which is independent from the sequence (J

(m) k , k ≥ 1). Thus : m 0 h(u)dγ u (law) = m 0 1 F -1 G (u/m) dγ u from (1.26) = k≥1 1 F -1 G U (m) k m J (m) k = k≥1 J (m) k 1 G k (1.36) where 1 G k , k ≥ 1 is the sequence of i.i.d r.v.
's with common law 1/G and is independent (as a sequence) from the r.v.'s (J

(m)
k , k ≥ 1). Indeed :

P 1 F -1 G U (m) k m ≤ x = P F -1 G U (m) k m ≥ 1 x = P U (m) k m ≥ F G 1 x = 1 -F G 1 x = P 1 G ≤ x since U (m) k m is uniform on [0, 1]. We deduce from (1.36) that : m 0 h(u)d u (D (m) u ) = 1 γ m • m 0 h(u) dγ u = k≥1 J (m) k γ m • 1 G k (1.37)
We note that :

k≥1 J (m) k γ m = 1.
We then define the random Dirichlet measure P

(1/G) 0,m (dx) by the formula :

P (1/G) 0,m (dx) := k≥1 J (m) k γ m δ 1/G k (dx)
and we obtain, from (1.34) and (1.37) :

D m (G) (law) = ∞ 0 x P (1/G) 0,m (dx) (1.38)
This relation (1.38) justifies the denomination, for D m (G), of a Dirichlet means.

The study of the Dirichlet means can be traced back to an early work of Cifarelli and Regazzini [START_REF] Cifarelli | Considerazioni generali sull'impostazione bayesiana di problemi non parametrici. Le medie associative nel contesto del processo aleatorio di Dirichlet I[END_REF] which culminates into the more recognized [START_REF] Cifarelli | Regazzini Distribution functions of means of a Dirichlet process[END_REF] . Additional early works on this topic include [HHL], [Yam], [FT], [DS] 1.4.d Multiplication by a beta variable. In this section we discuss what happens when D m (G) is multiplied by certain independent beta random variables. This idea, and restatements of the results (1.4.d i-iii) below, first appear in James see [J], Theorem 3.1 . 1.4.d i) We denote by D (m) the set of the laws of r.v.'s of the form m) and if β m,m -m , with m > m, is a beta r.v. with parameters (m, m -m) then :

m 0 h(u)d u (D (m) u ) := D m (h), with m 0 log 1 + h(u) du < ∞. If D m (h) ∈ D (
β m,m -m • D m (h) ∈ D (m ) (1.39)
Indeed, γ m γ m is independent from γ m and follows a beta law, with parameters (m, m -m).

Hence :

β m,m -m • D m (h) (law) = γ m γ m • m 0 h(u) d u (D (m) u ) (law) = γ m γ m m 0 h(u) dγ u γ m (law) = 1 γ m m 0 h(u)1 [0,m] (u)d u (D (m ) u ) ∈ D (m )
1.4.d ii) In the same spirit as for the preceding point, we note that, if G is a positive r.v. such that E(log + G) < ∞ and if m > m, then :

Γ m 1 G (law) = Γ m 1 G • Y p (1.40)
where, on the RHS of (1.40), G and Y p are independent and Y p is a Bernoulli r.v. with parameter p = m m :

P (Y p = 1) = p = 1 -P (Y p = 0) (1.41)
Indeed, we deduce from (1.24) : 

E(e -λΓm(1/G) ) = exp -m ∞ 0 (1 -e -λx ) dx x E(e -x/G ) = exp -m ∞ 0 (1 -e -λx ) dx x m m E(e -x/G ) = exp -m ∞ 0 (1 -e -λx ) dx x E(e -( x GYp ) ) = E(e -λΓm( 1 
Γ m (1/G) (law) = γ m D m (1/G) (law) = Γ m 1 GY p (law) = γ m • D m 1 GY p
Hence :

γ m γ m γ m D m (1/G) (law) = γ m D m 1 GY p so that, from point 1.4.b : γ m γ m • D m (1/G) (law) = D m ( 1 GY p i.e. : β m,m -m • D m (1/G) (law) = D m 1 GY p p = m m (1.42)
In particular, for m < 1 and m = 1 :

β m,1-m • D m (1/G) (law) = D 1 1 GY m (1.43)
1.4.d iv) Some elements of D (m) . Let T denote a positive r.v. which belongs to the Bondesson class B see [B1], p. 73, Th. 5.2.2 i.e. whose density f T writes :

f T (x) = C x β-1 h 1 (x)h 2 (1/x) (β ∈ R, x > 0) with h j (x) = exp -b j x + ∞ 0 log 1 + y x + y ν j (dy) j = 1, 2 and ∞ 0 ν j (dy) 1 + y < ∞
Then, from Bondesson [B1], Th. 5.2.2, p. 79 , we know that :

Γ m := γ m • T (1.44)
is GGC (for every m > 0) with some, possibly unknown, associated Thorin measure we denote as µ m . Assuming furthermore that E T -m < ∞, we get, from (1.30) :

µ m ]0, ∞[ = sup α ≥ 0 ; lim x 0 + f Γm (x) x α-1 = 0 (1.45)
But, an elementary computation, starting from (1.44), shows that :

f Γm (x) = 1 Γ(m) x m-1 E e -x T 1 T m (1.46)
Thus, we have :

µ m ]0, ∞[ = m
Hence, there exists, from Proposition 1.3, a positive r.v.

G m such that E log + 1 G m < ∞
and also such that, from (1.33) :

Γ m (law) = γ m • T = Γ m (G m ) = γ m • D m (G m ) (1.47) Thus, from point 1.4.b T (law) = D m (G m ) ∈ D (m) (1.48)
We now summarize what we have just obtained :

Proposition 1.5 Let T denote a positive r.v. which belongs to B, such that :

E T -m < ∞ Then : 1) T ∈ D (m)
2)

For every m > m, β m,m -m • T ∈ D (m ) from (1.43)
In particular, Proposition 1.5 may be applied in the following cases :

• If T is a generalized inverse Gaussian r.v., i.e. its density is given by :

f T (x) = C x β-1 exp - 1 2 c 1 x + c 2 x • 1 [0,∞[ (x) (β ∈ R, c 1 , c 2 > 0)
then, for every m > 0, T ∈ D (m) (although T is a GGC variable with infinite total mass for its Thorin measure see [B1], p. 59 ).

• If T is a Gamma r.v. γ θ with parameter θ then for every m > 0, γ θ ∈ D (m) . Indeed γ θ ∈ B and for every m < θ : E 1 γ m θ < ∞. On the other hand, assuming still m < θ, we have :

β m,θ-m • γ θ (law) = γ m ∈ D (θ)
from (1.40)

• If T is a positive stable r.v. with index α :

E(e -λT ) = exp{-C λ α } λ, C > 0, α ∈]0, 1[ then, for α ≤ 1 2 , T ∈ B see [B1], p. 85-88 and hence T ∈ D (m) for every m > 0 since E 1 T m < ∞.
Remark 1.5 Epifani, Guglielmi and Melilli [START_REF] Epifani | Melilli Some new results on random Dirichlet variances[END_REF], section 4; see also [START_REF] Epifani | A stochastic equation for the law of the random Dirichlet variance[END_REF] , posed the natural question of which kind of probability measures are the laws of Dirichlet means.

They were able to find some examples in cases where those particular random variables possessed all finite moments. One sees that Proposition 1.5, in a rather simple way, identifies a large number of possible distributions. 1.4.e Another representation of Γ m (G).

Let m > 0 and let K be a positive r.v. We shall say that (Y t , t ≥ 0) is a (m, K) R + valued compound Poisson process if : 

Y t := Nt i=1 K i where (K 1 , K 2 , • • • ) is
K (law) = e G
(e, a standard exponential r.v.)

Then

1) Γ m (G) (law) = ∞ 0 e -t dY t where (Y t , t ≥ 0) is a (m, K) compound Poisson process.
2) Γ m (G) satisfies the affine equation :

Γ m (G) (law) = U 1/m Γ m (G) + K with U uniformly distributed on [0, 1] .
Proof of Proposition 1.6. i) We first prove point 1. We consider (Y t , t ≥ 0) a (m,K) compound Poisson process.

Then, approximating

∞ 0 e -t dY t by the Riemann sums

(Y t i+1 -Y t i )e -t i ,
we obtain :

E exp -λ ∞ 0 e -t dY t = exp - ∞ 0 (1 -e -λv )µ [v, ∞] dv v
where µ is the Lévy measure of the subordinator (Y t , t ≥ 0). Since this subordinator is a (m, K) compound Poisson process, we have:

µ [v, ∞[ = m P (K ≥ v) = m P e G ≥ v = m P (e ≥ v G) = m E(e -vG ).
Hence :

E exp -λ ∞ 0 e -t dY t = exp -m ∞ 0 (1 -e -λv ) dv v E(e -vG ) = E(e -λΓm(G) )
ii) We now prove point 2. We have :

∞ 0 e -t dY t = T 1 0 e -t dY t + ∞ T 1 e -t dY t (where T 1 is the first jump time of (N t , t ≥ 0)) = e -T 1 K 1 + e -T 1 ∞ 0 e -t d(Y T 1 +t )
and we observe that :

e -T 1 (law) = U 1/m , ∞ 0 e -t d(Y T 1 +t ) (law) = ∞ 0 e -t dY t ,
and

∞ 0 e -t d(Y T 1 +t ) is independent of T 1 .
1.5 The subordinators Γ t (G), t ≥ 0 1.5.a Let Γ denote a GGC r.v. From Lévy-Khintchine formula, there exists a (unique) subordinator (Γ t , t ≥ 0) such that :

Γ 1 (law) = Γ (1.49)
hence we have :

E(e -λΓt ) = exp -t ∞ 0 (1 -e -λx ) dx x ∞ 0 e -xz µ (dx) (1.50)
where µ denotes the Thorin measure associated with Γ. 1.5.b Let G denote a positive r.v. which satisfies (1.19). Then, there exists a subordinator Γ t (G), t ≥ 0 which is characterized by :

E(e -λΓt(G) ) = exp -t ∞ 0 (1 -e -λx ) dx x E(e -xG ) (1.51) = exp -t E log 1 + λ G (1.52)
In particular, for every t > 0, Γ t (G) is a (t, G) GGC r.v. Thus, there exists, following (1.33), a family of r.v.'s D t (G), t ≥ 0, whose laws are characterized by :

Γ t (G) = γ t • D t (G) (1.53)
and, for every t > 0, from (1.34) and Proposition 1.3 :

Γ t (G) (law) = t 0 1 F -1 G u t dγ u (law) = t 0 1 F -1 G (1 -u t ) dγ u (1.54) D t (G) (law) = t 0 1 F -1 G u t d u (D (t) u ) (law) = t 0 1 F -1 G u t d u (D (t) u ) (1.55)
We note that the relations (1.54) and (1.55) are only true for fixed t, for any t > 0, but do not hold as equalities in law between processes. On the other hand, since :

E(e -λγt ) = 1 (1 + λ) t , we deduce from (1.53) that : E(e -λΓt(G) ) = E 1 1 + λD t (G) t (1.56) 1.5.c Some elementary properties of Γ t (G), t ≥ 0) and D t (G), t ≥ 0 Let G denote a positive r.v. which satisfies (1.19).
Proposition 1.7 1) The family of laws of the r.v.'s D t (G), t ≥ 0 solves the equation : for every t, s ≥ 0 :

γ t+s • X t+s (law) = γ t • X t + γ s X s (1.57)
2) For every s, t ≥ 0 :

D t+s (G) (law) = β t,s D t (G) + (1 -β t,s )D s (G) (1.58) 3) We assume furthermore that E 1 G < ∞ which implies E log + 1 G < ∞ . Then : 3 i) for every t > 0, E Γ t (G) = t E(1/G) and E D t (G) = E(1/G) (1.59) 3 ii) 1 t Γ t (G) a.s. -→ t→0 E(1/G) and D t (G) (law) -→ t→∞ E(1/G) (1.60) 3 iii) Γ t (G) t (law) -→ t→0 U and D t (G) t (law) -→ t→0 1 (1.61) where U is uniform on [0, 1].
Point 2 of this Proposition 1.7 is due to Hjort and Ongaro see [HO] .

