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SEMIPARAMETRIC TWO-COMPONENT MIXTURE
MODEL WITH A KNOWN COMPONENT: A CLASS OF

ASYMPTOTICALLY NORMAL ESTIMATORS

By Laurent Bordes and Pierre Vandekerkhove

Université de Pau et des Pays de l’Adour and Université de
Marne-la-Vallée

In this paper we consider a two-component mixture model one
component of which has a known distribution while the other is only
known to be symmetric. The mixture proportion is also an unknown
parameter of the model. This mixture model class has proved to be
useful to analyze gene expression data coming from microarray anal-
ysis. In this paper is proposed a general estimation method leading
to a joint central limit result for all the estimators. Applications to
basic testing problems related to this class of models are proposed,
and the corresponding inference procedures are illustrated through
some simulation studies.

1. Introduction. Let us consider n independent and identically dis-
tributed random variables X1, . . . , Xn coming from the two-component mix-
ture model with density function (df) g defined by

(1.1) g(x) = (1− p)f0(x) + pf(x− µ), ∀x ∈ R,

where f0 is a known df and where the unknown parameters are the mixture
proportion p ∈ (0, 1), the non-null location parameter µ and the df f ∈ F
(the set of even df). This class of models extends classical two-component
mixture models in the sense that one component is supposed to be symmet-
ric only, without assuming that it belongs to a known parametric family.
In the parametric setup this model is sometimes referred as contamination
model (see Naylor and Smith, 1983, for application to chemistry, see Pal
and Sengupta, 2000, for application to reliability, see also McLachlan and
Peel, 2000, for further applications). This class of model is especially suitable
for gene expression data coming from microarray analysis. An application to
two bovine gestation mode comparison is performed in Bordes et al. (2006b).
Connexions between model (1.1) and false discovery rate is also extensively
discussed in Efron (2007). In Robin et al. (2007) a convergent algorithm is
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2 L. BORDES AND P. VANDEKERKHOVE

proposed for model (1.1) without assuming that the nonparametric compo-
nent is symmetric.

Nonparametric estimation of finite mixture models with learning data
had been extensively studied in the eighties (see e.g. Hall and Tittering-
ton, 1985, Titterington et al., 1985). Because finite mixture models were
reputed nonparametrically nonidentifiable very few authors tried to work
on nonparametric finite mixture model without learning data. It is worth to
point out the work of Hettmansperger and Thomas (2000) and later Cruz-
Medina and Hettmansperger (2004), that considered ways to estimate the
mixing proportions in a finite mixture distribution without making paramet-
ric assumptions about the component distributions. Note that other types
of semiparametric mixture models are also discussed in Lindsay and Lesper-
ance (1995).

Recently new classes of semiparametric mixture models has been consid-
ered. Qin (1999) investigates a real-valued two-component mixture model
for which the log-likelihood ratio of the unknown components is an affine
function. Hall and Zhou (2003) consider a Rp-valued two-component mixture
model for which the component distributions have independent components.
This model is extended into a more general model in Hall et al. (2005). Bor-
des et al. (2006a) and Hunter et al. (2007) consider real-valued finite mixture
model the components of which are symmetric and equal up to a shift pa-
rameter. In Bordes et al. (2006b) model (1.1) is under consideration. For
all these models one of the crucial issue is to derive the identifiability of
the model parameters when there is no learning data. For the above models
estimation methods are generally linked to the model structure (invertible
nonlinear system in Hall et al., 2005; symmetry of the unknown component
distribution in Bordes et al., 2006a–b and Hunter et al., 2007) but general
stochastic EM-algorithm such as the one developed in Bordes et al. (2007)
can be adapted to estimate all the above mentioned semi- or non-parametric
mixture models. However obtaining the asymptotic behavior of these esti-
mators remains an open question.

There are very few results concerning central limit theory for the above
mentioned semiparametric mixture models. In Bordes et. al. (2006a), the
authors only prove that their estimators are n−1/4+α a.s. consistent for all
α > 0, whereas in Hunter et al. (2007) the authors prove under abstract tech-
nical conditions, that the Euclidean part of their estimators is asymptotically
normally distributed. In Hall and Zhou (2003) and Hall et al. (2005) the
rate OP (n−1/2) is obtained for the whole parameters but none of the above
papers propose a joint central limit theory for the whole parameters with
consistent estimators of the asymptotic covariance function. The later is the
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main goal of this paper. In addition we stress that these results are certainly
the preamble to omnibus tests construction in order to check that one model
component belongs to a parametric family. The paper is organized in the
following way. Section 2 is devoted to the estimation method whereas in Sec-
tion 3 are gathered the large sample results and the estimators of various
asymptotic expressions. In Section 4 we apply our large sample results to
simple hypothesis testing which is illustrated by a Monte Carlo study.

2. Estimation method. Suppose that we observe n independent and
identically distributed random variables X1, . . . , Xn with cumulative distri-
bution function (cdf) G defined by model (1.1), that is

(2.1) G(x) = (1− p)F0(x) + pF (x− µ), ∀x ∈ R,

where G, F0 and F are cumulative distribution functions (cdf) corresponding
to df g, f0 and f respectively. Let us denote by ϑ the Euclidean part (p, µ)
of the model parameters taking values in Θ. We say that the parameters of
model (1.1) are semiparametrically identifiable on Θ×F if for ϑ = (p, µ) ∈ Θ,
ϑ′ = (p′, µ′) ∈ Θ and (f, f ′) ∈ F2

(1− p)f0(·) + pf(· − µ) = (1− p′)f0(·) + p′f ′(· − µ′) λ− a.e.,

we have ϑ = ϑ′ and f = f ′ λ-a.e. on R where λ is the Lebesgue measure on
R.

Assume that model (1.1) is identifiable, then we have

(2.2) F (x) =
1
p

(G(x+ µ)− (1− p)F0(x+ µ)) , ∀x ∈ R.

Because F is the cdf of a symmetric distribution with respect to 0, we have
F (x) = 1− F (−x), for all x ∈ R. We denote by ϑ0 = (p0, µ0) the true value
of the unknown parameter ϑ. Let us introduce, for all x ∈ R, the functions

H1(x;ϑ,G) =
1
p
G(x+ µ)− 1− p

p
F0(x+ µ),

and
H2(x;ϑ,G) = 1− 1

p
G(−x+ µ) +

1− p
p

F0(−x+ µ).

