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In this paper we consider a two-component mixture model one component of which has a known distribution while the other is only known to be symmetric. The mixture proportion is also an unknown parameter of the model. This mixture model class has proved to be useful to analyze gene expression data coming from microarray analysis. In this paper is proposed a general estimation method leading to a joint central limit result for all the estimators. Applications to basic testing problems related to this class of models are proposed, and the corresponding inference procedures are illustrated through some simulation studies.

1. Introduction. Let us consider n independent and identically distributed random variables X 1 , . . . , X n coming from the two-component mixture model with density function (df) g defined by (1.1) g(x) = (1 -p)f 0 (x) + pf (x -µ), ∀x ∈ R, where f 0 is a known df and where the unknown parameters are the mixture proportion p ∈ (0, 1), the non-null location parameter µ and the df f ∈ F (the set of even df). This class of models extends classical two-component mixture models in the sense that one component is supposed to be symmetric only, without assuming that it belongs to a known parametric family.

In the parametric setup this model is sometimes referred as contamination model (see [START_REF] Naylor | A contamination model in clinical chemistry: an illustration of a method for the efficient computation of posterior distributions[END_REF], for application to chemistry, see [START_REF] Pal | Optimal tests for no contamination in reliability models[END_REF], for application to reliability, see also [START_REF] Mclachlan | Finite Mixture Models[END_REF], for further applications). This class of model is especially suitable for gene expression data coming from microarray analysis. An application to two bovine gestation mode comparison is performed in [START_REF] Bordes | Semiparametric estimation of a two-component mixture model when a component is known[END_REF]. Connexions between model (1.1) and false discovery rate is also extensively discussed in [START_REF] Efron | Size, power and false discovery rate[END_REF]. In [START_REF] Robin | Semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF] a convergent algorithm is main goal of this paper. In addition we stress that these results are certainly the preamble to omnibus tests construction in order to check that one model component belongs to a parametric family. The paper is organized in the following way. Section 2 is devoted to the estimation method whereas in Section 3 are gathered the large sample results and the estimators of various asymptotic expressions. In Section 4 we apply our large sample results to simple hypothesis testing which is illustrated by a Monte Carlo study.

2. Estimation method. Suppose that we observe n independent and identically distributed random variables X 1 , . . . , X n with cumulative distribution function (cdf) G defined by model (1.1), that is

(2.1) G(x) = (1 -p)F 0 (x) + pF (x -µ), ∀x ∈ R,
where G, F 0 and F are cumulative distribution functions (cdf) corresponding to df g, f 0 and f respectively. Let us denote by ϑ the Euclidean part (p, µ) of the model parameters taking values in Θ. We say that the parameters of model (1.1) are semiparametrically identifiable on Θ×F if for ϑ = (p, µ) ∈ Θ, ϑ = (p , µ ) ∈ Θ and (f,

f ) ∈ F 2 (1 -p)f 0 (•) + pf (• -µ) = (1 -p )f 0 (•) + p f (• -µ ) λ -a.e.,
we have ϑ = ϑ and f = f λ-a.e. on R where λ is the Lebesgue measure on R.

Assume that model (1.1) is identifiable, then we have (2.2)

F (x) = 1 p (G(x + µ) -(1 -p)F 0 (x + µ)) , ∀x ∈ R.
Because F is the cdf of a symmetric distribution with respect to 0, we have F (x) = 1 -F (-x), for all x ∈ R. We denote by ϑ 0 = (p 0 , µ 0 ) the true value of the unknown parameter ϑ. Let us introduce, for all x ∈ R, the functions

H 1 (x; ϑ, G) = 1 p G(x + µ) - 1 -p p F 0 (x + µ), and 
H 2 (x; ϑ, G) = 1 - 1 p G(-x + µ) + 1 -p p F 0 (-x + µ).
We have, using (2.2) and the symmetry of F , H(x; ϑ 0 , G) ≡ H 1 (x; ϑ 0 , G) -H 2 (x; ϑ 0 , G) = 0 ∀x ∈ R, (2.3) whereas we can expect that for all ϑ = ϑ 0 an ad hoc norm of the function H will be strictly positive. In Bordes et al. (2006a) the authors considered the L 2 G (R)-norm that proved to be interesting from both theoretical and numerical point of view. Considering such a norm leads to consider the following function d on Θ:

d(ϑ) = R H 2 (x; ϑ, G)dG(x),
where obviously d(ϑ) ≥ 0 for all ϑ ∈ Θ and d(ϑ 0 ) = 0. Because G is unknown it is natural to replace it by its empirical version Ĝn obtained from the nsample. However, because we aim to estimate ϑ by the minimum argument of the empirical version of d using a differentiable optimization routine, we need to replace G in H by a regular version Gn of Ĝn . Therefore we obtain an emprical version d n of d defined by

