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Abstract

We have realised a semiconductor quantum structure that produces electroluminescence while

operating in the light-matter strong coupling regime. The mid-infrared light emitting device

is composed of a quantum cascade structure embedded in a planar microcavity, based on the

GaAs/AlGaAs material system. At zero bias, the structure is characterised using reflectivity

measurements which show, up to room temperature, a wide polariton anticrossing between an in-

tersubband transition and the resonant cavity photon mode. Under electrical injection the spectral

features of the emitted light change drastically, as electrons are resonantly injected in a reduced

part of the polariton branches. Our experiment demonstrates that electrons can be selectively

injected into polariton states up to room temperature.

PACS numbers: 73.21.fg, 73.40.Gk, 85.60.Jb
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The study of electron - hole excitations strongly coupled to photonic modes in a semi-

conductor micro-cavity, has motivated a wealth of fascinating experiments [1, 2, 3] in the

past ten years. Recently, the light - matter strong interaction has been observed also in a

two-dimensional electron gas (2DEG) coupled to a cavity photon mode [4]. These excita-

tions, called intersubband (ISB) polaritons [5], have been experimentally demonstrated using

angle-dependent reflectance spectroscopy of multiple 2DEGs [6, 7]. Recently, a photovoltaic

probe of intersubband polaritons in a quantum cascade structure has also been realized [8].

The strong coupling regime may be especially interesting for light emitting devices (LED)

based on ISB transitions. Their radiative efficiency is in fact very poor (≈ 10−5) because

non-radiative phenomena control the lifetime of electrons in excited subbands (the radiative

lifetime is ≈ 10 − 100 ns in the mid-infrared while the non-radiative one is ≈ 1 ps). In

the strong-coupling regime, the light-matter interaction can be dominated by the time of

a Rabi oscillation rather than the radiative lifetime, with a possible advantage in term of

external efficiency. The possibility of a stimulated emission of ISB polaritons could also lead

to inversionless mid and far infrared lasers, with lower thresholds with respect to quantum

cascade lasers. In the context of light sources, devices based on electrical injection, rather

than optical excitation, would be more suitable for applications.

Up to now, electrical injection of a micro-cavity LED in the strong coupling regime has

only been reported in organic semiconductors [9]. Moreover, the description of a current

injecting electrons into a polaritonic system constitutes a new physical framework that lacks

a complete theoretical description. A first attempt to describe the coupling between an

electronic reservoir and intersubband polaritons has been proposed in ref. [10]. The authors

derive an analytical expression for the electroluminescence by introducing the coupling of

the polaritonic system with a bath of electronic excitations.

In the present paper, we report on the experimental realization of a GaAs/AlGaAs electro-

luminescent device working in the light-matter strong coupling regime. A quantum cascade

(QC) structure is used as an active region, as proposed in ref. [11]. Clear differences be-

tween electroluminescence (EL) and absorption spectra of the same structure are observed,

thus pointing out the role of the electrical injection. A very good agreement between the

experimental results and the simulations is found with a phenomenological model, in which

the EL spectra are obtained as the product of the absorption spectra with a Gaussian filter

function.
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The sample (sketched in fig. 1a) is composed of a QC LED grown by molecular-

beam epitaxy, on an undoped GaAs (001) substrate. The QC LED is placed within a

metal/semiconductor planar micro-cavity, designed for the confinement of transverse mag-

netic polarized radiation. Light confinement is realized by sandwiching the QC structure

between a bottom reflector made of a low refractive index Si-doped GaAs and Al0.95Ga0.05As

layers and a top metallic mirror evaporated on the surface. The latter is also used as top

electrical contact.