Proof of Proposition 1.7 Point 1 :

γ t+s • D t+s (G) (law) = γ t D t (G) + γ s D s (G) (1.62)
follows from :

Γ t+s (G) (law) = Γ t (G) + Γ s (G) since Γ t (G), t ≥ 0 is a subordinator and since, from the definition of D a (G) : Γ a (G) (law) = γ a • D a (G).
We now show (1.58). From the beta-gamma algebra, we have :

(γ t , γ s ) (law) = β t,s γ t+s , (1 -β t,s )γ t+s (1.63)
hence, plugging (1.63) in (1.62), we obtain :

γ t+s • D t+s (G) (law) = β t,s γ t+s D t (G) + (1 -β t,s )γ t+s D s (G)
which, using point 1.4.b, implies relation (1.58). We now prove 3 i). We have :

E Γ t (G) = - ∂ ∂λ E(e -λΓt ) λ=0 = - ∂ ∂λ exp -t E log 1 + λ G λ=0 = t E(1/G)
and we deduce from (1.53), that :

E Γ t (G) = E γ t • D t (G) = t E D t (G) = t E(1/G)
We now prove 3 ii). The a.s. convergence (hence, the convergence in law) of

1 t Γ t (G) as t → ∞ towards E(1/G)
follows from the law of large numbers.

We prove that D t (G)

(law) -→ t→∞ E(1/G).
We first observe that the family D t (G), t ≥ 0) is tight. Indeed :

sup t>0 P D t (G) > a ≤ sup t>0 E D t (G) a ≤ E(1/G) a (1.64)
We write now :

Γ t (G) t (law) = D t (G) γ t t -1 + D t (G)
and we shall prove that D t (G)

γ t t -1 P -→
t→∞ 0, which implies by the preceding equality that

D t (G) P -→ t→∞ E(1/G).
We have :

E D t (G)| γt t -1| 1 + D t (G)| γt t -1| ≤ E C| γt t -1| 1 + C| γt t -1| +P D t (G) > C
for all C > 0. Hence, from (1.64):

lim t→∞ E D t (G)| γt t -1| 1 + D t (G)| γt t -1| ≤ lim t→∞ E C| γt t -1| 1 + C| γt t -1| + E(1/G) C ≤ E(1/G) C since | γ t t -1| -→ t→∞ 0 a.s. C being arbitrary, the point 3 ii) is proven.
We now prove point 3 iii).

If we knew that D t (G)

t (law) -→ t→0 
1, then, combining this result with the classical one :

(γ t ) t (law) -→ t→0 U , we would deduce : Γ t (G) t (law) = (γ t ) t • D t (G) t (law) -→ t→0 U
In fact, we shall proceed in the other direction. We shall show further (see point 7 of

Remark 2.2) that Γ t (G) (law) -→ t→0 U . The relation Γ t (G) t = (γ t ) t D t (G)
t and :

(γ t ) t (law) -→ t→0 U, Γ t (G) t (law) -→ t→0
U then imply easily that :

D t (G) t (law) -→ t→0 1.
Remark 1.7 Lijoi and Reggazini [LR] have shown that the support of the law of D t (G) is the closure of the convex hull of the support of the law of 1/G. In particular :

• If G ≤ a a.s., then D t (G) ≥ 1 a a.s. (1.65) • If G ≥ a a.s., then D t (G) ≤ 1 a a.s.
(1.66)

In section 3 of this survey, we shall verify this assertion with the help of numerous examples.

Some examples of GGC subordinators

Let Γ denote a GGC variable with associated Thorin measure µ, and let (Γ t , t ≥ 0) denote the subordinator such that Γ 1 (law)

= Γ. We have :

E(e -λΓt ) = exp -t ∞ 0 (1 -e -λx ) dx x ∞ 0 e -xz µ(dz) (1.67)
Such a subordinator is called a GGC subordinator.

Here are now some examples of such subordinators. They are lifted from a paper by H. Matsumoto, L. Nguyen and M. Yor [MNY] on one hand, and from the study of hyperbolic subordinators made in Pitman and Yor [PY] on the other hand. The reader may refer to these papers for further information. In the study of these examples, we shall denote subordinators with curly letters, especially to avoid some possible confusion with the modified Bessel functions, which are traditionally written with ordinary capital letters.

1.6.a The hyperbolic subordinators see [PY] for a probabilistic description of these subordinators.

i) The subordinator (C t , t ≥ 0) is characterized by :

E(e -λCt ) = exp -t log cosh √ 2λ = 1 cosh √ 2λ t (λ, t ≥ 0) (1.68)
Its Lévy density l C equals :

l C (x) = 1 x ∞ n=1 exp - π 2 8 (2n -1) 2 x (x ≥ 0) (1.69)
and its associated Thorin measure, (i.e. : the Thorin measure of C 1 ) equals :

µ C (dx) = ∞ n=1 δ π 2 8 (2n-1) 2 (dx) (1.70)
ii) The subordinator (S t , t ≥ 0) is characterized by :

E(e -λSt ) = √ 2λ sinh √ 2λ t (λ, t ≥ 0) (1.71)
Its Lévy density equals :

l S (x) = 1 x ∞ n=1 exp - π 2 2 n 2 x (x ≥ 0) (1.72)
Hence, its Thorin measure equals :

µ S (dx) = ∞ n=1 δ π 2 n 2 2 (dx) (x ≥ 0) (1.73)
It has infinite total mass.

We note that the subordinator (T t , t ≥ 0) which is characterized by :

E(e -λTt ) = 1 cosh √ 2λ t • sinh √ 2λ √ 2λ t = tanh √ 2λ √ 2λ t (1.74) satisfies : (C t , t ≥ 0) (law) = (S t + T t , t ≥ 0) (1.75)
and that its Lévy density equals :

l T (x) = l C (x) -l S (x)
However, this subordinator (T t t ≥ 0) is not GGC, as its would be 'Thorin measure' µ T is a signed measure :

µ T = µ C -µ S .
1.6.b The subordinators (J (0) t , t ≥ 0) and (K (0) t , t ≥ 0) We denote by I ν and K ν the modified Bessel functions with index ν see [Leb], p. 108 . i) The subordinator (J

(0) t , t ≥ 0) is characterized by : E(e -λJ (0) t ) = 1 + λ + (1 + λ) 2 -1 -t = exp -t ∞ 0 (1 -e -λx ) dx x I 0 (x)e -x (1.76)
Its Lévy density l J (0) equals :

l J (0) (x) = I 0 (x) e -x x (x ≥ 0) (1.77)
and its Thorin measure µ J (0) , with total mass equal to 1, equals :

µ J (0) (dx) = 1 π dx x(2 -x) 1 [0,2] (x) (1.78)
This formula was obtained by Bondesson ([B3], Ex. 5.2). In Section 3, Theorem 3.1, we shall meet again this subordinator (J

(0) t , t ≥ 0). ii) The subordinator (K (0) t , t ≥ 0) is characterized by : E(e -λK (0) t ) = exp - t 2 arg cosh (1 + λ) 2 = exp -t ∞ 0 (1 -e -λx ) dx x K 0 (x)e -x (1.79)
Hence, its Lévy density equals :

l K (0) (x) = K 0 (x) e -x x x ≥ 0 (1.80)
and its Thorin measure µ K (0) equals :

µ K (0) (dx) = dx x(x -2) 1 [2,∞[ (x)dx (1.81)
We note that this latter formula follows from :

e -x K 0 (x) = e -x ∞ 1 e -x(cosh t) dt see [Leb], p. 119 = e -x ∞ 1 e -xu du √ u 2 -1 = ∞ 2 e -xv dv v(v -2)
iii) The subordinators (K

(0) t , t ≥ 0) and (J (0) 
t , t ≥ 0) are connected via the subordination relation :

(J (0) t , t ≥ 0) (law) = (K (0) S 1/2 (t) , t ≥ 0) (1.82)
where, on the RHS from (1.82), the processes (K (0) u , u ≥ 0) and (S 1/2 (t), t ≥ 0) are independent, and where (S 1/2 (t), t ≥ 0) is the stable subordinator with index 1/2 characterized by :

E(e -λS 1/2 (t) ) = exp -t √ 2λ (1.83) iv) The v.a. K (0)
t , for t fixed, may be realized in the following manner : let b u (s) ; 0 ≤ s ≤ u the brownian bridge with length u with b u (0) = b u (u) = 0 and let :

A(b u ) := u 0 exp 2b u (s) ds Then : K (0) t (law) = A(b 1/t ) -1 (law) = t 1 0 exp 2b(s) √ t ds -1 (1.84)
where, in (1. 