(2.4) d n (ϑ) = R H 2 (x; ϑ, Gn )d Ĝn (x) = 1 n n i=1 H 2 (X i ; ϑ, Gn ) where Ĝn (x) = 1 n n i=1 1 X i ≤x , ∀x ∈ R,
and Gn (x) =

x -∞

ĝn (t)dt denotes the smoothed version of the empirical cdf

Ĝn since ĝn is a kernel density estimator of g defined by

ĝn (x) = 1 nh n n i=1 q x -X i h n , ∀x ∈ R,
with h n → 0, nh n → +∞ and q is a symmetric kernel density function. For example we can choose q(x) = (1 -|x|)1 -1≤x≤1 . Note that additional conditions on the bandwidth h n and the kernel function q will be specified afterward. Finally we propose to estimate ϑ 0 by θn = (p n , μn ) = arg min

ϑ∈Θ d n (ϑ).
Using the relation (2.2) we can estimate F by:

Fn (x) = 1 pn Ĝn (x + μn ) -(1 -pn )F 0 (x + μn ) , ∀x ∈ R.
Note that generally Fn is not a legitimate cdf since it is generally not nondecreasing on the whole real line. However, the Glivenko-Cantelli strong consistency result obtained in Section 3 shows that it is not a serious drawback whenever the sample size is large enough.

Again by formula (2.2) a natural estimator of the df f is defined by

fn (x) = 1 pn (ĝ n (x + μn ) -(1 -pn )f 0 (x + μn )) , ∀x ∈ R.
Because generally fn will not be a density, it can be modified into a legitimate df estimator fn defined by

fn = 1 s n fn 1 fn≥0 ,
where

s n = R fn (x)1 fn(x)≥0 dx.
The advantage of choosing the above L 2 G (R)-norm is that it leads to an explicit empirical function d n since replacing G by Ĝn transforms the integral sign into a simple sum. However other choices are possible. In [START_REF] Bordes | Semiparametric estimation of a two-component mixture model when a component is known[END_REF], L q (R) (1 ≤ q < +∞) distances between H 1 and H 2 are discussed. These authors show also that it is possible to reduce the Euclidean parameter to one of the two parameters p and µ using the first order moment of G that can be estimated directly from the n-sample. However such a reduction of parameters can lead to serious numerical instability when the product pµ is small, which is frequent, e.g., for applications to microarray experiments.

Identifiability, consistency and asymptotic normality.

3.1. General conditions and identifiability. In this section we give a set of conditions for which we obtain identifiability of the model parameters, consistency and asymptotic normality of our estimators. We denote by ϑ 0 = (p 0 , µ 0 ) the true value the unknown Euclidean parameter ϑ = (p, µ) of model (1.1). Let us denote by m 0 and m the two-order moments of f 0 and f respectively. We introduce the set

Φ = R * ×]0, +∞[\ ∪ k∈N * Φ k where Φ k = (µ, m) ∈ R * ×]0, +∞[; m = m 0 + µ 2 k ± 2 3k .
Let us define Identifiability condition (I). (f 0 , f ) ∈ F 2 3 , f0 > 0 and (µ 0 , m) ∈ Φ c where Φ c a compact subset of Φ. We have ϑ 0 = (p 0 , µ 0 ) ∈ Θ where Θ is a compact subset of (0, 1) × Ξ where Ξ = {µ; (µ, m) ∈ Φ c }.

F q = {f ∈ F; R |x| q f (x)dx < +∞} ⊂ F for q ≥ 1.
Comments and remarks. Note that there exists various non-identifiability cases for model (1.1), let us focus our attention on the following one:

(1 -p)ϕ(x) + pf (x -µ) = (1 - p 2 )ϕ(x) + p 2 ϕ(x -2µ), ∀x ∈ R, (3.1)
where a is a real number, ϕ is an even df, p ∈ (0, 1) and f (x) = (ϕ(x -a) + ϕ(x + a))/2. This example is particularly interesting since it clearly shows the danger of estimating model (1.1) when the df of the unknown component has exactly the same shape as the known df.

An other very important point which needs to be explained is the fact that the value µ = 0 must be rejected from the parametric space. In fact it is easy to check that for all p ∈ (0, 1), ϑ = (p, 0) is always a solution of d(ϑ) = 0. Indeed for all p ∈ (0, 1) and all cdf G satisfying (2.1), we have

∀x ∈ R, H 1 (x; (p, 0), G) = F 0 (x), H 2 (x; (p, 0), G) = 1 -F 0 (-x) = F 0 (x).
It follows that µ = 0 does not match the contrast property of d. Even if µ = 0 is a forbidden value by Condition (I), when the true value of µ is close to zero the empirical contrast may fail in finding a good estimate of the location parameter. Note however that in microarray experiments a value of µ that is close to 0 may be balanced by a large sample size. The same remark holds for p = 0.