The band diagram of the QC LED, obtained with self-consistent Schrödinger-Poisson

calculations, is presented in fig. 1b under an applied bias of 6 V. The radiative transition

takes place in the largest well between the states labelled 1 and 2, whose nominal energy

separation is E12 = 160 meV. Electrical injection into the subband 2 is obtained by resonant

tunnelling through an injection barrier [12]. Electrons are extracted from subband 1 through

the states of a miniband, which also has the purpose to inject electrons into the following

period. The injection region has been designed in order to have a tunnelling time out of the

subband 1 longer than the scattering time from 2 to 1 in order to avoid population inversion

and accumulate electrons into the subband 1. This is an essential feature for the observation

of the strong coupling regime [11]. Furthermore, the injection region has been highly doped

(7 × 1011 cm−2, see caption of fig. 1) in order to provide a high density 2DEG in the well.

As a consequence, the sample is also suitable for reflectivity measurements when no bias is

applied [13].

A photon confined within the micro-cavity can be absorbed promoting an electron to level

2, with the creation of an ISB excitation on top of the 2DEG. By varying the propagating

angle of the light within the cavity, the energy of the photonic mode can be tuned across

the energy of the ISB excitation. If the strong coupling regime is achieved, the degeneracy

of the excitation and photonic states at resonance will be removed and the two branches

will anticross. Angle resolved measurements will thus reveal the presence of intersubband

polaritons in the system.

To this end, the sample has been prepared with 70◦ polished facets (see fig. 1a) and

a metallic layer [Ti(10 nm)/Au(500 nm)] was e-beam evaporated on the top surface, for

standard reflectivity measurements [14]. Angle resolved reflectivity spectra, performed at

78 K, are shown in fig. 2. Two peaks are clearly visible across a very wide angular range

(almost the whole range where the cavity operates, between total internal reflection at ≈ 59◦
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and Brewster angle at ≈ 87◦). In the inset of fig. 2 we have plotted the energy position of the

two peaks (symbols) as a function of the internal angle in the cavity, showing an anticrossing

feature at approximately 71◦ [15]. We attribute the two branches in the inset of fig. 2 to the

upper and lower polaritons (UP and LP respectively). It is worth mentioning that the strong

coupling regime has also been observed in reflectivity up to 300 K with very similar features

to those shown in fig. 2. In the inset of fig. 2 we have also plotted the LP and UP branches

calculated in the transfer matrix formalism (line). In the simulations, the contribution of the

ISB transition has been taken into account in the dielectric permittivity of the quantum well

layers including an additional term in the form of an ensemble of classical polarized Lorentz

oscillators, as in ref. [4]. The dispersions of the Au [16] and of the doped layers [17] have also

been included. In the calculations we used an electronic density in the fundamental subband

N2DEG = 6× 1011 cm−2 to reproduce the experimental results. This value is consistent with

the results of Shubnikov-de Haas measurements which give 7.2 ×1011 cm−2.

The energy splitting deduced from the inset of fig. 2 is 34 meV. It is worth noticing

that this value is not the vacuum field Rabi splitting 2~ΩR, which has to be deduced from

the E vs k dispersion relation, where k is the in-plane momentum of the photon. The

relationship between k and the light propagating angle inside the cavity θ reads: k =

n E sin θ/(c~) [5], where n is the cavity refractive index and E the energy of the considered

excitation branch. This relationship introduces a strong distortion of the polariton branches,

resulting in a value of the Rabi splitting 2~ΩR = 11 meV.

By applying an external bias to the device, the intersubband strong cou-

pling regime can be investigated in emission, via EL measurements. The sam-

ple is thus mesa etched (circular 220 µm diameter mesas), metallic contacts

[Ni(10 nm)/Ge(60 nm)/Au(120 nm)/Ni(20 nm)/Au(200 nm)] are evaporated on top to allow

current flow and the facet is polished with an angle of 70◦. The sample is soldered onto a

copper holder, mounted onto the cold finger of a cryostat and the temperature is varied from

10 K to 300 K. The electrical and optical characteristics of the device at 78 K and 300 K

are summarized in fig. 3a, where the evolution of the voltage and of the electroluminescence

intensity as functions of the injected current density is shown. The structure presents a

diode-like behavior, with an alignment at 5 V at 78 K. The output power shows a well

defined linear dependence with the injected current. The EL spectra have been obtained by

applying to the structure a voltage close to the alignment voltage (the working conditions
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for obtaining the spectra are shown by dots in fig. 3a), in order to keep the electronic density

in the lowest subband as high as possible.