We have, using (2.2) and the symmetry of F ,

H(x;ϑ0, G) ≡ H1(x;ϑ0, G)−H2(x;ϑ0, G) = 0 ∀x ∈ R,(2.3)

whereas we can expect that for all ϑ 6= ϑ0 an ad hoc norm of the function
H will be strictly positive. In Bordes et al. (2006a) the authors considered
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the L2
G(R)-norm that proved to be interesting from both theoretical and

numerical point of view. Considering such a norm leads to consider the
following function d on Θ:

d(ϑ) =
∫

R
H2(x;ϑ,G)dG(x),

where obviously d(ϑ) ≥ 0 for all ϑ ∈ Θ and d(ϑ0) = 0. Because G is unknown
it is natural to replace it by its empirical version Ĝn obtained from the n-
sample. However, because we aim to estimate ϑ by the minimum argument
of the empirical version of d using a differentiable optimization routine, we
need to replace G in H by a regular version G̃n of Ĝn. Therefore we obtain
an emprical version dn of d defined by

(2.4) dn(ϑ) =
∫

R
H2(x;ϑ, G̃n)dĜn(x) =

1
n

n∑
i=1

H2(Xi;ϑ, G̃n)

where

Ĝn(x) =
1
n

n∑
i=1

1Xi≤x, ∀x ∈ R,

and G̃n(x) =
∫ x

−∞
ĝn(t)dt denotes the smoothed version of the empirical cdf

Ĝn since ĝn is a kernel density estimator of g defined by

ĝn(x) =
1
nhn

n∑
i=1

q

(
x−Xi

hn

)
, ∀x ∈ R,

with hn → 0, nhn → +∞ and q is a symmetric kernel density function.
For example we can choose q(x) = (1 − |x|)1−1≤x≤1. Note that additional
conditions on the bandwidth hn and the kernel function q will be specified
afterward. Finally we propose to estimate ϑ0 by

ϑ̂n = (p̂n, µ̂n) = arg min
ϑ∈Θ

dn(ϑ).

Using the relation (2.2) we can estimate F by:

F̂n(x) =
1
p̂n

(
Ĝn(x+ µ̂n)− (1− p̂n)F0(x+ µ̂n)

)
, ∀x ∈ R.

Note that generally F̂n is not a legitimate cdf since it is generally not non-
decreasing on the whole real line. However, the Glivenko-Cantelli strong
consistency result obtained in Section 3 shows that it is not a serious draw-
back whenever the sample size is large enough.
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Again by formula (2.2) a natural estimator of the df f is defined by

f̃n(x) =
1
p̂n

(ĝn(x+ µ̂n)− (1− p̂n)f0(x+ µ̂n)) , ∀x ∈ R.

Because generally f̃n will not be a density, it can be modified into a legitimate
df estimator f̂n defined by

f̂n =
1
sn
f̃n1f̃n≥0,

where sn =
∫

R
f̃n(x)1f̃n(x)≥0dx.

The advantage of choosing the above L2
G(R)-norm is that it leads to an

explicit empirical function dn since replacingG by Ĝn transforms the integral
sign into a simple sum. However other choices are possible. In Bordes et al.
(2006b), Lq(R) (1 ≤ q < +∞) distances between H1 and H2 are discussed.
These authors show also that it is possible to reduce the Euclidean parameter
to one of the two parameters p and µ using the first order moment of G that
can be estimated directly from the n-sample. However such a reduction of
parameters can lead to serious numerical instability when the product pµ is
small, which is frequent, e.g., for applications to microarray experiments.

3. Identifiability, consistency and asymptotic normality.

3.1. General conditions and identifiability. In this section we give a set
of conditions for which we obtain identifiability of the model parameters,
consistency and asymptotic normality of our estimators. We denote by ϑ0 =
(p0, µ0) the true value the unknown Euclidean parameter ϑ = (p, µ) of model
(1.1). Let us denote by m0 and m the two-order moments of f0 and f
respectively. We introduce the set

Φ = R∗×]0,+∞[\ ∪k∈N∗ Φk

where
Φk =

{
(µ,m) ∈ R∗×]0,+∞[;m = m0 + µ2k ± 2

3k

}
.

Let us define Fq = {f ∈ F ;
∫
R |x|qf(x)dx < +∞} ⊂ F for q ≥ 1. Denoting

by f̄0 the Fourier transform of the df f0 we consider one assumption, for
which the semiparametric identifiability of the model (1.1) parameters is
obtained, see Bordes et al., (2006b, Proposition 2, p. 736).



6 L. BORDES AND P. VANDEKERKHOVE

Identifiability condition (I). (f0, f) ∈ F2
3 , f̄0 > 0 and (µ0,m) ∈ Φc

where Φc a compact subset of Φ. We have ϑ0 = (p0, µ0) ∈ Θ where Θ is a
compact subset of (0, 1)× Ξ where Ξ = {µ; (µ,m) ∈ Φc}.

Comments and remarks. Note that there exists various non-identifiability
cases for model (1.1), let us focus our attention on the following one:

(1− p)ϕ(x) + pf(x− µ) = (1− p

2
)ϕ(x) +

p

2
ϕ(x− 2µ), ∀x ∈ R,(3.1)

where a is a real number, ϕ is an even df, p ∈ (0, 1) and f(x) = (ϕ(x− a) +
ϕ(x + a))/2. This example is particularly interesting since it clearly shows
the danger of estimating model (1.1) when the df of the unknown component
has exactly the same shape as the known df.

An other very important point which needs to be explained is the fact
that the value µ = 0 must be rejected from the parametric space. In fact
it is easy to check that for all p ∈ (0, 1), ϑ = (p, 0) is always a solution of
d(ϑ) = 0. Indeed for all p ∈ (0, 1) and all cdf G satisfying (2.1), we have

∀x ∈ R, H1(x; (p, 0), G) = F0(x), H2(x; (p, 0), G) = 1−F0(−x) = F0(x).

It follows that µ = 0 does not match the contrast property of d. Even if
µ = 0 is a forbidden value by Condition (I), when the true value of µ is close
to zero the empirical contrast may fail in finding a good estimate of the
location parameter. Note however that in microarray experiments a value
of µ that is close to 0 may be balanced by a large sample size. The same
remark holds for p = 0.

Kernel conditions (K).

(i) The even kernel density function q is bounded, uniformly continu-
ous, square integrable, of bounded variations and has second order
moment.

(ii) The function q has first order derivative q′ ∈ L1(R) and q′(x) → 0
as |x| → +∞. In addition if γ is the square root of the continuity
modulus of q, we have∫ 1

0
(log(1/u))1/2 dγ(u) <∞.

Comments. More general conditions on the kernel function q may be
founded, e.g., in Silverman (1978) and in Giné and Guillou (2002). From a
practical point of view triangular, gaussian, cauchy or many other standard
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kernels satisfy these conditions.

Bandwidth conditions (B).

(i) hn ↘ 0, nhn → +∞ and
√
nh2

n = o(1),
(ii) nhn/| log hn| → +∞, | log hn|/ log log n→ +∞ and there exists a real

number c such that hn ≤ ch2n for all n ≥ 1,
(iii) | log hn|/(nh3

n)→ 0.