A[b (x) u ] : 1 A[b (x) u ] (law) = ∞ 0 2 e 2x + 2e x cosh (su) + 1 dγ s (1.86)
and in particular :

1 A[b u ] (law) = ∞ 0 dγ s 1 + cosh (su) (1.87) 1.6.c The subordinators (J (ν) t , t ≥ 0) and (K (ν)
t , t ≥ 0) They are obtained by replacing in (1.76), resp. (1.79), I 0 by I ν , resp. K 0 by K ν . i) The subordinator (J (ν) t , t ≥ 0), which is defined for ν > -1, is characterized by :

E(e -λJ (ν) t ) = exp -t ∞ 0 (1 -e -λx ) dx x e -x I ν (x) (1.88)
Thus, its Lévy density l I (ν) equals :

l J (ν) (x) = e -x x I ν (x) x ≥ 0 (1.89)
Its Thorin measure, in the case -1/2 < ν < 0, is obtained by the following calculus :

I ν (z) = z 2 ν √ πΓ(ν + 1/2) • 1 0 (1 -t 2 ) ν-1/2 (e zt + e -zt )dt (Reν > -1/2)
see [Leb], p. 119, form.5.10.22

and :

e -z I ν (z) = C ν z ν 1 0 (1 -t 2 ) ν-1/2 (e -z(1-t) + e -z(1+t) )dt
But, for ν < 0 :

z ν e -za = 1 Γ(-ν) ∞ 0 s -ν-1 e -z(a+s) ds
Hence :

e -z I ν (z) = C ν 1 0 (1 -t 2 ) ν-1/2 dt ∞ 0 s -ν-1 (e -z(1-t+s) + e -z(1+t+s) )ds = C ν 1 0 (1 -t 2 ) ν-1/2 dt ∞ 1-t e -zh (h -1 + t) -ν-1 dh + ∞ 1+t e -zh (h -1 -t) -ν-1 dh = C ν 1 0 e -zh dh 1 0 dt(1 -t 2 ) ν-1/2 (h -1 + t) -ν-1 1 h>1-t + (h -1 -t) -ν-1 1 h>1+t
Hence, in the case -1/2 < ν < 0, the Thorin measure of (J (ν) t , t ≥ 0) admits a density equal to :

µ J (ν) (dx)/dx = C ν 1 0 (1 -t 2 ) ν-1/2 x -(1 -t) -ν-1 1 x>1-t + x -(1 + t) -ν-1 1 x>1+t dt Hence, if -1/2 < ν < 0, (J ν t , t ≥ 0) is a GGC subordinator. ii) The subordinator (K (ν) t , t ≥ 0), defined for ν < 1, is characterized by : E(e -λK (ν) t ) = exp -t ∞ 0 (1 -e -λx ) dx x e -x K ν (x) (1.90)
Its Lévy density l K (ν) equals :

l K (ν) (x) = e -x x K ν (x) (x ≥ 0) (1.91)
Its Thorin measure µ K (ν) , obtained by using the formula [Leb], p. 119

K ν (z) = ∞ 0
e -z cosh u (cosh νu)du equals :

µ K (ν) (dx) = cosh ν arg cosh(x -1) dx x(x -2) 1 [2,∞[ (x) (1.92)
The formula in (1.92) simplifies using,

cosh ν arg cosh(x -1) = 1 2 (x -1) + (x -2)x ν + (x -1) + (x -2)x -ν , since: arg cosh(y) = log y + y 2 -1 . 1.7 The subordinator Γ t (S β ), t ≥ 0 (0 < β < 1)
We give here a realisation for the subordinator Γ t (S β ), t ≥ 0 , where S β is a positive β-stable r.v. Let α > 0. We denote σ t,n := {s 1 = 0 < s 2 • • • < s n = t} a subdivision of the interval [0, t] with mesh δ(σ t,n ) := sup i (s i+1 -s i ). The limit along the decreasing filtering set of sequences σ t,n whose meshes δ(σ t,n ) tend to zero, of

s k ∈σt,n (γ s k+1 -γ s k ) α exists a.s. Observe that : E s k ∈σt,n (γ s k+1 -γ s k ) α = s k ∈σt,n Γ(α + s k+1 -s k ) Γ(s k+1 -s k ) -→ δ(σt,n)→0
t Γ(α). Let :

V (α) (t) := lim δ(σt,n)→0 s k ∈σt,n (γ s k+1 -γ s k ) α = 0<s≤t (γ s -γ s -) α (1.93) Let N t,x := #{s ≤ t ; γ s -γ s -> x 1/α } From Section 1.4, N t,x is a Poisson r.v. with parameter t • ∞ x 1/α
e -u u du. But, evidently :

N t,x = #{s ≤ t ; (γ s -γ s -) α > x} (1.94)
We deduce from (1.94) that the Poisson point process

(γ s -γ s -) α , s ≥ 0 admits n (α) (dx) = 1 α dx x e -x 1/α (x > 0)
as intensity measure. Hence V (α) (t), t ≥ 0 is a subordinator whose Lévy measure equals n (α) (dx) :

E(e -λV (α) (t) ) = exp - t α ∞ 0 (1 -e -λx ) dx x e -x 1/α
This subordinator, for every α > 0, is self-decomposable but it is GGC only in the case α ≥ 1. In this case : α ≥ 1 we have :

E(e -λV (α) (t) ) = exp - t α ∞ 0 (1 -e -λx ) dx x E(e -xS 1/α )
where S 1/α is a positive 1 α stable r.v. In other terms, with the notation of Section 1.5.b :

Γ t (S β ), t ≥ 0 (law) = V (α) (tα), t ≥ 0 α = 1 β ≥ 1 (1.95)
1.8 Remark.

We now end up this Introduction by indicating how the study of the GGC subordinators may be embedded in a more general one.

A subordinator (N t , t ≥ 0) is said to belong to the Thorin class T (χ) (R + ), with χ > 0 see [Grig] , if its Lévy measure admits a density l N of the form :

l N (x) = x χ-2 k(x) x > 0 (1.96)
where k is a completely monotonic function, i.e. it may be represented as :

k(x) := ∞ 0 e -xy µ(dy) (1.97)
for a positive Radon measure µ carried by R * + . Thus, the subordinators which we study in this work, i.e. : the GGC subordinators, belong to the class T (1) (R + ). The class T (2) (R + ) has been studied by Goldie [Gol], Steutel [Steu] and Bondesson [B2]. The r.v's which belong to this class are the generalized convolutions of mixtures of exponential laws. Note that T (χ) (R + ) ⊂ T (χ ) (R + ) if χ < χ . We also note that [BNMS] present extensions of these notions to R d . In the same manner as condition (1.9) is necessary and sufficient for a measure µ to be the Thorin measure associated to a positive r.v., B. Grigelionis [Grig] obtains a necessary and sufficient analytical condition so that a measure µ defines, via (1.96) and (1.97), a subordinator (N t , t ≥ 0) which belongs to the class T (χ) (R + ).

1.9 We now detail the contents of the sequel of this paper :

• In Section 2, we present a duality result which connects on one hand the r.v.'s Γ t (G) and D t (G) to the r.v.'s Γ t (1/G) and Γ t (G) on the other hand.

• In Section 3, we study in depth the examples of subordinators Γ t (G α ) (0 ≤ α ≤ 1) for which we know how to compute explicitly their Laplace transforms, i.e. : their Lévy exponents, as well as their densities at any time, and their Wiener-Gamma representations.

2 A duality principle.

Throughout this section, G denotes a positive r.v. such that E |log G| < ∞. Thus, we have :

E log + (1/G) < ∞ and E log + (G) < ∞ (2.1)
Consequently, the subordinators Γ t (G), t ≥ 0 and Γ t (1/G), t ≥ 0 are well defined.

We denote by ψ G (resp. ψ 1/G ) the characteristic exponent (i.e. : the Bernstein function or Lévy exponent) of the subordinator Γ

t (G), t ≥ 0 , resp. Γ t (1/G), t ≥ 0 . ψ G (λ) := ∞ 0 (1 -e -λx ) dx x E(e -xG ) (2.2)
and the same formula for ψ 1/G obtained when replacing G by 1/G. We denote by F G the cumulative distribution function of G and by F -1 G its right continuous inverse, in the sense of the composition of functions.

2.1 The duality theorem.

Theorem 2.1 (Duality)

1 ) F -1 1/G (y) • F -1 G (1 -y) = 1 a.e. y ∈ [0, 1] (2.3)
2) For any λ ≥ 0 :

ψ 1/G (λ) -ψ G (1/λ) = E(log G) + log λ (2.4) 3) i) f Γt(1/G) the density of the r.v. Γ t (1/G), equals : f Γt(1/G) (x) = e -t E(log G) E Γ t (G) x 1-t 2 J t-1 2 x Γ t (G) (2.5)
where J ν denotes the Bessel function with index ν :

J ν (z) = ∞ k=0 (-1) k 1 Γ(k + 1) Γ(k + ν + 1) z 2 ν+2k , |z| < ∞, |Arg z| < π (2.6)
see [Leb], p. 102

ii ) f Γt(1/G) (x) = x t-1 Γ(t) e -t E(log G) E(e -xDt(G) ) (x > 0) (2.7) iii )E 1 D t (G) t = e t E(log G) (2.8) 4 ) i ) E 1 λ + D t (G) t = exp -t ψ 1/G (λ) -E(log G) (2.9)
ii) The densities f Dt(G) and f Dt(1/G) of, resp., D t (G) and D t (1/G) are related by :

f Dt(1/G) (x) = x t-2 e -t E(log G) f Dt(G) (1/x) (x > 0) (2.10) Remark 2.2.
1) The relation (2.4) is found, under a slightly different form, in Bondesson [B1], p. 48, III "Curious composition" , under the only hypothesis E log + (1/G) < ∞. We have chosen to work under the stronger hypothesis E |log G| < ∞ since it seems that only under this hypothesis can we obtain the most interesting results.

2) Of course, all formulae of Theorem 2.1 are "involutive", in that G may be replaced there by 1/G.

3) Formula (2.7) agrees with, and makes more precise, the result of Bondesson which we recalled in (1.28) and (1.30). In particular :

f Γt(G) (x) ∼ x→0 x t-1 Γ(t) e t E(log G) (2.11)
4) Formula (2.4) may be generalized as follows :

Let a, b, c, d ∈ R 4 , with ad -bc = ±1 and let, for x, λ ≥ 0 :

σ(x) = ax + b cx + d , σ(λ) = dλ + b cλ + a (2.12)
so that σ(G) be a positive r.v. Then : 5) Cifarelli and Regazzini [START_REF] Cifarelli | Regazzini Distribution functions of means of a Dirichlet process[END_REF] , Cifarelli and Melilli [CM] have obtained the density of D t (G) for t ≥ 1 and James, Lijoi and Prünster [JLP] have obtained it for t ≤ 1. For t ≤ 1, they obtained :

-ψ G ( σ(λ)) + ψ σ(G) (λ) = log (cλ + a) + k with k := E log G + λ 0 σ(G) + λ 0 • σ(G) G -log (c λ 0 + a)
f Dt(G) (x) = x 0 (x -u) t-1 d du θ t (u) du (2.13) with θ t (u) := 1 π sin t π F 1/G (u) exp -t E log u - 1 G 1 u = 1 G (2.14)
The proof of this formula (2.13) hinges upon the knowledge of the density of the r.v.

D 1 1 G Y t
which is defined by : see (1.41) and (1.42) with m = t and m = 1 .

β t,1-t • D t (1/G) (law) = D 1 1 G • Y t (t ≤ 1)
This density equals :

f D 1 1 G • Y t (x) = sin t π F G (1/x) π x t-1 exp -t E log x - 1 G • 1 G = 1 x (2.15)
which is obtained by inverting its Stieltjes transform.

Other formulae for densities of Dirichlet means may be found in Regazzini, Guglielmi and DiNunno [RGdN] 6) Formula (2.8) is obtained from (2.7) by integrating between 0 and ∞ :

1 = ∞ 0 f Γt(1/G) (x)dx = ∞ 0 1 Γ(t) x t-1 e -tE(log G) E(e -xDt(G) )dx = e -tE(log G) Γ(t) E 1 D t (G) t Γ(t), hence : E 1 D t (G) t = e tE(log G) (2.16)
The interest of this formula (2.16) is the following : it allows, in a situation where the law of G is not known but when one knows the laws of D t (G) and

D t (1/G) to show that E |log G| < ∞ as soon as E D t (G) -t < ∞ and E D t (1/G) -t < ∞.
Formula (2.7), once multiplied by x ν , and integrated between 0 and ∞, leads to :

E Γ t (1/G) ν = Γ(ν + t) Γ(t) e -tE(log G) E 1 D t (G) ν+t (2.17)
The formula is also true even when the expectations which appear in this expression are infinite.