Kernel conditions (K).

(i) The even kernel density function q is bounded, uniformly continuous, square integrable, of bounded variations and has second order moment. (ii) The function q has first order derivative q ∈ L 1 (R) and q (x) → 0 as |x| → +∞. In addition if γ is the square root of the continuity modulus of q, we have

1 0 (log(1/u)) 1/2 dγ(u) < ∞.
Comments. More general conditions on the kernel function q may be founded, e.g., in [START_REF] Silverman | Weak and strong consistency of the kernel estimate of a density and its derivatives[END_REF] and in [START_REF] Giné | Rates of Strong Uniform Consistency for Multivariate Kernel density estimators[END_REF]. From a practical point of view triangular, gaussian, cauchy or many other standard kernels satisfy these conditions.

Bandwidth conditions (B). 

(i) h n 0, nh n → +∞ and √ nh 2 n = o(1), (ii) nh n /| log h n | → +∞, | log h n |/
(3.2) Gn -Ĝn ∞ = O a.s. (h 2 n )
which by (i) and the law of iterated logarithm, leads to

(3.3) Gn -G ∞ = O a.s. log log n n -1/2
.

Conditions (ii) and (iii) allows to obtain the following result.

Lemma 3.1. Suppose that the kernel function q satisfies Conditions (K) and that the bandwidth (h n ) satisfies Conditions (B). (ii

) If g is Lipschitz on R, then ĝn -g ∞ = O a.s. | log h n | nh n 1/2 + O(h n ). Proof. Result (i) is given in Silverman (1978, Theorems A and C). For (ii) we have ĝn -g ∞ ≤ ĝn -Eĝ n ∞ + Eĝ n -g ∞ .
From Giné and Guillou (2002

) we have ĝn -Eĝ n ∞ = O a.s. | log h n | nh n 1/2
, whereas the O(h n ) term holds because g is Lipschitz on R.

Remark 3.1. The convergence rate given by Giné and Guillou (2002) for the multivariate case was given in [START_REF] Silverman | Weak and strong consistency of the kernel estimate of a density and its derivatives[END_REF] under stronger conditions on the bandwidth. Note that we put conditions in order to obtain simultaneously (i) and (ii) of Lemma 3.1. However each of the two results do not require all the assumptions made in (K) and (B) to hold. Finally it is worth to note that for example the bandwidth rate n -1/4-δ , with δ ∈ (0, 1/8), is convenient since it meets all the conditions that are given in (B).

3.2.

Consistency and preliminary convergence rate. We denote for simplicity by ḣ(ϑ) and ḧ(ϑ) the gradient vector and hessian matrix of any real function h (when it makes sense) with respect to argument ϑ ∈ R 2 .

Lemma 3.2. Assume that Condition (I) is satisfied and that Θ is a compact subset of (0, 1)

× Φ c . (i) The function d is continuous on Θ. (ii) If G is strictly increasing then d is a contrast function, i.e. for all ϑ ∈ Φ c , d(ϑ) ≥ 0 and d(ϑ) = 0 if and only if ϑ = ϑ 0 . (iii) If F 0 and F are Lipschitz on R, then d is Lipschitz on any compact subset of R 2 and sup ϑ∈Φc |d n (ϑ)-d(ϑ)| = o a.s. (n -1/2+α ), for all α > 0. (iv) If supp(g) = R then d(ϑ 0 ) = 2 R Ḣ(x; ϑ 0 , G) ḢT (x; ϑ 0 , G)dG(x) > 0.
Proof. Let us show (i). The function ϑ → H(x; ϑ, G) being bounded and continuous at any point µ ∈ R for all fixed x ∈ R, the wanted result is a direct consequence of the Lebesgue dominated convergence Theorem.