Comments. The two first conditions in (B) (i) are necessary to obtain the
pointwize consistency of g kernel estimators. The third condition allows to
control the distance between the empirical cdf Ĝn and its regularized version
G̃n. By using Corollary 1 in Shorack and Wellner (1986, p. 766) we obtain

(3.2)
∥∥∥G̃n − Ĝn∥∥∥∞ = Oa.s.(h2

n)

which by (i) and the law of iterated logarithm, leads to

(3.3)
∥∥∥G̃n −G∥∥∥∞ = Oa.s.

((
log logn

n

)−1/2
)
.

Conditions (ii) and (iii) allows to obtain the following result.

Lemma 3.1. Suppose that the kernel function q satisfies Conditions (K)
and that the bandwidth (hn) satisfies Conditions (B).

(i) If g and g′ are uniformly continuous on R, then

‖ĝn − g‖∞ = oa.s.(1) and ‖ĝ′n − g′‖∞ = oa.s.(1).

(ii) If g is Lipschitz on R, then

‖ĝn − g‖∞ = Oa.s.

(( | log hn|
nhn

)1/2
)

+O(hn).

Proof. Result (i) is given in Silverman (1978, Theorems A and C). For
(ii) we have

‖ĝn − g‖∞ ≤ ‖ĝn − Eĝn‖∞ + ‖Eĝn − g‖∞.

From Giné and Guillou (2002) we have

‖ĝn − Eĝn‖∞ = Oa.s.

(( | log hn|
nhn

)1/2
)
,

whereas the O(hn) term holds because g is Lipschitz on R.
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Remark 3.1. The convergence rate given by Giné and Guillou (2002)
for the multivariate case was given in Silverman (1978) under stronger con-
ditions on the bandwidth. Note that we put conditions in order to obtain
simultaneously (i) and (ii) of Lemma 3.1. However each of the two results
do not require all the assumptions made in (K) and (B) to hold. Finally it is
worth to note that for example the bandwidth rate n−1/4−δ, with δ ∈ (0, 1/8),
is convenient since it meets all the conditions that are given in (B).

3.2. Consistency and preliminary convergence rate. We denote for sim-
plicity by ḣ(ϑ) and ḧ(ϑ) the gradient vector and hessian matrix of any real
function h (when it makes sense) with respect to argument ϑ ∈ R2.

Lemma 3.2. Assume that Condition (I) is satisfied and that Θ is a com-
pact subset of (0, 1)× Φc.

(i) The function d is continuous on Θ.
(ii) If G is strictly increasing then d is a contrast function, i.e. for all

ϑ ∈ Φc, d(ϑ) ≥ 0 and d(ϑ) = 0 if and only if ϑ = ϑ0.
(iii) If F0 and F are Lipschitz on R, then d is Lipschitz on any compact

subset of R2 and supϑ∈Φc
|dn(ϑ)−d(ϑ)| = oa.s.(n−1/2+α), for all α > 0.

(iv) If supp(g) = R then

d̈(ϑ0) = 2
∫

R
Ḣ(x;ϑ0, G)ḢT (x;ϑ0, G)dG(x) > 0.

Proof. Let us show (i). The function ϑ 7→ H(x;ϑ,G) being bounded and
continuous at any point µ ∈ R for all fixed x ∈ R, the wanted result is a
direct consequence of the Lebesgue dominated convergence Theorem.
Let us show (ii). If ϑ = ϑ0 then d(ϑ) = 0. To prove the reciprocal let us
remark that d(ϑ) = 0 implies H1(·;ϑ,G) = H2(·;ϑ,G) which leads, because
G is strictly increasing on R, to

g(x+ µ)− (1− p)f0(x+ µ) = g(−x+ µ)− (1− p)f0(−x+ µ), ∀ x ∈ R.

Using (1.1) with ϑ = ϑ0 we obtain for all x ∈ R

(1− p0)f0(x+ µ) + p0(x+ µ− µ0)− (1− p)f0(x+ µ)
= (1− p0)f0(−x+ µ) + p0(−x+ µ− µ0)− (1− p)f0(−x+ µ).

Assume now that ϑ 6= ϑ0. Considering the Fourier transform of the above
equality we obtain

(p− p0) sin(tµ)f̄0(t) = p0 sin(t(µ− µ0))f̄(t), ∀ t ∈ R.(3.4)
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Since f̄0(t) > 0, it comes that t(µ−µ0) ∈ πZ⇒ tµ ∈ πZ, which proves that
it exists k0 ∈ Z such that |µ| / |µ− µ0| = k0. Taking in addition the first
and third order derivatives of (3.4) at t = 0 we obtain

(3.5) p0µ0 = pµ and (p−p0)µ(3m0+µ2)+p0(µ−µ0)(3m+(µ−µ0)2) = 0.

The above results imply that

m = m0 + µ2
0

k0 ± 2
3k0

,(3.6)

and then (µ,m) ∈ ∪k∈N∗Φk, which in turn implies that (µ,m) /∈ Φc. It
follows that ϑ = ϑ0.
Let us show (iii). Let ϑ and ϑ′ be two points in Θ. We have

|d(ϑ)− d(ϑ′)|

≤
∫

R

∣∣H(x;ϑ,G) +H(x;ϑ′, G)
∣∣× ∣∣H(x;ϑ,G)−H(x;ϑ′, G)

∣∣ dG(x)

≤ c

∫
R

∣∣H(x;ϑ,G)−H(x;ϑ′, G)
∣∣ dG(x),(3.7)

where c is a constant coming from the boundedness of (x, ϑ) 7→ H(x;ϑ,G)
on R × Θ. Moreover, using the compacity of Θ and properties of cdf it is
easy to show that there exist constants α, β and γ such that∣∣H(x;ϑ,G)−H(x;ϑ′, G)

∣∣
≤ α

(
|F (x− µ)− F (x− µ′)|+ |F (x+ µ)− F (x+ µ′)|

)
+β

(
|F0(x− µ)− F0(x− µ′)|+ |F0(x+ µ)− F0(x+ µ′)|

)
+ γ|p− p′|.