7) The result :

Γ t (G) t (law) -→ t→0 U (2.18)
with U uniform on [0, 1] see point 3 iii) of Proposition 1.7 is a consequence of (2.7). Indeed :

P Γ t (G) t ≤ e -a = P Γ t (G) ≤ e -a t = e -a t 0 f Γt(G) (x)dx = e tE(log G) Γ(t) e -a t 0 x t-1 E(e -xDt(1/G) )dx
from (2.7) applied when replacing G by 1/G :

∼ t→0 1 Γ(t) e -a t 0 x t-1 dx = e -a Γ(t + 1) -→ t↓0 e -a
We note that, from (1.64), the family of the laws of D t (1/G), t ≤ 1 is tight as soon as E(G) < ∞.

2.2 Proof of Theorem 2.1.

2.2.a

Point 1 is trivial. We show point 2 : Since, from Frullani's formula :

ψ G (λ) = E log 1 + λ G = E log λ G 1 + G λ = log λ -E(log G) + E log 1 + G λ
we have, by changing λ in 1/λ :

-ψ G (1/λ) + ψ 1/G (λ) = -log λ + E(log G)

2.2.b

We now show point 3 of Theorem 2.1 : i) From formula (2.4), after multiplying by t and exponentiating, we obtain :

E(e -λΓt(1/G) ) = e -tE(log G) λ t E(e -1 λ Γt(G) ) (2.19)
Then, taking the Laplace transform of both sides of (2.19) in the variable λ, we obtain :

∞ 0 E(e -λ(Γt(1/G) )e -βλ dλ = E 1 β + Γ t (1/G) = e -tE(log G) E ∞ 0 e -βλ-1 λ Γt(G) dλ λ t = 2e -tE(log G) E Γ t (G) β 1-t 2 K 1-t 2 βΓ t (G) (2.20)
where K ν denotes the Bessel-McDonald function with index ν and where we have used formula 5.10.25 in [Leb], p. 108 and 119. We now use (2.20) to compute f Γt(1/G) by inverting its Stieltjes transform see [Wid] .

f Γt(1/G) (u) = 1 2iπ lim η↓0 E 1 -u -iη + Γ t (1/G) - 1 -u + iη + Γ t (1/G) = e -tE(log G) iπ E Γ t (G) u 1-t 2 e iπ(1-t) 2 K 1-t 2 uΓ t (G) e -iπ 2 -e -iπ(1-t) 2 K 1-t 2 uΓ t (G) e -iπ 2 (2.21)
However, it is well known that see [Leb], p. 108 and 109 :

• K ν = K -ν • π < Arg z < π 2 ⇒ K ν (z) = iπ 2 e iνπ 2 H (1) ν (z e iπ 2 ) • π 2 < Arg z < π ⇒ K ν (z) = -iπ 2 e -iνπ 2 H (2) ν (z e -iπ 2 ) 29
where the Hankel functions H

(1) ν and H

(2) ν satisfy [Leb], p. 108

H (1) ν + H (2) ν = 2J ν
Plugging these relations into (2.21), we obtain :

f Γt(1/G) (u) = e -tE(log G) E Γ t (G) u 1-t 2 J t-1 2 uΓ t (G)
ii) We now prove (2.7), which is a consequence of (2.5). Indeed, from (2.5) and (2.6) :

f Γt(1/G) (u) = e -tE(log G) E Γ t (G) u 1-t 2 ∞ k=0 (-1) k Γ(k + 1) Γ(k + t) uΓ t (G) k+ t-1 2 = e -tE(log G) u t-1 E ∞ k=0 (-1) k Γ(k + 1) Γ(k + t) uγ t D t (G) k from (1.53). But, since E(γ k t ) = Γ(k + t) Γ(t)
, we have :

f Γt(1/G) (u) = e -tE(log G) Γ(t) u t-1 E ∞ k=0 (-1) k k! uD t (G) k = e -tE(log G) Γ(t) u t-1 E(e -uDt(G) ) (2.22)
On the other hand, as we already noticed in point 6 of Remark 2.2, formula (2.8) may be obtained by integrating from 0 to ∞ in (2.22).

2.2.c

We now prove point 4 of Theorem 2.1.

i) Formula (2.9) is immediate. Indeed, since Γ t (G)

(law)
= γ t D t (G) we get :

E(e -λΓt(G) ) = exp -tψ G (λ) = E 1 1 + λD t (G) t
Replacing then λ by 1/λ in this latter formula, we obtain :

E 1 λ + D t (G) t = exp -t ψ G (1/λ) + log λ = exp -t ψ 1/G (λ) -E(log G) (2.23)
from (2.4). We note that (2.8) may also be obtained by taking λ = 0 in (2.23).

ii) We now show (2.10). For this purpose, we shall prove that the two members of (2.10) admit the same Stieltjes transform with index t. Indeed :

∞ 0 e -tE(log G) (λ + x) t x t-2 f Dt(G) 1 x dx = e -tE(log G) ∞ 0 1 (1 + λx) t f Dt(G) (x)dx after making the change of variables y = 1/x = e -tE(log G) E(e -λΓt(G) ) from (1.56) = exp -t E(log G) + ψ G (λ) (2.24)
whereas :

∞ 0 1 (λ + x) t f Dt(1/G) (x)dx = 1 λ t ∞ 0 1 1 + x λ t f Dt(1/G) (x)dx = exp -t log λ + ψ 1/G (1/λ) from (1.56) = exp -t E(log G) + ψ G (λ) from (2.4) (2.25)
The comparison of (2.24) and (2.25) and the injectivity of the Stieltjes transform of index t imply (2.10).

iii) We now show (2.10), for t = 1, by using (2.13). For t = 1, (2.13) writes :

f D 1 (G) (x) = sin πF 1/G (x) π e -E((log|x-1 G |)1 x =1/G )
(2.26) Thus :

f D 1 (1/G) (x) = sin πF G (x) π e -E((log|x-G|)1 x =G ) = sin πF G (x) π exp -E log x G 1 x - 1 G • 1 x =G = sin πF G (x) π e -E(log G) x e -E(log| 1 x -1 G |1 x =G ) = 1 x e -E(log G) f D 1 (G) (1/x), from (2.26) since sin πF G (x) = sin π(1 -F G (x) = sin πF 1/G (1/x) .
It is possible, by using (2.13), to extend this proof for all t < 1. We leave the details to the interested reader.

2.3 A complement to the duality theorem.

Here again, G denotes a r.v. such that E |log G| < ∞, and we recall that, for any t ≤ 1 Y t denotes a Bernoulli r.v. with parameter t see (1.41) and (1.42), with m = t and m = 1 . Theorem 2.3. For all t ∈ [0, 1[ :

1) The density f D 1 ( G Y t
) may be expressed in terms of G, as :

f D 1 G Y t (x) = sin π t F G (1/x) π x t-1 exp -t E log x - 1 G 1 x = 1 G x > 0, (2.27)
and when 1/x is in the support of F G . Otherwise replace sin π t F G (1/x) by sin π (1 -t) when x > 0.

2) The following duality formula holds :

f D 1 G Y t (x) = sin π t F G (1/x) sin π t 1 -F G (1/x) • x t-2 f D 1 1 GY t 1 x • e t E(log G)
(2.28)

3) Let ∧ t : [0, ∞[-→ [0, 1] be defined by :

∧ t (y) := 1 - 1 πt arc tg sin (πt) cos (πt) + y (2.29)
Then :

F G (1/x) = ∧ t f D 1 G Y t (x) x t-2 f D 1 1 GY t 1 x e t E(log G)
(2.30)

Remark 2.4. 1) We note that the right-hand side of (2.30) depends on t t ∈ [0, 1[ , whereas the lefthand side does not depend on t.

2

) Since see (1.43) D 1 1 GYt (law) = β t,1-t • D t (1/G), the knowledge of the law of D t (1/G)
and of that of D t (G), for one t < 1, allow to determine that of G. We shall exploit this fact, in points 2.5 and 2.6 below, to determine the Thorin measure of a Pareto distribution and of a power of a gamma variable.

3) We note that finding an explicit Thorin measure of an arbitrary GGC is akin to finding the Lévy measure of some infinitely divisible random variable. Bondesson [B1],Theorem 4.3.2, p. 61 , using inversion techniques, obtains an expression for the Thorin measure, but notes that it seldom yields explicit expressions. On the other hand the use of statement 3) of Theorem 2.3 will often lead to tractable expressions for the Thorin measure. 4) We shall prove (see Section 3.1.b) that ∧ t is the cumulative distribution function of a r.v. Z t which we shall describe. On the other hand, some trigonometric computations allow to see that ∧ -1 t , the inverse of ∧ t in the sense of composition of functions, equals :

∧ -1 t (x) = sin(π tx) sin πt(1 -x) x ∈ [0, 1] (2.31) 5) Point 1 of Theorem 2.
3 is due to James see [J] .

2.4 Proof of Theorem 2.3.

2.4.a

We first prove point 1.

As this point has already been established by James see [J] , we shall only give a quick proof.

We have, from (1.56) :

E 1 1 + λD 1 G Yt = exp -tψ G (λ) = 1 λ E 1 1 λ + D 1 G Yt
Hence, changing λ in 1 λ and using (2.4) :

E 1 λ + D 1 G Yt = exp -t ψ G (1/λ) -log λ = exp (t -1)log λ • e t E(log) exp -t ψ 1/G (λ) (2.32)
We then compute f

D 1 G Y t
by inverting its Stieltjes transform :

f D 1 G Y t (u) = e t E(log G) 2iπ lim η↓0 exp (t -1) log (-u -iη) -t ψ 1/G (-u -iη) -exp (t -1)log(-u + iη) -t ψ 1/G (-u + iη) (u > 0) (2.33)
It then suffices to observe that : t-1) and :

exp (t -1) log (-u -iη) -→ η↓0 + exp (t -1) log |u| -iπ(t -1) = u t-1 e -iπ(
lim η↓0 + exp (t -1) log (-u + iη) = u t-1 e iπ(t-1)
as well as :

t ψ 1/G (-u -iη) = t E log(1 -uG -iη G) = t E log (1 -uG -iη G)1 uG<1 + log(1 -uG -iη G)1 uG>1 -→ η↓0 + t E log |1 -u G| 1 uG =1 -iπP (uG > 1) whereas : t ψ 1/G (-u + iη) -→ η↓0 + t E log |1 -uG| 1 uG =1 + iπP (uG > 1)
Then, plugging the values of these different limits in (2.33), we obtain point 1 of Theorem 2.3.