Fig. 3b presents the EL spectra measured at 78 K for an applied voltage of 5 V (left side)

and at 300 K for an applied voltage of 2.8 V (right side) at different angles. The spectral

features show a very strong angular dependence. For the angles close to 70◦ we can observe

at both temperatures two peaks, which are quite well separated in energy. On the contrary,

when moving away from the resonance, only one peak is observed with a large shoulder.

The EL spectra here presented are substantially different from the results obtained in

reflectivity: it is important to underline that in reflectivity the polaritons are visible from

about 90 to 240 meV, while in EL spectra the energy range where the experimental features

are observable is approximately restricted within 120 meV and 170 meV. Furthermore, this

energy interval (or ”energy window”) is different in the two sets of data shown in fig. 3 and

depends on the voltage applied to the structure and on the temperature. In order to highlight

this point, we show in fig. 4a a comparison between reflectivity and EL spectra measured

at 78 K. In the top panel, the spectra at 65 ◦ are presented. In reflectivity, we observe the

UP and LP peaks, while the electroluminescence spectrum shows a single peak close to the

energy of the upper polariton with a shoulder towards lower energies. In the lower panel,

spectra at 70.1 ◦ are presented: we observe the presence of two peaks in electroluminescence,

with an energy difference of about 13 meV, a value much lower than the energy difference

between the reflectivity peaks (34 meV).

The substantial difference between EL and reflectivity measurements originate from the

coupling that the electronic component of the polariton states has with the injection re-

gion. In fact, for a fixed voltage, only one of the states of the injection region has a rel-

evant probability to tunnel through the injection barrier, thus populating the polariton

states. In order to simulate the EL spectra, we describe the injector as a Gaussian function

G(E) = exp (−(E − E0)
2/(2σ2)), where E0 is related to the energy position of the injector

state with respect to the subband 1; σ reflects the broadening of the states in the injector

due to disorder arising from interface and impurity scattering [18]. After simulating the ab-

sorption spectrum by using the transfer matrix formalism (obtained as 1−R, by neglecting

the transmission through the upper mirror), we calculate the EL spectrum as the product

between the Gaussian function and the absorption spectrum: S(E) = G(E)(1 − R). The

parameters of the Gaussian function, E0 and σ, are kept as fit parameters and determined
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by the comparison between the simulated and the measured EL spectra. We show in fig. 4b

the measured (left side) and simulated (right side) electroluminescence, for three different

temperatures (and voltages), at the same angles as in fig. 4a. We reproduce very well the

shapes of the measured spectra in the entire angular range in the three temperature and

voltage regimes. The energy position of G(E) has been fixed respectively to E0 = 150 meV

(10 K, 5.2 V), E0 = 155 meV (78 K, 5 V), E0 = 158 meV (300 K, 2.8 V). In the three

cases, E0 is close to the energy of the ISB transition (E12 = 160 meV at 10 K and 78 K,

E12 = 156 meV at 300 K). The reason for the differences in the values of E0 is due to a

different alignment of the states of the injector determined by the different applied bias. A

good agreement with the experimental data is found with σ = 10 meV for 10 K and 78 K,

and σ = 14 meV for 300 K. In the simulations, we used an electronic density reduced by a

factor of 3 (N2DEG = 2 × 1011 cm−2) as compared to the unbiased system; this value has

been determined by a calculation of the electronic population as a function of the electric

field applied to the structure [19] and by a comparison between the simulated and measured

electroluminescence spectra.

The phenomenological model described above can also be understood in the input-output

theoretical framework developed in ref. [10]. An analytical relationship between the EL and

the absorption spectra may be found by exploiting the unitarity property of the input-

output matrix [10] to describe the coupling of the system with an electronic reservoir. In

this formalism it can be shown that the EL spectrum takes the form: L(E) ∝ A(E)Iel

exc(E),

where A(ω) is the microcavity absorption spectrum and Iel

exc
(ω) is related to the spectral

properties of the electronic reservoir. This expression is analogue to the one used to interpret

our experimental results [20].