Using (3.7) and the above inequality we obtain that there exists a constant
c′ such that |d(ϑ) − d(ϑ′)| ≤ c′‖ϑ − ϑ′‖2, where ‖ · ‖2 denote the Euclidean
norm on R2.
Considering for all k ≥ 0 the random variable Zk(ϑ) = H2(Xk;ϑ,G), we
have for all ϑ ∈ Θ

|dn(ϑ)− d(ϑ)| ≤
∣∣∣∣∣ 1n

n∑
k=1

(
H2(Xk;ϑ, G̃n)−H2(Xk;ϑ,G)

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
k=1

(Zk(ϑ)− E(Zk(ϑ)))

∣∣∣∣∣
≤ Oa.s.(||G̃n −G||∞) + sup

ϑ∈Θ

∣∣∣∣∣ 1n
n∑
k=1

(Zk(ϑ)− E(Zk(ϑ)))

∣∣∣∣∣ .
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Noticing that ||G̃n−G||∞ is Oa.s.(
√
n−1 log log n) (see Shorack and Wellner,

1986, p. 766) and that the last term of the right hand side is the supremum
of an empirical process indexed by a class of Lipschitz bounded function,
which is known to be a oa.s.(n−1/2+α) for α > 0 (see Bordes et al. 2006a, for
the details), we get the wanted result.

Let us show (iv). First we have

d̈(ϑ0) = 2
∫

R

(
Ḧ(x;ϑ0, G)H(x;ϑ0, G) + Ḣ(x;ϑ0, G)ḢT (x;ϑ0, G)

)
dG(x)

= 2
∫

R
Ḣ(x;ϑ0, G)ḢT (x;ϑ0, G)dG(x)

because H(·;ϑ0, G) ≡ 0 on R. Let v be a vector in R2, we have

vT d̈(ϑ0)v = 2
∫

R

(
vT Ḣ(x;ϑ0, G)

)2
dG(x) ≥ 0.

It follows that d̈(ϑ0) is a positive 2×2 real valued matrix. Let us show that it
is also definite. Let v ∈ R2 be a non nul column vector such that vT d̈(ϑ0)v =
0, then vT Ḣ(·;ϑ0, G) = 0 λ-everywhere on R. It is straightforward to show
that

(3.8)
∂H

∂µ
(x;ϑ0, G) = 2f(x),

and

(3.9)
∂H

∂p
(x;ϑ0, G) =

1
p0

[F0(x+ µ0) + F0(µ0 − x)− 1] .

Therefore, using the above derivatives with the condition vT Ḣ(·;ϑ0, G) = 0
we obtain the proportionality of the functions f and F0(·+µ0)+F0(µ0−·)−1.
Because f0 is an even function we obtain

f(x) =
F0(x+ µ0)− F0(x− µ0)∫

R (F0(x+ µ0)− F0(x− µ0)) dx
=

1
2µ0

(F0(x+ µ0)− F0(x− µ0)) .

Finally, computing the second order moment of f , we obtain by the integra-
tion by part formula

m =
∫

R
x2f(x)ds =

1
2µ0

∫
R
x2 (F0(x+ µ0)− F0(x− µ0)) dx

=
2µ0m0

2µ0
= m0,

which is not possible, by Condition (I), since m is different from m0 +µ2
0(k±

2)/3k for all k ∈ N∗. �
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Theorem 3.1.

(i) Suppose that Condition (I) is satisfied, Θ is a compact subset of (0, 1)×
Φc, G is strictly increasing on R, and that F0 and F are Lipschitz on
R. Then the estimator ϑ̂n converges almost surely to ϑ0.

(ii) If in addition F0 and F are twice continuously differentiable with sec-
ond derivatives in L1(R), then we have |ϑ̂n − ϑ0| = oa.s.(n−1/4+α) for
all α > 0.

Proof. Let us show (i). This proof follows entirely the proof given in
Bordes et al. (2006a) by using (i)–(iii) of Lemma 3.2.

Let us show (ii). By Lemma 3.2 (iv) there exists α > 0 such that for all
v ∈ R2, vT d̈(µ0)v > α‖v‖22. By a two order Taylor expansion of d at ϑ0, we

can find η > 0 such that for all v satisfying ‖v‖2 < η and ϑ0 + v ∈
◦
Θ, we

have

d(ϑ0 + v) ≥ α

4
‖v‖22.(3.10)

Let us consider B0(ηn) the open ball centered at ϑ0 with radius ηn > 0.
Following the proof of Theorem 3.3 in Bordes et al. (2006a) we show that
for all ϑ ∈ Θ \B0(ηn), we have the following events inclusion

lim sup
n

{
ϑ̂n /∈ B0(ηn)

}
⊆ lim sup

n

{
inf

ϑ∈Θ\B0(ηn)
d(ϑ) < γn

}
∪ lim sup

n

{
γn ≤ 2 sup

ϑ∈Θ
|dn(ϑ)− d(ϑ|

}
.

for any arbitrary sequence γn. Choosing now γn = n−1/2+α, and ηn =
n−1/4+β/2, with 0 < α < β taken arbitrarily small, it follows from (3.10)
and the uniform almost sure rate of convergence of dn towards d given in
Lemma 3.2 (iii), that

P

(
lim sup

n

{
inf

ϑ∈Θ\B0(ηn)
d(ϑ) < γn

})
= 0,

and

P

(
lim sup

n

{
γn ≤ 2 sup

ϑ∈Θ
|dn(ϑ)− d(ϑ)|

})
= 0.

In conclusion ϑ̂n converges almost surely towards ϑ0 at rate n−1/4+δ, with
δ > 0 chosen arbitrarily small.
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3.3. Asymptotic normality. Let us introduce some notations. We define
the 3×3 real valued matrix Σ(x, y) by its components σij(x, y) (1 ≤ i, j ≤ 3)
where for (x, y) ∈ R2

σ11(x, y) ≡ σ11 =
4
p2

0

∫
R2
h1(u)h1(v)k(u, v)dG(u)dG(v),

σ22(x, y) ≡ σ22 =
4
p2

0

∫
R2
h2(u)h2(v)k(u, v)dG(u)dG(v),

σ12(x, y) ≡ σ21 =
4
p2

0

∫
R2
h1(u)h2(v)k(u, v)dG(u)dG(v),

σ13(x, y) ≡ σ13(y) =
2
p0

∫
R
h1(u)`(y, u)dG(u),

σ23(x, y) ≡ σ23(y) =
2
p0

∫
R
h2(u)`(y, u)dG(u),

σ31(x, y) = σ13(x),
σ32(x, y) = σ23(x),
σ33(x, y) = ρ(x+ µ0, y + µ0),

with

h1(x) =
1
p0

(F0(µ0 + x) + F0(µ0 − x)− 1) ,

h2(x) = 2f(x),
ρ(x, y) = G(x ∧ y)(1−G(x ∨ y)),
`(x, y) = ρ(µ0 + x, µ0 + y) + ρ(µ0 + x, µ0 − y),
k(x, y) = `(x, y) + `(−x, y).