2.4.b

We now prove point 2 of Theorem 2.3. We deduce from (2.7) that :

f D 1 G Y t (x) = sin πt F G (1/x) π x t-1 exp -t E log 1 G |1 -xG| 1 xG =1 = sin πt F G (1/x) π x t-1 e t E(log G) exp -t E (log |1 -xG| 1 xG =1
(2.34) whereas :

x t-2 f D 1 1 GY t 1 x e t E(log G) = x t-2 sin πtF 1/G (x) π e t E(log G) • x 1-t • exp -t E log 1 x - 1 G 1 xG =1 = 1 x sin πtF 1/G (x) π e tE(log G) exp -t E log 1 x |1 -xG| 1 xG =1 = sin πt F 1/G (x) π x t-1 e tE(log G) exp -t E log|1 -xG| 1 xG =1 (2.35)
hence, point 2 of Theorem 2.3 follows, by comparison of (2.35) and (2.34).

2.4.c

We now prove point 3 of Theorem 2.3. From (2.28), we obtain :

f D 1 G Y t (x) x t-2 f D 1 1 GY t 1 x e tE(log G) = sin πt F G (1/x) sin πt 1 -F G (1/x) = ∧ -1 t F G (1/x) with ∧ -1 t (x) = sin(πtx) sin πt(1 -x) see (2.31)
Then, inverting this formula, since

∧ t • ∧ -1 t (x) = x, x ∈ [0, 1] we obtain : F G (1/x) = ∧ t f D 1 G Y t (x) x t-2 e tE(log G) f D 1 1 GY t 1 x
2.5 Computation of the Thorin measure of a Pareto r.v.

Here is a first application of Theorem 2.3. 2.5.a Let m > 0 fixed and :

X θ := γ θ γ m (0 < θ < 1) (2.36)
with density :

f X θ (x) = Γ(θ + m) Γ(θ) Γ(m) x θ-1 (1 + x) -(θ+m) (2.37) = Γ(θ + m) Γ(θ) • Γ(m) x θ-1 E(e -xγ θ+m ) (2.38)
The r.v. X θ is a GGC r.v. see Bondesson [B1], p. 59 . The rationale of our work is now the following :

• We first compute the Thorin measure associated with X θ .

• Then, letting θ converge 1, we shall obtain -as the Thorin measure depends continuously (for the narrow topology) on the law of X θ see Bondesson,[START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] -the Thorin measure associated with the r.v. X 1 = γ 1 γ m , i.e. to a Pareto r.v. with parameter m(m > 0).

2.5.b Thorin measure associated with X θ , θ < 1. Since, from (2.37) :

sup α > 0 ; lim x→0 f X θ (x) x α-1 = 0 = θ we deduce from (1.30) the existence of a r.v. G θ , such that E log + 1 G θ < ∞ and such that X θ is a (θ, G θ ) GGC r.v. : X θ (law) = Γ θ (G θ ) (law) = γ θ D θ (G θ ) (law) = γ θ γ m (2.39) hence : D θ (G θ ) (law) = 1 γ m (2.40)
On the other hand, from (2.7) :

f Γ θ (G θ ) (x) = x θ-1 Γ(θ) e θE(log G θ ) E(e -xD θ (1/G θ ) ) (2.41)
Comparing (2.40) and (2.38) yields :

e θE(log G θ ) = Γ(θ + m) Γ(m) (2.42) D θ (1/G θ ) (law) = γ θ+m (2.43)
Since, on the other hand :

D 1 1 G θ Y θ (law) = β θ,1-θ • D θ (1/G θ ) (law) = β θ,1-θ • γ θ+m (2.44) D 1 G θ Y θ (law) = β θ,1-θ • D θ (G θ ) (law) = β θ,1-θ • 1 γ m (2.45)
we easily deduce from these formulae that :

f D 1 1 G θ Y θ (z) = sin πθ πΓ(θ + m) z θ-1 ∞ z e -y y m+θ-1 (y -z) θ dy (2.46) f D 1 G θ Y θ (z) = sin πθ πΓ(θ) z -m-1 1 0 e -y z y m+θ-1 (1 -y) -θ dy (2.47)
The Thorin measure of X θ , which equals : θP G θ (dx), where P G θ is the law of G θ , is then, by applying (2.30) :

F G θ 1 z = ∧ θ ∞ z e -y y m+θ-1 (y -z) θ dy z m 1 0 e -yz y m+θ-1 (1 -y) -θ dy (2.48)
where, to obtain (2.48), we have used (2.42).

2.5.c Thorin measure of

γ 1 γ m (m > 0).
By continuity, the r.v. γ 1 γ m is a (1, G) GGC r.v. and its Thorin measure is the law of G whose cumulative distribution function is obtained by letting θ tend to 1 in (2.48). To obtain this limit, we shall develop several computations.

2.5.i) Development of ∞ z e -y y m+θ-1 (y -z) θ dy as β = 1 -θ → 0 ∞ z e -y y m+θ-1 (y -z) θ dy = e -z ∞ 0 e -u (z + u) m+θ-1 u θ du (y = z + u) = e -z β ∞ 0 e -u u β (z + u) m-β -(m -β)(z + u) m-β-1 du
with β = 1 -θ and after integrating by parts :

= e -z β ∞ 0 e -u (z + u) m u z + u β 1 -(m -β) 1 z + u du ∼ β→0 e -z β ∞ 0 e -u (z + u) m 1 + β log u z + u 1 -(m -β) 1 z + u du = β→0 e -z β ∞ 0 e -u (z + u) m 1 - m z + u du +e -z ∞ 0 e -u (z + u) m log u 1 + u + 1 z + u du + o(β) = e -z z m β + e -z z m ∞ 0 e -u 1 + u z m log u 1 + u + 1 z + u du + o(β) since ∞ 0 e -u (z + u) m 1 - m z + u du = z m
, by integration by parts. Finally :

∞ z e -y y m+θ-1 (y -z) θ dy = β→0 e -z z m β + e -z z m C m (z) + o(β) (2.49) with C m (z) = ∞ 0 e -u 1 + u z m log u 1 + u + 1 z + u du (2.50) 2.5. ii) Development of z m 1 0 e -xz x m+θ-1 (1 -x) -θ dx as β = 1 -θ -→ 0 z m 1 0 e -xz x m-β (1 -x) β-1 dx = e -z z m 1 0 e zu (1 -u) m-β u β du (x = 1 -u) = e -z z m β 1 0 e zu (m -β)(1 -u) m-β-1 -z(1 -u) m-β u β du
with β = 1 -θ, and after integrating by parts :

= e -z z m β 1 0 e zu (1 -u) m u 1 -u β m -β 1 -u -z du ∼ β→0 e -z z m β 1 0 e zu (1 -u) m m -β 1 -u -z 1 + β log u 1 -u du ∼ β→0 e -z z m β 1 0 e zu (1 -u) m m 1 -u -z du + e -z z m 1 0 e zu (1 -u) m • - 1 1 -u + m 1 -u -z log u 1 -u du + o(β) = e -z z m β + e -z z m C m (z) + o(β) (2.51) with C m (z) = 1 0 e zu (1 -u) m - 1 1 -u + m 1 -u -z log u 1 -u du (2.52)
since :

1 0 e zu (1 -u) m m 1 -u -z du = 1
, by integrating by parts.

iii)

Let

q 1-β (z) := ∞ z e -y y m+θ-1 (y -z) θ dy z m 1 0 e -xz x m+θ-1 (1 -x) θ dx
(2.53) Thus, we have :

q 1-β (z) = β→0 e -z β z m + e -z z m C m (z) + o(β) e -z z m β + e -z z m C m (z) + o(β) (2.54)
where C m (z) and C m (z) are given by (2.50) and (2.52). Hence :

q 1-β (z) = 1 + β C m (z) -C m (z) + o(β) (2.55)
Plugging this expression in (2.48), we obtain :

F G 1-β (1/z) = 1 - 1 πθ arc tg sin(πθ) cos(πθ) + 1 + β C m (z) -C m (z) + o(β) = 1 - 1 π(1 -β)
arc tg sin πβ

-cos πβ + 1 + β C m (z) -C m (z) + o(β) -→ β→0 1 - 1 π arc tg π C m (z) -C m (z) = F (1/z) (2.56)
where F is the cumulative distribution function of the Thorin measure associated to the Pareto r.v. γ 1 γ m , with parameter m > 0.

2.6 Thorin measure associated with γ 1/α 1 , 0 < α < 1. 2.6.a Let X α :

(law) = γ 1/α 1 with 0 < α < 1, with density : f Xα (x) = α x α-1 e -x α = α x α-1 E(e -xSα ) (2.57)
where S α is a positive stable r.v. with index α :

E(e -λSα ) = exp(-λ α ) (λ ≥ 0) (2.58)
From Bondesson [B1], p. 60 , X α is a GGC r.v. Since :

α = sup ν > 0, lim x↓0 f Xα (x) x ν-1 = 0 X α is a (α, G α ) GGC r.v., for a r.v. G α such that : E log + (1/G α ) < ∞. Thus : X α (law) = (γ 1 ) 1/α = Γ α (G α ) = γ α D α (G α ) (2.59)
We shall now devote some effort to finding the law of G α , making use in particular of formula (2.10) From (2.7) :

f Γα(Gα) (x) = x α-1 Γ(α) e αE(log Gα) E(e -xDα(1/Gα) ) (2.60)
we deduce, by comparison with (2.57) :

e αE(log Gα) = α Γ(α) = Γ(α + 1) (2.61) and D α (1/G α ) (law) = S α (2.62) Since : D 1 1 G α Y α (law) = β α,1-α • D α (1/G α ) (law) = β α,1-α • S α we deduce that the density of D 1 1 G α Y α equals : f D 1 ( 1 GαYα ) (y) = sin(πα) π y α-1 ∞ y 1 (x -y) α f α (x)dx (2.63)
where f α denotes the density of S α . On the other hand, from Chaumont-Yor [CM], p. 112 :

γ 1/α 1 (law) = γ 1 S α (2.64)
hence, since :

γ 1 S α (law) = γ α • D α (G α ) (law) = β α,1-α • γ 1 D α (G α ) (law) = γ 1 • D 1 G α Y α (2.65)
we get :

D 1 G α Y α (law) = 1 S α and
(2.66)

f D 1 ( Gα Yα ) (x) = 1 x 2 f α 1 x (2.67)
Then, applying (2.30), we get :

F 1/Gα 1 y = ∧ α Γ(α+1)sin (πα) π ∞ y 1 (x-y) α f α (x)dx yf α (y) (2.68)
where, to obtain (2.68), we have used (2.60). This expression (2.68), provides us then with the explicit form of the Thorin measure of (γ 1 ) 1/α , which is equal to P Gα . 2.6.b. We shall now give a more suitable expression of (2.68). From the relations (2.65) and (2.66), we deduce :