The very good agreement between the simulated and the measured spectra of fig. 4 is a

strong proof of the observation of polaritonic luminescence, based on an electrical injection,

up to room temperature. Furthermore, our experiment demonstrates that electrons can be

selectively injected into polariton states.

In conclusion, we have realized a semiconductor EL device based on the light-matter

strong coupling regime. The achievement of this regime has been demonstrated by reflec-

tivity measurements, up to room temperature. Electroluminescence measurements show an

electrical injection into polariton states up to room temperature. Our experimental results

have been interpreted by using a phenomenological model, in which an energy filter related

6



to the electrical injection is introduced. We believe that these results open the way to a new

class of devices operating in the strong coupling regime. In the future, an optimized elec-

tronic resonant injection into the polariton branches could pave the way to the realization

of an electrically pumped polariton laser.
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FIG. 1: (a) Schematic view of the sample. The arrows represent the optical path of the incident

beam in the reflectivity measurements. The top and the bottom mirror are shaded. The thickness of

the n-doped (3x1018 cm−3) and of the Al0.95Ga0.05As layers are 0.56 µm and 0.52 µm, respectively.

A 86 nm layer of 1x1017 cm−3 Si-doped GaAs and a 17 nm layer of 3x1018 cm−3 Si-doped GaAs are

grown on top of the QC-LED to allow current flow towards the metallic contacts. The continuous

(blue) line represents the intensity of the photon mode along the growth axis. (b) Band diagram

of the QC-LED for an applied voltage of 6 V. The square moduli of the relevant wavefunctions

are shown. The layer sequence of one period of the structure, in nm, from left to right, starting

from the largest well is 6.4/3.6/3.3/1.6/3.2/1.8/2.3/2.0/1.9/2.0/1.8/2.0/2.2/3.9. Al0.45Ga0.55As

layers are in bold, underlined layers are n doped with Si Nd = 3 × 1017 cm−3. This sequence has

been repeated 30 times in the sample.
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FIG. 2: Reflectivity spectra as a function of the incident angle, at 78 K. The spectra result from

the ratio R between spectra collected with TM and TE-polarized incident light and are offset each

other for clarity. A Nicolet Fourier-transform infrared spectrometer, in rapid scan mode, with a

spectral resolution of 8 cm−1, has been used. The radiation of a Globar lamp is focused on the

facet of the sample with a f/1.5 ZnSe lens and the transmitted light is collected with a f/1.0 ZnSe

lens. In the inset, the energy position of the reflectivity peaks is plotted as a function of the angle

(full dots), as well as the results of transfer matrix calculations (line).
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FIG. 3: a) Voltage and electroluminescence intensity as a function of the injected current density in

pulsed operation (20 kHz, 500 ns) at 73.8◦ at 78 K (continuous line) and 300 K (dashed line). The

dots indicate the working conditions for obtaining the electroluminescence spectra shown below.

b)Electroluminescence spectra, offset each other for clarity, as functions of the propagating angle

within the micro-cavity, at 78K and 5 V (left side) and at 300 K for an applied voltage of 2.8 V

(right side). These voltages have been chosen as the lowest possible values to measure a spectrum

at the two temperatures. In order to increase the electroluminescence signal, we worked at 50 %

duty cycle (100 kHz repetition rate and 5 µs pulse width). Spectra are collected in step scan mode,

with a spectral resolution of 16 cm−1; a f/1.5 ZnSe lens is used as collecting lens.
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FIG. 4: a) Comparison between 1 − R (i.e. absorption, see text) and electroluminescence spectra

measured at 78 K, at 65◦ (upper panel, reflectivity 65.7◦; electroluminescence 65.2◦) and at

70◦ (lower panel: reflectivity 70.6◦, electroluminescence 70.1◦). b) Experimental (left side) and

simulated (right side) electroluminescence.
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