Note that (h1, h2)T is equal to Ḣ(·;ϑ0, G) by (3.8) and (3.9). Let J(ϑ0) =
(Jij(ϑ0))1≤i,j≤3 be the 3× 3 real valued matrix with entries

J11(ϑ0) = −2
∫

R
h2

1(u)dG(u),

J12(ϑ0) = J21(ϑ0) = −2
∫

R
h1(u)h2(u)dG(u),

J22(ϑ0) = −2
∫

R
h2

2(u)dG(u),

J13(ϑ0) = J23(ϑ0) = J31(ϑ0) = J32(ϑ0) = 0,
J33(ϑ0) = 1.
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We also define the 3× 3 real valued matrix L(x;ϑ0) by

L(x;ϑ0) =

 1 0 0
0 1 0

h3(x) f(x) 1/p0

 ,
where

h3(x) =
F0(x+ µ0)−G(x+ µ0)

p2
0

.

For each of the above quantities we can define natural estimators. Let us
define

ĥ1(x) =
1
p̂n

(F0(µ̂n + x) + F0(µ̂n − x)− 1) ,

ĥ2(x) = 2f̂n(x),

ĥ3(x) =
F0(x+ µ̂n)− Ĝn(x+ µ̂n)

p̂2
n

,

ρ̂(x, y) = Ĝn(x ∧ y)(1− Ĝn(x ∨ y)),
ˆ̀(x, y) = ρ̂(µ̂n + x, µ̂n + y) + ρ̂(µn + x, µ̂n − y),
k̂(x, y) = ˆ̀(x, y) + ˆ̀(−x, y).

Then we can estimate Σ(x, y) by Σ̂(x, y) where

σ̂11(x, y) ≡ σ̂11 =
8

n(n− 1)p̂2
n

∑
1≤i<j≤n

ĥ1(Xi)ĥ1(Xj)k̂(Xi, Xj),

σ̂22(x, y) ≡ σ̂22 =
8

n(n− 1)p̂2
n

∑
1≤i<j≤n

ĥ2(Xi)ĥ2(Xj)k̂(Xi, Xj),

σ̂12(x, y) ≡ σ̂21 =
4

n(n− 1)p̂2
n

∑
1≤i 6=j≤n

ĥ1(Xi)ĥ2(Xj)k̂(Xi, Xj),

σ̂13(x, y) ≡ σ̂13(y) =
2
np̂n

n∑
i=1

ĥ1(Xi)ˆ̀(y,Xi),

σ̂23(x, y) ≡ σ̂23(y) =
2
np̂n

n∑
i=1

ĥ2(Xi)ˆ̀(y,Xi),

σ̂31(x, y) = σ̂13(x),
σ̂32(x, y) = σ̂23(x),
σ̂33(x, y) = ρ̂(x+ µ̂n, y + µ̂n),
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and Ĵ = (Ĵij)1≤i,j≤3 with

Ĵ11 = − 2
n

n∑
i=1

ĥ2
1(Xi), Ĵ12 = Ĵ21 = − 2

n

n∑
i=1

ĥ1(Xi)ĥ2(Xi),

Ĵ22 = − 2
n

n∑
i=1

ĥ2
2(Xi),

Ĵ13 = Ĵ23 = Ĵ31 = Ĵ32 = 0 and Ĵ33 = 1.

The L(x;ϑ0) matrix is estimated by L̂(x) the third line of which being
therefore (ĥ3(x), ĥ2(x)/2, 1/p̂n).

Theorem 3.2. Suppose that Conditions (I), (K) and (B) are satisfied,
and that Θ is a compact subset of (0, 1)×Φc, G is strictly increasing on R,
and that F0 and F are twice continuously differentiable with second deriva-
tives in L1(R). Then

√
n
(
µ̂n − µ0, p̂n − p0, F̂n(·)− F (·)

)T
 G in R2 ×D(R),(3.11)

where G = (G1,G2,G3)T is a Gaussian process with correlation function

Γ(x, y;ϑ0) = L(x;ϑ0))J−1(ϑ0)Σ(x, y)J−1(ϑ0)(L(x;ϑ0))T

such that for
Γ̂(x, y) = L̂(x)Ĵ−1Σ̂(x, y)Ĵ−1(L̂(y))T ,

we have

(3.12) sup
(x,y)∈R2

‖Γ̂(x, y)− Γ(x, y;ϑ0)‖∞
a.s.−→ 0.

Proof. By a Taylor expansion of ḋn around ϑ0, we have

(3.13) d̈n(ϑ∗n)
√
n(ϑ̂n − ϑ0) = −

√
nḋn(ϑ0),

where ϑ∗n lies in the line segment with extremities ϑ̂n and ϑ0.
Step 1. Let us prove that

(3.14) ḋn(ϑ0) =
2
n

n∑
i=1

H(Xi;ϑ0, Ĝn)Ḣ(Xi;ϑ0, G) + oa.s.(n−1/2).

We only investigate the partial derivative of dn(θ0) with respect to µ,
the partial derivative with respect to p being easier to study. According to
expression (2.4) we have

∂dn
∂µ

(ϑ0) =
2
n

n∑
i=1

H(Xi;ϑ0, G̃n)
∂H

∂µ
(Xi;ϑ0, G̃n).(3.15)
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Let us consider now the following decomposition

∂dn
∂µ

(ϑ0)− 2
n

n∑
i=1

H(Xi;ϑ0, Ĝn)
∂H

∂µ
(Xi;ϑ0, G) = L(1)

n + L(2)
n

where

L(1)
n =

2
n

n∑
i=1

H(Xi;ϑ0, G̃n)
(
∂H

∂µ
(Xi;ϑ0, G̃n)− ∂H

∂µ
(Xi;ϑ0, G)

)

and

L(2)
n =

2
n

n∑
i=1

∂H

∂µ
(Xi;ϑ0, G)

(
H(Xi;ϑ0, G̃n)−H(Xi;ϑ0, Ĝn)

)
,

with ∂H
∂µ (x;ϑ0, G) = 2f(x) by (3.8).