β α,1-α • D α (G α ) (law) = D 1 G α Y α = 1 S α (2.69) hence : 1 y 2 f α 1 y = sin πα π y α-1 ∞ y 1 (z -y) α f Dα(Gα) (z)dz (2.70)
But, the density of D α (G α ) may be computed from that of D α (1/G α ), thanks to (2.10):

f Dα(Gα) (x) = x α-2 e αE(log Gα) f Dα(Gα) (1/x).
Now from (2.62) and (2.61), we obtain:

f Dα(Gα) (x) = x α-2 Γ(α + 1)f α (1/x).
(2.71)

We now note the interesting relationship concerning the law of S α . Lemma 2.4 Let 0 < α < 1, and S denote a positive random variables with density (f (y), y > 0) such that:

yf (y) = CE 1 (y -S) α 1 {S<y} (2.72)
for some C > 0. Then, S is a stable (α) variable; precisely:

E exp -λS = exp - CΓ(1 -α) α λ α .
We postpone the proof of the Lemma for the moment, and we note that, plugging (2.72) into (2.68), we obtain:

F 1/Gα 1 y = ∧ α E 1 (Sα-y) α 1 Sα>y E 1 (y-Sα) α 1 Sα<y = 1 - 1 πα arc tg sin(πα) • E 1 (y-Sα) α 1 Sα<y cos(πα) • E 1 (y-Sα) α 1 Sα<y + E 1 (Sα-y) α 1 Sα>y , (2.73) from (2.29).
Proof of Lemma 2.4 From (2.72), we take the Laplace transform of both sides:

∞ 0 e -λy yf (y)dy = CE ∞ S e -λy (y -S) α dy = CE e -λS ∞ 0 e -λz z α dy = CΓ(1 -α)λ α-1 E e -λS .
Denoting φ(λ) = E e -λS , we get:

-φ (λ) = CΓ(1 -α)λ α-1 φ(λ), from which we deduce:

φ(λ) = exp - CΓ(1 -α) α λ α .
3 Explicit examples of GGC variables associated with the (G α , 0 ≤ α ≤ 1) family.

All the examples discussed in this Section are related to the r.v.'s. (G α , 0 ≤ α ≤ 1) introduced in [BFRY]. Below, we indicate the properties of these r.v.'s which we shall use. We also recall our notation :

Γ t (G α ) = γ t • D t (G α ) and (3.1) E(e -λΓt(Gα) ) = exp -t ∞ 0 (1 -e -λx ) dx x E(e -xGα ) (λ, t ≥ 0) (3.2)
3.1 The family (G α , 0 ≤ α ≤ 1). see [BFRY])

3.1.a. For 0 < α < 1, the density f Gα of G α equals :

f Gα (x) = α sin(πα) (1 -α) π x α-1 (1 -x) α-1 (1 -x) 2α -2(1 -x) α x α cos(πα) + x 2α 1 [0,1] (x) (3.3)
In particular :

• for α = 1/2, G 1/2 follows the arc sine law :

f G 1/2 (x) = 1 π 1 x(1 -x) 1 [0,1] (x), G 1/2 (law) = β 1/2, 1/2 (3.4) • for α = 1, G 1 is uniform on [0, 1] (3.5) • for α = 0, G 0 (law) = 1 1 + exp(πC) (3.6)
where C is a standard Cauchy variable.

In general, for 0 < α < 1 one has :

E[e -λΓ 1-α (Gα) ] = exp -(1 -α) ∞ 0 (1 -e -λx ) dx x E(e -xGα ) = (1 + λ) α -λ α (3.7)
The density f Γ 1-α (Gα) of Γ 1-α (G α ) equals :

f Γ 1-α (Gα) (x) = α Γ(1 -α) 1 x 1+α (1 -e -x ) 1 [0,∞] (x) (3.8)
which may be translated as the following identities in law :

Γ 1-α (G α ) (law) = γ 1-α β α,1 (law) 
= γ 1-α U 1/α (3.9)

3.1.b. We note, for 0 < µ < 1, S µ and S µ two independent copies of positive stable (µ) r.v.'s, i.e. :

E(e -λSµ ) = exp(-λ µ ) (λ ≥ 0) (3.10) and, we let :

Z µ := S µ S µ µ (3.11)
Then see [Lam] or [CY], p. 116 , the density f Zµ of Z µ equals :

f Zµ (x) = sin(πµ) πµ 1 x 2 + 2x cos(πµ) + 1 1 [0,∞] (x) (3.12)
and we have :

G α (law) = (Z 1-α ) 1/α 1 + (Z 1-α ) 1/α (3.13)
or equivalently :

1

G α (law) = 1 + 1 (Z 1-α ) 1/α (law) = 1 + S 1-α S 1-α (3.14)
We note that the cumulative distribution function F Zµ of Z µ equals :

F Zµ (x) = 1 - 1 πµ arc tg sin(πµ) cos(πµ) + x x ≥ 0 (3.15)
and that its inverse, in the sense of composition of functions, is given by :

F -1 Zµ (x) = sin (πµx) sin πµ(1 -x) (0 ≤ x ≤ 1) (3.16)
(see Remark 2.4, point 3).

3.1.c. Although this will not be used in the sequel, we indicate a realization of the r.v. Γ 1-α (G α ) which has been at the start of [BFRY]. Let (R t , t ≥ 0) denote a Bessel process starting from 0, with dimension d = 2(1 -α), with 0 < d < 2, or equivalently 0 < α < 1. Let, for any t > 0 :

g (α) t := sup{s ≤ t ; R s = 0}, d (α) t := inf{s ≥ t, R s = 0} (3.17)
and let e

(law)
= γ 1 an exponentially distributed r.v., with mean 1, independent from (R t , t ≥ 0). Then :

Γ 1-α (G α ) (law) = d (α)
e -g (α) e (3.18)

A more general study of quantities such as the RHS of (3.18), has been developed by M.

Winkel [Wink].

3.2 Study of the subordinators Γ t (G 1/2 ), t ≥ 0 and Γ t (1/G 1/2 ), t ≥ 0 .

In this Section, G 1/2 is a beta (1/2, 1/2) variable, i.e. : its law is the arc sine distribution. see (3.4) . 3.2.a. Theorem 3.1. Let Γ t (G 1/2 ), t ≥ 0 denote the subordinator characterized by :

E(e -λΓt(G 1/2 ) ) = exp -t ∞ 0 (1 -e -λx ) dx x E(e -xG 1/2 ) (3.19)
The following explicit formulae hold :

1. Laplace transform of Γ t (G 1/2 ).

E(e -λΓt(G 1/2 ) ) = exp -t ∞ 0 (1 -e -λx ) dx x I 0 x 2 e -x 2 (3.20) = √ 1 + λ - √ λ 2t = 1 √ 1 + λ + √ λ 2t = 1 + 2λ + 2 λ(1 + λ) -t (3.21)
where, in (3.20), I 0 denotes the modified Bessel function with index 0. see [Leb], p. 108 2. Laws of Γ t (G 1/2 ) and of

D t (G 1/2 ). Γ t (G 1/2 ) (law) = γ t β 1/2,1/2+t , D t (G 1/2 ) (law) = 1 β 1/2,1/2+t (law) = 1 + γ t+1/2 γ 1/2 (3.22)
The density of f Γt(G 1/2 ) equals :

f Γt(G 1/2 ) (x) = 2 2t Γ(1 + t) 2π Γ(2t) x t-1 1 0 e -xy y(1 -y) t-1/2 dy 1 [0,∞] (x) (3.23)
3. Wiener-Gamma representation of Γ t (G 1/2 ). For any t > 0 :

Γ t (G 1/2 ) (law) = t 0 dγ u sin 2 πu 2t (law) = t 0 dγ u cos 2 πu 2t (3.24)
Here is the dual version of Theorem 3.1 : Theorem 3.1*. Cifarelli and Melilli, [CM] Let Γ t (1/G 1/2 ), t ≥ 0 denote the subordinator characterized by :

E(e -λΓt(1/G 1/2 ) ) = exp -t ∞ 0 (1 -e -λx ) dx x E(e -x G 1/2 ) (3.25) Then : 1. Laplace transform of Γ t (1/G 1/2 ). E(e -λΓt(1/G 1/2 ) ) = 2 1 + √ 1 + λ 2t (λ, t ≥ 0) (3.26) 2. Laws of Γ t (1/G 1/2 ) and of D t (1/G 1/2 ). Γ t (1/G 1/2 ) (law) = γ t • β t+1/2, t+1/2 , D t (1/G 1/2 ) (law) = β t+1/2, t+1/2 (3.27) The density f Γt(1/G 1/2 ) of Γ t 1 G 1/2 equals : f Γt(1/G 1/2 ) (x) = t • 2 2t Γ(1/2 + t) √ π x t-1 1 0 e -x y (1 -y) t-1/2 √ y dy 1 [0,∞] (x) (3.28)
3. Wiener-Gamma representation of Γ t (1/G 1/2 ). For any t ≥ 0 :

Γ t 1 G 1/2 (law) = t 0 cos 2 πu 2t dγ u (law) = t 0 sin 2 πu 2t dγ u (3.29)
Remark 3.2. 1) Theorem 3.1*. has been obtained by Cifarelli and Melilli [CM]. It would be possible to prove Theorem 3.1 by first using Theorem 3.1* and then by applying the duality Theorem 2.1. In fact, we shall operate conversely, as we shall first prove Theorem 3.1, then we shall show that Theorem 3.1* may be deduced from it, due to the duality Theorem 2.1.

2) By comparing formula (3.20) with formula (1.76), we deduce :

(J (0) t , t ≥ 0) (law) = 1 2 Γ t (G 1/2 ), t ≥ 0 
3) We come back to (3.26) and we write :

2 1 + √ 1 + λ = 1 1 + 1 2 ( √ 1 + λ -1) = ∞ 0 e -u-u 2 ( √ 1+λ-1) du = E exp -λ S (1) 1/2 e 2 (3.30)
where S

(1)

1/2 (t), t ≥ 0 denotes the stable (1/2) subordinator, Esscher transformed, with the Esscher transformation with parameter 1 see [Sat] . In (3.30), e denotes a standard exponential r.v. independent from S (1) 1/2 (t), t ≥ 0 . Hence :

2 1 + √ 1 + λ 2t = E exp -λ S (1) 1/2 γ 2t 2 (3.31)
where the subordinators S

(1)

1/2 (t), t ≥ 0 and (γ 2t , t ≥ 0) featured in (3.31) being assumed independent. This formula led James and Yor to consider, more generally, the subordinator S (ν) 1/2 (γ t ), t ≥ 0 . In the article [JY], the following is obtained :

Γ t (G 1/2 ), t ≥ 0 (law) = S 1/2 (γ 2t ) + S (1) 1/2 (γ 2t ), t ≥ 0 (3.32)
where, on the right-hand side of (3.32), the three subordinators S 1/2 , S

1/2 and γ are assumed independent, and S 1/2 (t), t ≥ 0) 

(law) = S 1/2 (t), t ≥ 0 .
E[e -λΓt(G 1/2 ) ] = E[e -λΓ 1/2 (G 1/2 ) ] 2t = √ 1 + λ - √ λ 2t = 1 √ 1 + λ + √ λ 2t = 1 1 + 2λ + 2 λ(1 + λ) t ii)
We now prove (3.20), which is equivalent to :