Notice first that if f and f0 are bounded on R, then x 7→ ∂H
∂µ (x;ϑ0, G) is

bounded on R. Because H(·;ϑ0, G) = 0 we have

|L(1)
n |

≤ 2
n

n∑
i=1

∣∣∣H(Xi;ϑ0, G̃n)−H(Xi;ϑ0, G)
∣∣∣ ∣∣∣∣∂H∂µ (Xi;ϑ0, G̃n)− ∂H

∂µ
(Xi;ϑ0, G)

∣∣∣∣
≤ 2

∥∥∥H(·;ϑ0, G̃n)−H(·;ϑ0, G)
∥∥∥
∞
×
∥∥∥∥∂H∂µ (·;ϑ0, G̃n)− ∂H

∂µ
(·;ϑ0, G)

∥∥∥∥
∞

≤ c‖G̃n −G‖∞ × ‖g̃n − g‖∞ = oa.s.(n−1/2)

since c is a constant, ‖G̃n−G‖∞ = Oa.s.(
√
n−1 log log n) by (3.2) and (3.3),

and ‖g̃n − g‖∞ = Oa.s.((| log hn|/(nhn))1/2) +O(hn) by Lemma 3.1 (ii).
Let us now consider the L(2)

n term. We have

|L(2)
n | ≤

2
n

n∑
i=1

∣∣∣∣∂H∂µ (Xi;ϑ0, G)
∣∣∣∣ ∣∣∣H(Xi;ϑ0, G̃n)−H(Xi;ϑ0, Ĝn)

∣∣∣
≤ 2

∥∥∥∥∂H∂µ (·;ϑ0, G)
∥∥∥∥
∞
×
∥∥∥H(·;ϑ0, G̃n)−H(·;ϑ0, Ĝn)

∥∥∥
∞

≤ c‖G̃n − Ĝn)‖∞ = Oa.s.(h2
n),

which in turn gives the wanted result because by Condition (B) we have√
nh2

n = o(1). This finishes the proof of the first step.
Step 2. We need to prove that

d̈n(ϑ∗n) a.s.−→ I(ϑ0),(3.16)
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where I(ϑ0) =
∫
R Ḣ(x;ϑ0, G)ḢT (x;ϑ0, G)dG(x) > 0.

In order to prove statement (3.16) let us remark that

d̈n(ϑ∗n) =
2
n

n∑
k=1

H(Xk;ϑ∗n, G̃n)Ḧ(Xk;ϑ∗n, G̃n)

+
2
n

n∑
k=1

Ḣ(Xk;ϑ∗n, G̃n)ḢT (Xk;ϑ∗n, G̃n)

= T (1)
n + T (2)

n + T (3)
n ,

where

T (1)
n =

2
n

n∑
k=1

(
H(Xk;ϑ∗n, G̃n)−H(Xk;ϑ0, G)

)
Ḧ(Xk;ϑ∗n, G̃n),

T (2)
n =

2
n

n∑
k=1

Ḣ(Xk;ϑ∗n, G̃n)ḢT (Xk;ϑ∗n, G̃n)

− 2
n

n∑
k=1

Ḣ(Xk;ϑ0, G)ḢT (Xk;ϑ0, G),

T (3)
n =

2
n

n∑
k=1

Ḣ(Xk;ϑ0, G)ḢT (Xk;ϑ0, G).

Because the df f and f0 are bounded it easy to show that the strong law of
large numbers holds for T (3)

n and therefore T (3)
n → I(µ0) almost surely. It

remains to show that T (1)
n and T (2)

n converge almost surely to 0. For T (1)
n let

us remark that

T (1)
n ≤

∥∥∥H(·;ϑ∗n, G̃n)−H(·;ϑ0, G)
∥∥∥
∞
×
∥∥∥Ḧ(·;ϑ∗n, G̃n)

∥∥∥
∞
.(3.17)

Because Ḧ = Ḧ1 − Ḧ2 and H1 and H2 are very similar, we only prove that
the supremum norm of each term in Ḧ1(·;ϑ∗n, G̃n) matrix is bounded. We
only handle the more complicated term in Ḧ1(·;ϑ∗n, G̃n) which is the second
order derivative with respect to µ. We have

∂2H1

∂µ2
(x;ϑ∗n, G̃n) =

1
p̂n
g̃′n(x+ µ̂n)− 1− p̂n

p̂n
f ′0(x+ µ̂n),

where g̃′n = G̃′′n is an estimator of g′. Because f ′ and f ′0 are bounded we have∥∥∥∥∥∂2H1

∂µ2
(·;ϑ∗n, G̃n)

∥∥∥∥∥
∞
≤ Oa.s.

(
‖g̃′n − g′‖∞

)
+Oa.s.(1).
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According to Silverman (1978), dealing with the uniform consistency of ker-
nel estimators of a density and its derivatives, we have

‖g̃n − g‖∞ = oa.s. (1) and ‖g̃′n − g′‖∞ = oa.s. (1) .

Finally we obtain∥∥∥Ḧ(·;ϑ∗n, G̃n)
∥∥∥
∞

= oa.s. (1) +Oa.s.(1) = Oa.s.(1).

Painfull but straitghforward calculations lead to∥∥∥H(·;ϑ∗n, G̃n)−H(·;ϑ0, G)
∥∥∥
∞
≤ Oa.s.

(
‖ϑ̂n − ϑ0‖2

)
+Oa.s.

(
‖G̃n −G‖∞

)
.

According to Corollary 1 in Shorack and Wellner (1986, p. 766) and the
Law of the Iterated Logarithm for the empirical cdf, we have

‖G̃n −G‖∞ = Oa.s(
√
n−1 log log(n)),

hence by (3.17) and the above results we have

T (1)
n = Oa.s.

(
‖ϑ∗n − ϑ0‖2 +

√
n−1 log log(n)

)
.(3.18)

Finally by Theorem 3.1 we have that ‖ϑ∗n − ϑ0‖2 = oa.s.(n−1/4+α) for any
α > 0, then T

(1)
n converges almost surely to 0.

The same kind of calculations allow to prove that T (2)
n → 0 almost surely,

which concludes the proof of statement (3.16).
Step 3. Using the fact that at the

√
n-rate Ĝn and G̃n are interchangeable,

and using the properties of F and F0 we obtain the following uniform (with
respect to x ∈ R) approximation

√
n
(
F̂n(x)− F (x)

)
(3.19)

=
√
n(p̂n − p0)

(
F0(x+ µ0)−G(x+ µ0)

p2
0

)
+
√
n

1
p0

(
Ĝn(x+ µ0)−G(x+ µ0)

)
+
√
n(µ̂n − µ0)f(x) + oa.s.(1).

Step 4. Let us prove (3.11). By (3.14), (3.16) and (3.19) we obtain

(3.20)
√
n

 p̂n − p0

µ̂n − µ0

F̂n − F

 = L(·;ϑ0)J−1(ϑ0)
√
n

 U1(Ĝn)
U2(Ĝn)
U3(Ĝn)

+ oa.s.(1),
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where for a cdf V

U1(V ) = 2
∫

R
H(x;ϑ0, V )h1(x)dV (x)

U2(V ) = 2
∫

R
H(x;ϑ0, V )h2(x)dV (x)

U3(V ) = V (·+ µ0)−G(·+ µ0).

Considering U = (U1,U2,U3)T as a function from BV1(R) to R2 × D(R)
where BV1(R) is the space of functions with variations bounded by 1 on
R and D(R) the space of cadlag functions on R, it is easy to see that U
is Hadamard differentiable (see e.g. van der Vaart, 1998) on BV1(R) with
derivative

K 7→


2
p0

∫
R h1(y) (K(µ0 + y) +K(µ0 − y)) dG(y)

2
p0

∫
R h2(y) (K(µ0 + y) +K(µ0 − y)) dG(y)

K(·+ µ0)

 .
It follows by the δ-method theorem (see e.g. van der Vaart, 1998) that

√
n

 U1(Ĝn)
U2(Ĝn)
U3(Ĝn)

 =


2
p0

∫
R h1(y) (Gn(µ0 + y) + Gn(µ0 − y)) dG(y)

2
p0

∫
R h2(y) (Gn(µ0 + y) + Gn(µ0 − y)) dG(y)

Gn(·+ µ0)

+oP (1),

where Gn =
√
n(Ĝn − G). By the Donsker theorem Gn  B where B is

a gaussian process with correlation function ρ. Then the following weak
convergence holds in R2 ×D(R)

√
n

 U1(Ĝn)
U2(Ĝn)
U3(Ĝn)

 H =


2
p0

∫
R h1(y) (B(µ0 + y) + B(µ0 − y)) dG(y)

2
p0

∫
R h2(y) (B(µ0 + y) + B(µ0 − y)) dG(y)

B(·+ µ0)

 ,
where H is a gaussian process as a linear form on B the correlation function
of which is defined by Σ(x, y) = E

[
H(x)HT (y)

]
. This with (3.20) lead to

(3.11).
Step 5. It remains to prove (3.12). For this purpose it is sufficient to prove
the convergence in probability of Ĵij to J(ϑ0), that

max
i=3,4

‖ĥi − hi(·;ϑ0)‖∞
a.s.−→ 0,

(which gives the strong uniform convergence of L̂ to L(·;ϑ0)) and that

sup
(x,y)∈R2

|σ̂ij(x, y)− σij(x, y)| a.s.−→ 0,
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for all 1 ≤ i, j ≤ 3. Because the proof is quite repetitive, we only consider
one of the more difficult terms, other terms can be handled in the same way.
First

sup
x∈R
|ĥ1(x)− h1(x)| a.s.−→ 0,

by the strong consistency result of Theorem 3.1 and the Lipschitz property
of F0. Using repetively the telescoping rule we show that

sup
x∈R
|f̃n(x)− f(x)|

≤ 1
p̂n

(‖ĝ − g‖∞ + ‖g(·+ µ̂n)− g(·+ µ0)‖∞ + ‖f0(·+ µ̂n)− f0(·+ µ0)‖∞)

+
‖g‖∞ + ‖f0‖∞

p0p̂n
|p̂n − p0|.

The above inequality with the strong consistency result of Theorem 3.1 and
the Lipschitz properties of f0 and g lead to

sup
x∈R
|f̃n(x)− f(x)| a.s.−→ 0.

Now recall that sn =
∫
R f̃n(x)1f̃n(x)dx

a.s.−→ 1 (see Bordes et al., 2006a), then
we can write

|f̃n(x)− f̂n(x)| ≤ ‖f̃n‖∞
|1− sn|
sn

+ |f̃n(x)|1f̃n(x)<0,

where because f is bounded and ‖f̃n − f‖∞
a.s.−→ 0, the right hand side of

the above inequality converges strongly to 0. It follows that

sup
x∈R
|ĥ2(x)− h2(x)| a.s.−→ 0.

By similar arguments we prove the uniform strong convergence of ρ̂, ˆ̀ and
k̂ to ρ, ` and k respectively. Now let us show that σ̂12 converges strongly
to σ12. Let us consider, for example, the convergence of σ̂12. From previous
results it is straightforward to obtain

σ̂12 =
8

n(n− 1)p2
0

n∑
i=2

i−1∑
j=1

h1(Xi)h2(Xj)k(Xi, Xj) + oa.s.(1),

where by the strong law of large numbers the right hand side term is a 2-
order U -statistic, with kernel function (u, v) 7→ h(u, v) = h1(u)h2(v)k(u, v),
converging strongly to σ12 = 4E(h(X1, X2))/p2

0.
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4. Applications to testing and simulations. In this section we ad-
dress the problem of testing a few hypotheses relative to the semiparametric
mixture model (1.1). However, more general testing procedures could be
developed. For example it should be possible to test the hypothesis that
the nonparametric component belongs to a parametric family, but such a
test is beyond the scope of the paper and will be developed elsewhere for a
larger class of semiparametric mixture models. First we propose a chi-square
test for a simple hypothesis for the three parameters of model (1.1) next the
same type of test is proposed to check the hypothesis that the nonparametric
component of the mixture model has a symmetric distribution.

4.1. Testing some simple hypothesis. We propose in this section to con-
sider the following simple hypothesis testing problem:

H0 : (p, µ, F ) = (p?, µ?, F?) versus H1 : (p, µ, F ) 6= (p?, µ?, F?),

where (p?, µ?) ∈ Θ and F? is a known cdf function. Because under H0 the
joint asymptotic behavior of

√
n(p̂n − p?, µ̂n − p?, F̂n − F?) is known, it is

possible to base a testing procedure on the asymptotic distribution. Such a
procedure requires to choose a discrepancy measure between the estimates
and the estimators, and of course, several choices are possible. The test
we propose is based on the frequently used chi-square measure, leading to
chi-square type tests. Let us fix k real numbers s1 < · · · < sk such that
0 < F?(s1) < · · · < F?(sk) < 1. Because Moore (1971) and Ruymgaart
(1975) proved that under smooth conditions chi-square statistics can also be
constructed using random cells boundaries it is generally possible to choose
equidistributed cells to increase the probability that there are enough data
in each interval ]s`−1, s`] for ` = 1, . . . , k with s0 = −∞.

We consider now the random vector Wn defined by

Wn =
√
n


p̂n − p?
µ̂n − µ?

F̂n(s1)− F?(s1)
...

F̂n(sk)− F?(sk)

 .

According to Theorem 3.2 we have

Wn  N (0, V ) ,

where V is the (k + 2)× (k + 2) correlation matrix with entries defined by

vij = Γij , for 1 ≤ i ≤ j ≤ 2,
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v1j = Γ13(sj−2) and v2j = Γ23(sj−2), for 3 ≤ j ≤ k + 2,

and
vij = Γ33(si−2, sj−2), for 3 ≤ i ≤ j ≤ k + 2.

Defining V̂ as V but using Γ̂ instead of Γ (see the beginning of section 3),
we obtain that

W T
n V̂
−1Wn  χ2

k+2,

where χ2
m is the chi-square distribution with m degrees of freedom. We reject

H0 at the level α ∈ (0, 1) if W T
n V̂
−1Wn > χ2

k+2,1−α where χ2
k+2,1−α is the

quantile of order 1− α of the χ2
k+2 distribution.