E(e -xG 1/2 ) = e -x 2 I 0 x 2 , x ≥ 0 (3.33)
From the Lipschitz-Hankel formula see [Wat] or [MNY], Th. 1.1 :

ν ∞ 0 e -ax I ν (x) dx x = a + √ a 2 -1 -ν (a ≥ 1, ν > 0) (3.34)
we deduce :

ν ∞ 0 (1 -e -λx )e -x 2 I ν x 2 dx x = 1 -2λ + 1 + 2 λ(1 + λ) -ν (3.35) then, letting ν → 0 in (3.35) : ∞ 0 (1 -e -λx )e -x 2 I 0 x 2 dx x = log 2λ + 1 + 2 λ(1 + λ) (3.36)
Hence :

E(e -λΓ 1 (G 1/2 ) ) = exp - ∞ 0 (1 -e -λx ) dx x E(e -xG 1/2 ) = 1 √ 1 + λ + √ λ 2 = 1 2λ + 1 + 2 λ(1 + λ) = exp - ∞ 0 (1 -e -λx ) dx x e -x 2 I 0 x 2
This formula, which is of interest by itself, shall not be used in the sequel of this proof.

iii) We now prove point 2 of Theorem 3.1. For this purpose, we shall use the following property of hypergeometric functions: see [Leb], p. 238 . Let, for α, δ, γ reals cf [Leb], p. 239 :

F (α, δ, γ ; z) = Γ(γ) Γ(δ)Γ(γ -δ) 1 0 t δ-1 (1 -t) γ-δ-1 (1 -tz) -α dt (3.37) γ > δ > 0, |z| < 1 = E (1 -zβ δ,γ-δ ) -α (3.38)
Lemma 3.3. Let a, b, c three positive reals. Then :

1) E e -λ γa β b,c = Γ(a + b) Γ(b + c) Γ(b) (Γ(a + b + c) 1 λ a F a, a + b, a + b + c ; - 1 λ (λ ≥ 0) (3.39) 2) E(e -λγaβ b,c ) = F (a, b, b + c ; -λ) (λ ≥ 0) (3.40)
Proof of Lemma 3.3.

Since E(e -λγa ) = 1 (1 + λ) a , we have :

E(e -λ γa β b,c ) = E 1 1 + λ β b,c a = 1 B(b, c) 1 0 x a x b-1 (x + λ) a (1 -x) c-1 dx by definition of the beta (b, c) law = B(a + b, c) B(b, c) 1 B(a + b, c) 1 λ a 1 0 x a+b-1 (1 -x) c-1 1 + x λ a dx = Γ(a + b) Γ(b + c) Γ(b) Γ(a + b + c) 1 λ a E 1 + β a+b,c λ -a
, hence point 1 of Lemma 3.3,from (3.38). Point 2 of Lemma 3.3 may be obtained from similar arguments. We now end the proof of point 2 of Theorem 3.1. From Lemma 3.3, we have :

E(e -λ γ t β 1 2 , 1 2 +t ) = Γ t + 1 2 ) Γ(t + 1) Γ( 1 2 ) Γ(2t + 1) 1 λ t F (t, t + 1 2 , 2t + 1 ; - 1 λ = Γ t + 1 2 ) Γ(t + 1) Γ( 1 2 ) Γ(2t + 1) 1 λ t 1 + 1 + 1 λ 2 -2t
(3.41)

since see [Leb], p. 259 :

F α, α + 1 2 , 2α + 1 ; z = 1 + √ 1 -z 2 -2α
Using Legendre's duplication formula [Leb], p. 4 :

Γ t + 1 2 Γ(t + 1) = 2 -2t √ π(2t + 1) with Γ 1 2 = √ π
we obtain :

E(e -λ γ t β 1 2 , 1 2 +t ) = 1 √ 1 + λ + √ λ 2t = E(e -λΓt(G 1/2 ) )
from (3.21). Hence :

γ t β1 2 , 1 2 +t (law) = Γ t (G 1/2 ) (3.42)
The form of the density of Γ t (G 1/2 ) follows easily from (3.42). iv) From Proposition 1.3 and (1.18), to show point 3 amounts to compute the inverse of the cumulative distribution function of G 1/2 . Now, we have :

F G 1/2 (x) := P (G 1/2 ≤ x) = 1 π x 0 du u(1 -u) = 2 π Arc sin ( √ x) x ≥ 0 so that F -1 G 1/2 (y) = sin 2 πy 2 (0 ≤ y ≤ 1). 3.2.c Proof of Theorem 3.1*. i) We prove point 1, in two different ways : • A direct proof.
For every t ≥ 0 :

Γ t 1 G α (law) = t 0 dγ u 1 + sin π(1-α) t-u t sin π(1-α) u t 1/α (3.57) (law) = t 0 dγ u 1 + sin π(1-α) u t sin π(1-α) t-u t 1/α (3.58)
Remark 3.5. 1) Formula (3.51) was originally obtained by T. Fujita and M. Yor see [FY] .

2) We deduce from Proposition 1.6 :

E D 1-α 1 G α = E(G α ) = E(U ) = 1 2 from (3.55) (3.59)
Of course, we may verify directly that :

E(G α ) = 1 2
starting from the formula :

E exp(-λe G α ) = α 1 -α 1 -(1 + λ) α-1 (1 + λ) α -1 (3.60)
see [BFRY], formula 1.19 , then taking the derivative in λ = 0. 3) In [BFRY], Section 4.2.1, the positive variables X α,1 whose Laplace transforms equal :

E(e -λ X α,1 ) = 1 α (1 + λ) α -1 λ (0 < α < 1)
have been introduced. We note that, from (3.54) :

X α,1 (law) = Γ 1-α 1 G α (3.61) 4) Since Γ 1-α (1/G α ) (law) = γ 1-α • U and Γ 1-α (G α ) (law) 
= γ 1-α U 1/α the relations (3.51) and (3.57)

2. Laws of Γ 1 (G 1 ) and D 1 (G 1 ). The expressions of the densities of Γ 1 (G 1 ) and D 1 (G 1 ) are :

f Γ 1 (G 1 ) (x) = 1 π 1 0 e -xy sin (π y)dy y y (1 -y) 1-y 1 [0,∞[ (x) (3.89) f D 1 (G 1 ) (x) = sin π x π(x -1) 1-1 x 1 [1,∞[ (x) (3.90) 3. Wiener-Gamma representation of Γ t (G 1 ). For every t ≥ 0 : Γ t (G 1 ) (law) = t t 0 dγ u u (law) = t t 0 dγ u t -u (3.91)
Here is now the dual version of Theorem 3.8, which is due to Diaconis and Kemperman [DK].

Theorem 3.8*. Let Γ t 1 G 1
, t ≥ 0 denote the subordinator characterized by :

E(e -λ Γt( 1 G 1 ) ) = exp -t ∞ 0 (1 -e -λx ) dx x E(e -x G 1 ) (3.92)
Then :

1. Laplace transform of Γ t (1/G 1 ).

E(e -λ Γt(1/G 1 ) ) = (e(1 + λ) -1+λ λ ) t t, λ ≥ 0 (3.93)

2. Laws of Γ 1 (1/G 1 ) and D 1 (1/G 1 ). The densities of Γ 1 (1/G 1 ) and D 1 (1/G 1 ) equal :

f Γ 1 (1/G 1 ) (x) = e π 1 0 e -x y sin (πy)dy y y+1 (1 -y) 1-y 1 [0,∞[ (x) (3.94) f D 1 (1/G 1 ) (x) = e sin(πx) π 1 x x (1 -x) 1-x 1 [0,1] (x) (3.95) 3. Wiener-Gamma representation of Γ t (1/G 1 ). For every t ≥ 0 : Γ t (1/G 1 ) (law) = 1 t t 0 (t -u) dγ u (law) = 1 t t 0 u dγ u (3.96)
Remark 3.9. 1) Theorem 3.8*, and in particular formula (3.95), are due to P. Diaconis and J. Kemperman [DK]. Formula (3.95) may also be found in [CY], Ex. 4.4, p. 98 corrected with multiplication by e in that formula.

2) i) A r.v. Z, which takes values on R, is said to be a Luria-Delbrück r.v. if it satisfies :

E(e -λZ ) = λ λ (λ ≥ 0) (3.97) and M. Möhle [Möh] determined the density f Z of this r.v. :

f Z (x) = 1 π ∞ 0 e -xt 2 cos(x t + t log t) dt (x ∈ R) = 1 π ∞ 0
e -x t-t log t (sin πt)dt (3.98)

ii) On the other hand, it is proven in [RoY], § III, 1.3, p. 1251, with α = k = 1 that there exists a Wald couple (X, H), which is infinitely divisible and such that :

• H is positive and X and H are infinitely divisible. We also note that Letac [Let] characterized the law defined by (3.102). iii) Point 3) of Theorem 3.8 and 3.8* follows easily from Proposition 1.3 and from the fact that F G 1 (u) = u (0 ≤ u ≤ 1). iv) We now prove (3.94). For this purpose, we use the result of Diaconis and Kemperman [DK], see also [RGdN],

• E(e -

f D 1 (1/G 1 ) (x) =
e sin πx π

1 x x (1 -x) 1-x 1 [0,1] (x)
(3.106)

The relation :

Γ 1 (1/G 1 ) = γ 1 • D 1 (1/G 1 )
now implies easily (3.94). v) We show (3.89) with the help of formula (2.7) in the duality Theorem :

f Γ 1 (G 1 ) (x) = e E(log G 1 ) E(e -x D 1 ( 1 G 1
) )

= 1 e E(e 3) The density f Γt(σu(G)) of Γ t σ u (G) , equals :

f Γt(σu(G)) (x) = e -x tanh u-t ku cosh u E e -Γt(G) tanh u Γ t (G) x 1-t 2

• J t-1 2 y Γ t (G) cosh u 1 x>0 = x t-1 e -x tanh u-t ku Γ(t) E cosh u + D t (G) sinh u -t e Thus, after simplifying by exp(β tanh u) and using formula 5.10.25, p. 109 in [Leb], we obtain :

E 1 (β + Γ t (σ u (G))
e tanh u Γt(σu(G)) = 2e -tku cosh u E e -Γt(G)tanh u Γ t (G) β 1-t 2

• K 1-t 2 β Γ t (G) cosh u

We then use the inversion formula of the Stieltjes transform, and thanks to a very similar computation to the one made in section 2.2.b, we arrive to the identity : e x tanh u f Γt(σu(G)) (x) = e -tku cosh u E e -Γt(G)tanh u Γ t (G) x 1-t 2 J t-1 2 x Γ t (G) cosh u then to (3.116), by using the series development of J t-1 :

f Γt(σu(G)) (x) = e -x tanh u-tku x t-1 Γ(t) E cosh u + D t (G)sinh u 

  d iii) We now write the relation (1.40) in a slightly different manner with the introduction of the r.v.'s D m (1/G) and D m 1 GY p . We have, from (1.40) and (1.35) for m > m :

  84), b(s), 0 ≤ s ≤ 1 denotes the standard brownian bridge b 1 . v) In relation with the preceding, D. Dufresne and M. Yor, in a work in preparation [DY ], establish the following formula : let b (x) u (s), 0 ≤ s ≤ u denote the brownian bridge with length u, starting from 0 and such that b

  . Dufresne and M. Yor obtain the representation as a Wiener-Gamma integral of the r.v. 1

  where λ 0 is a fixed point of σ. The relation (2.4) corresponds to a = d = 0, b = c = 1. We shall study, in the Appendix, the case where a = d = sinh u, b = c = cosh u (u ≥ 0).