4.2. Testing the symmetry of the nonparametric component. Testing the
symmetry of the nonparametric component is equivalent to test the hypoth-
esis

H0 : F (x) + F (−x) = 1, for all x ∈ R+,

versus

H1 : there exists x ∈ R+ such that F (x) + F (−x) 6= 1.

It is therefore necessary to compare on R+ the random maps x 7→ F̂n(x) +
F̂n(−x) to x 7→ F (x) + F (−x) which is constant equal to 1 under H0.
When p = 1 in model (1.1), there are several ways to test H0. Some test
statistics are based on ranks (see e.g. Shorack and Wellner, 1986) while oth-
ers are based on empirical cdf (see e.g. Schuster and Barker, 1987). Again,
for simplicity, we choose a chi-square measure to test H0. Note that com-
bination of maximum deviation measure with bootstrapped critical value
proposed Schuster and Barker (1987) and studied by Arcones and Giné
(1991) could certainly be used here. Let us consider k positive real numbers
0 < s1 < · · · < sk satisfying F (s1) < · · · < F (sk) under H0. We consider the
following discrepancy measure

Zn =
√
n


F̂n(−s1) + F̂n(s1)− 1

...
F̂n(−sk) + F̂n(sk)− 1

 .
Then, under H0 we have Zn = AYn where A is the k × 2k matrix defined
by A = (Ik, Ik) with Ik is the identity matrix of order k, and Yn is the
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Table 1
Mean (Stand. Dev.) of 200 estimates of p, µ and F (0.5).

Sample size p = 0.7 µ = 3 F (0.5) = 0.8413

100 0.7106 (0.0498) 2.9912 (0.0757) 0.8415 (0.0378)
400 0.7048 (0.0277) 2.9959 (0.0355) 0.8390 (0.0177)
1000 0.7018 (0.0167) 2.9977 (0.0225) 0.8409 (0.0107)

2k-dimensional random vector defined by

Yn =
√
n



F̂n(s1)− F (s1)
...

F̂n(sk)− F (sk)
F̂n(−s1)− F (−s1)

...
F̂n(−sk)− F (−sk)


.

According to Theorem 3.2 we have

Yn  N (0,Λ) ,

where Λ is the 2k × 2k correlation matrix with entries λij defined by

λij = Γ33(s∗i , s
∗
j ), for 1 ≤ i, j ≤ 2k,

where s∗i = si for 1 ≤ i ≤ k and s∗i = −si for k + 1 ≤ i ≤ 2k.
Defining Λ̂ as Λ but using Γ̂ instead of Γ, we obtain that

ZTn (AΛ̂AT )−1Zn  χ2
k.

We reject H0 at the level α ∈ (0, 1) if ZTn (AΛ̂AT )−1Zn > χ2
k,1−α.

4.3. Simulation study. Let Φ be the cdf of a N (0, 1) distribution. In
this section data are simulated from model (2.1) with p = 0.7, µ = 3,
F0 = Φ and F = Φ(·/0.5). We used the triangular kernel q defined by
q(x) = (1−|x|)1|x|<1 and the bandwidth is obtained by the function density
of R software. Table 1 shows the good behavior of our estimators even for
moderate sample size. The standard deviations, within parentheses, are com-
puted from the 200 estimates of each parameter and are quite small.

Another important question is the quality of the asymptotic variance es-
timators. Let us recall that these estimators involve both U -statistics and
estimation of the density f . It is therefore important to check that these es-
timators have sufficiently good properties to make our central limit theorem
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useful in practice. Figure 1 shows that these good properties are satisfied
even when the sample size is moderate. This is especially true for the func-
tional parameter F the estimator of which has very good behavior even if
its variance estimation requires to estimate the unknown density function f .
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Fig 1. Comparison of the empirical cdf of 200 estimates of p (first column), µ (second
column) and F (0.5) (third column) with the cdf of a N (0, 1) for sample sizes equal to
100 (first row), 400 (second row) and 1000 (third row). Each estimate is centered on the
parameter and reduced using the estimated standard deviation.

With the same data as those we used to obtain Figure 1 we calculated
the power of some basic tests based on direct application of the central limit
theorem (see Figure 2). Indeed, for various values of n (100, 400 and 1000)
we calculate the power as a function of:
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(first row) p? ∈ (0, 1), H0 : p = p? vs. H1 : p = 0.7.
(second row) µ? ∈ (2, 4), H0 : µ = µ? vs. H1 : µ = 3.
(third row) s? ∈ (0.1, 2), H0 : F (0.5) = Φ(0.5/s?) vs. H1 : F (0.5) =

Φ(0.5/σ) with σ = 0.5.

All the graphs show that the power of the various tests increases with the
sample size. Because these test are constructed at the 95% level we can see
that when H0 and H1 are identical the 5% rejection rate is well satisfied.
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Fig 2. Power calculations for n = 100 (first row), 400 (second row) and 1000 (third
row) for testing p = p? (first column), µ = µ? (second column) and F (0.5) = F ?(0.5) ≡
Φ(0.5/s?). Under H1 we have (p, µ, F (0.5) = (0.7, 3,Φ(1)). The horizontal lines correspond
to the 5% level.

To finish this section let us show that chi-square tests proposed in Sections
4.1 and 4.2 have the expected asymptotically free chi-square distributions.
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Figure 3 shows the level plot of the power as a function of p? and µ? in
testing H0 : (p, µ) = (p?, µ?) versus H1 : (p, µ) = (0.7, 3). The sample size is
quite large and as a consequence the power is quickly close to one whenever
(p, µ) moves away from (0.7, 3).

In Figure 4 we compare the asymptotic chi-square cdf of the symmetry
tests we proposed in Section 4.2 with the empirical cdf obtained from 200
tests produced under the null hypothesis. The test is based on the compar-
ison of F (−x) + F (x) and 1. For one value of x (first row) the asymptotic
distribution is a chi-square distribution with 1 degree of freedom, whereas
for two (resp. three) values of x (second row) (resp. third row) the asymp-
totic law is a chi-square distribution with 2 (resp. 3) degrees of freedom. The
asymptotic distribution is generally well reached even if from time to time
the test may appear a little bit conservative.
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Fig 3. Power estimation based on 200 estimates of (p, µ). The null hypothesis is that
(p, µ) ∈ [0.6, 0.8]× [2.8, 3.2] against (p, µ) = (0.7, 3). The sample size is n = 1000.
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Fig 4. Empirical cdf of 200 simulated values of the Chi-square symmetry test for n = 1000.
First row: testing at one point, second row: testing at two points, and third row: testing at
three points. The horizontal lines correspond to the 95% level.
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