  3.2.b. Proof of Theorem 3.1. i) We already prove (3.21). In fact, (3.21) follows immediately from (3.6), since :

  λ 2 2 H ) • E(e λX ) = 1 λ ≥ 0 • E(e -λ 2 2 H ) = (1 + λ) -(1+λ) e λ , • E(e λX ) = (1 + λ) 1+λ e -λ(We denote by Z a r.v. defined from Z via the following Esscher transform :E ϕ( Z) := E ϕ(Z) • e -Z(ϕ Borel and bounded)we note that E(e -Z ) = 1, from (3.97) . Thus, we have :E(e -λ e Z ) = E(e -(1+λ)Z ) = (1 + λ) 1+λ

3. 5 •

 5 .b. Proofs of Theorems 3.8 and 3.8*. i) We prove (3.88), which it suffices to obtain for t = 1. We have : s integral. (3.88) now follows from the comparison of (3.104) and (3.105). ii) We now prove (3.93) :We may also show (3.93) with the help of the duality Theorem :E(e -λ Γ 1 (1/G 1 ) ) =e -E(log G 1 ) 1 + λ) -1+λ λ from (3.88) and since : E(log G 1 ) = -E(γ 1 ) = -1.

  106). Finally, in order to show (3.90), we apply (2.10) :f D 1 (G 1 ) (x) = x -1 e E(log G 1 ) f D 1 (1/G 1 )

-

  For u = 0, we have : σ 0 (G) = 1 G , k 0 = E(log G) and the preceding formulae and indeed those of Theorem 2.1. 2. As u -→ ∞, the relation (3.113) becomes, by passage to the limit : Γ t σ ∞ (G) not difficult to see, starting from (3.114), that :f Γt(σu(G)) (x) -→ u→∞ 1 Γ(t) e -x x t-1 1 [0,∞[ (x) = f γ t (x)3. More generally than (3.110), if we take :σ(x) := ax + b cx + d and σ(λ) := dx + b cx + a , we have : -ψ G ( σ(λ)) + ψ σ(G) (λ) = log (cλ + a) + k(σ) (3.116) with k(σ) := E G aG + b (3.117)We observe that (3.116) and (3.117) follow immediately from :-ψ G σ(λ) + ψ σ(G) (λ) = -E log 1 b) + λ(cG + d) aG + b • (cλ + a) G (cλ + a) G + dλ + b = E log (cλ + a)G aG + d • Proof of Theorem A.1.Point 1) is a particular case of point 3 of Remark A.2 and point 2) of Theorem A.1 is trivial. Let us prove point 3. From (3.110), after multiplying by t, and exponentiating, we deduce :E e -λ Γt(σu(G)) = e -tku E e -Γt(G)σu(λ) 1 (λ cosh u + sinh u) t (3.118)then, multiplying each side of (3.118) by exp(-βλ) and integrating in λ from -tanh u to +∞, we obtain :Γt(σu(G))-βλ dλ = e -tku E ∞ -tanh u e -Γt(G)σu(λ)-βλ dλ (λ cosh u + sinh u) t (3.119)Making, on the LHS of (3.119) the change of variable : λ cosh u + sinh u = µ, we obtain :E 1 (β + Γ t (σ u (G))e (tanh u)(Γt(σu(G))+β)

  cosh u+D t (G)tanh u)Remark A.3. Formulae (3.114) and (3.115), in the more general situation when :σ(G) = aG + b cG + d become : f Γt(σ(G)) (x) = e -x a c -tk(σ) c E e -d c Γt(G) Γ t (G) x 1-t 2 J t-1 2 x Γ t (G) c (3.120)

We deduce, as a particular case of the beta-gamma algebra, that :

where N is a centered Gaussian variable, with variance 1, and e a standard exponential. Hence :

Thus :

(from the change of variable :

hence :

We may also prove (3.26) with the help of the duality Theorem 2.1. Indeed, from (2.4) :

E(e

from (3.21) and since E(log G 1/2 ) = -log 4, from (2.7) and (3.22). Thus :

ii) We now prove point 2 of Theorem 3.1*. Of course, it would be possible to use point 2 of Lemma 3.3 to make this proof, in the same manner that we have used point 1 of this Lemma 3.3 to show point 2 of Theorem 3.1. In fact, we prefer to use formula (2.7) of the duality Theorem 2.1. We have :

Considering now the Laplace transform of the two sides of (3.44) we obtain :

Note that, by taking λ = 0 in (3.45), we get :

(which may also be recovered from the duplication formula for the Gamma function).

Hence :

The other formulae of Theorem 3.1* are now easily obtained. In particular, since :

3.3 Study of the r.v.'s Γ 1-α (G α ) and Γ 1-α (1/G α ), 0 < α < 1 3.3.a. Theorem 3.4. Let, for 0 < α < 1, Γ t (G α ), t ≥ 0 the subordinator characterized by :

We then have the following explicit formulae :

where γ 1 γ α is, by definition, a Pareto r.v. with parameter α . The density f Γ 1-α (Gα) of Γ 1-α (G α ) equals :

(3.50)

3. Wiener-Gamma representation of Γ t (G α ). For every t ≥ 0 and 0 < α < 1 :

In particular, for t = 1 -α :

We note that, for α = 1/2, formula (3.52) coïncides with (3.24). The dual version of Theorem 3.4 is : Theorem 3.4*. Let 0 < α < 1 and let Γ t (1/G α ), t ≥ 0 the subordinator characterized by :

we note that the law of D 1-α (1/G α ) does not depend on α, and it may be compared with (3.27) :

may also be written as :

and

In particular, for α = 1 2 , one finds :

) is an immediate consequence of (3.6) and point 2) of (3.7), as may be shown after some elementary computations.

ii) We now prove point 3. From Proposition 1.3, it amounts to compute F Gα and its inverse. However, from (3.12) and (3.11), we find, successively :

i.e. :

hence :

(3.64) then :

with the notation of (2.29) and, from (3.15) :

hence, plugging (3.66) in (3.64), we obtain :

which, thanks to Proposition 1.3, proves point 3) of Theorem 3.4.

3.3.c. Proof of Theorem 3.4*.

We use the duality theorem. From formula (2.7) :

which we compare with (3.50) :

and we deduce :

Then, using this time (2.4) : 

= 1 U 1/α , given by (3.49). All the formulae in point 2 of Theorem 3.4* follow easily from the explicit expression of f Γ 1-α ( 1 Gα ) , and point 3 of Theorem 3.4* follows from :

Gα (1 -y) = 1, and from Proposition 1.3.

3.4 Study of the subordinators Γ t (µ + G 0 ), t ≥ 0 and Γ t 1 µ+G 0 , t ≥ 0 We recall the following formula, which was established in [BFRY] see formulae (3.11) and (3.9) in [BFRY] :

This formula was obtained in [BFRY] by "letting α tend to 0 in the study of the r.v.'s G α ". Here, G 0 satisfies see (3.5) :

, where C denotes a standard Cauchy r.v.

(3.72)

3.4.a.Theorem 3.6. Let µ > 0 be fixed and let Γ t (µ+G 0 ), t ≥ 0 denote the subordinator which is characterized by :

2. Laws of Γ 1 (µ + G 0 ) and D 1 (µ + G 0 ). The densities of Γ 1 (µ + G 0 ) and D 1 (µ + G 0 ) equal :

Here is the dual version of Theorem 3.6.

Theorem 3.6*. Let µ ≥ 0 and Γ t 1 µ + G 0 , t ≥ 0 denote the subordinator characterized by :

In particular, for µ = 0 :

The density of

For every µ ≥ 0 and t ≥ 0 :

Remark 3.7. 1) We may take µ = 0 in the statement of Theorem 3.6*, since E log + (G 0 ) < ∞, but not in that of Theorem 3.6.

2) Formula (3.79), with µ = 0, was obtained by Bondesson [B1], Ex. Point 1 follows immediately from (3.71), whereas formula (3.75) is a consequence of :

x dx

On the other hand, formula (3.76), which yields the density of f D 1 (µ+G 0 ) follows from :

Then, the last point in Theorem 3.6 follows, with the help of (3.72), from :

Proof of Theorem 3.6*.

It may be proven by using the duality theorem. From (2.7) and (3.75) :

We then apply the duality theorem :

We now compute the density of Γ 1 1 µ + G 0 by using (2.7) : We deduce, from Proposition 1.6, that :

In particular, we have :

Finally, the last point of Theorem 3.6* follows from Proposition 1.3 and from (3.84).

3.5 Study of the subordinators Γ t (G 1 ), t ≥ 0 and Γ t (1/G 1 ), t ≥ 0

In this Section see (3.5) , G 1 denotes a uniform r.v. on [0, 1]. Theorem 3.8. Let Γ t (G 1 ), t ≥ 0 denote the subordinator characterized by :

Then :

1. Laplace transform of Γ t (G 1 ).

Appendix

Interpolation between the subordinators Γ t (1/G), t ≥ 0 and (γ t , t ≥ 0).

We denote, for every u ≥ 0, by σ u : R -→ R the decreasing function defined by :

Since the image of R + by σ u is equal to ]tanh u, coth u], then for every positive r.v. G, and every u > 0, we have :

Let Γ t σ u (G) , t ≥ 0 denote the subordinator defined by :

Thus, the family of subordinators Γ t σ u (G) , t ≥ 0 interpolates, as u describes R + , between Γ t (1/G), t ≥ 0 and (γ t , t ≥ 0). The aim of this appendix is to show that one may compute "explicitly" the Laplace transform, the density, and the Wiener-Gamma representation of the r.v.'s Γ t σ u (G) in terms of those of Γ t (G), t ≥ 0 , for every u ≥ 0.

Theorem A.1. We have, for every u ≥ 0 :

where k(σ) is given by (3.117), and :

G : inverse function of F G . Γ : GGC r.v. with associated Thorin measure µ. m : total mass of µ . 

(C t , t ≥ 0), (S t , t ≥ 0), (T t , t ≥ 0) : hyperbolic subordinators.

(J (ν) t , t ≥ 0), (K (ν) t , t ≥ 0) : subordinators associated to the functions I ν and K ν . K ν , I ν , J ν : modified and unmodified Bessel functions with index ν. S (t) (X) : Stieltjes transform with index t of the positive r.v. X : S (t) (X)(λ) := E 1 (λ + X) t (λ ≥ 0)

S α (t), t ≥ 0 standard stable subordinator, with index α (0 < α < 1). f α (x): density of S α = (law) S α (1).