Let us show (ii). If

ϑ = ϑ 0 then d(ϑ) = 0. To prove the reciprocal let us remark that d(ϑ) = 0 implies H 1 (•; ϑ, G) = H 2 (•; ϑ, G) which leads, because G is strictly increasing on R, to g(x + µ) -(1 -p)f 0 (x + µ) = g(-x + µ) -(1 -p)f 0 (-x + µ), ∀ x ∈ R. Using (1.1) with ϑ = ϑ 0 we obtain for all x ∈ R (1 -p 0 )f 0 (x + µ) + p 0 (x + µ -µ 0 ) -(1 -p)f 0 (x + µ) = (1 -p 0 )f 0 (-x + µ) + p 0 (-x + µ -µ 0 ) -(1 -p)f 0 (-x + µ).
Assume now that ϑ = ϑ 0 . Considering the Fourier transform of the above equality we obtain

(p -p 0 ) sin(tµ) f0 (t) = p 0 sin(t(µ -µ 0 )) f (t), ∀ t ∈ R. (3.4) Since f0 (t) > 0, it comes that t(µ -µ 0 ) ∈ πZ ⇒ tµ ∈ πZ, which proves that it exists k 0 ∈ Z such that |µ| / |µ -µ 0 | = k 0 .
Taking in addition the first and third order derivatives of (3.4) at t = 0 we obtain (3.5) p 0 µ 0 = pµ and (p-p 0 )µ(3m 0 +µ 2 )+p 0 (µ-µ 0 )(3m+(µ-µ 0 ) 2 ) = 0.

The above results imply that

m = m 0 + µ 2 0 k 0 ± 2 3k 0 , (3.6) and then (µ, m) ∈ ∪ k∈N * Φ k , which in turn implies that (µ, m) / ∈ Φ c . It follows that ϑ = ϑ 0 .
Let us show (iii). Let ϑ and ϑ be two points in Θ. We have

|d(ϑ) -d(ϑ )| ≤ R H(x; ϑ, G) + H(x; ϑ , G) × H(x; ϑ, G) -H(x; ϑ , G) dG(x) ≤ c R H(x; ϑ, G) -H(x; ϑ , G) dG(x), (3.7)
where c is a constant coming from the boundedness of (x, ϑ) → H(x; ϑ, G) on R × Θ. Moreover, using the compacity of Θ and properties of cdf it is easy to show that there exist constants α, β and γ such that

H(x; ϑ, G) -H(x; ϑ , G) ≤ α |F (x -µ) -F (x -µ )| + |F (x + µ) -F (x + µ )| +β |F 0 (x -µ) -F 0 (x -µ )| + |F 0 (x + µ) -F 0 (x + µ )| + γ|p -p |.
Using (3.7) and the above inequality we obtain that there exists a constant [START_REF] Shorack | Empirical Processes with Applications to Statistics[END_REF], p. 766) and that the last term of the right hand side is the supremum of an empirical process indexed by a class of Lipschitz bounded function, which is known to be a o a.s. (n -1/2+α ) for α > 0 (see Bordes et al. 2006a, for the details), we get the wanted result.

c such that |d(ϑ) -d(ϑ )| ≤ c ϑ -ϑ 2 , where • 2 denote the Euclidean norm on R 2 . Considering for all k ≥ 0 the random variable Z k (ϑ) = H 2 (X k ; ϑ, G), we have for all ϑ ∈ Θ |d n (ϑ) -d(ϑ)| ≤ 1 n n k=1 H 2 (X k ; ϑ, Gn ) -H 2 (X k ; ϑ, G) + 1 n n k=1 (Z k (ϑ) -E(Z k (ϑ))) ≤ O a.s. (|| Gn -G|| ∞ ) + sup ϑ∈Θ 1 n n k=1 (Z k (ϑ) -E(Z k (ϑ))) . Noticing that || Gn -G|| ∞ is O a.s. ( n -1 log log n) (see
Let us show (iv). First we have

d(ϑ 0 ) = 2 R Ḧ(x; ϑ 0 , G)H(x; ϑ 0 , G) + Ḣ(x; ϑ 0 , G) ḢT (x; ϑ 0 , G) dG(x) = 2 R Ḣ(x; ϑ 0 , G) ḢT (x; ϑ 0 , G)dG(x) because H(•; ϑ 0 , G) ≡ 0 on R. Let v be a vector in R 2 , we have v T d(ϑ 0 )v = 2 R v T Ḣ(x; ϑ 0 , G) 2 dG(x) ≥ 0. It follows that d(ϑ 0 ) is a positive 2×2 real valued matrix. Let us show that it is also definite. Let v ∈ R 2 be a non nul column vector such that v T d(ϑ 0 )v = 0, then v T Ḣ(•; ϑ 0 , G) = 0 λ-everywhere on R. It is straightforward to show that (3.8) ∂H ∂µ (x; ϑ 0 , G) = 2f (x), and 
(3.9) ∂H ∂p (x; ϑ 0 , G) = 1 p 0 [F 0 (x + µ 0 ) + F 0 (µ 0 -x) -1] .
Therefore, using the above derivatives with the condition v T Ḣ(•; ϑ 0 , G) = 0 we obtain the proportionality of the functions f and

F 0 (•+µ 0 )+F 0 (µ 0 -•)-1.
Because f 0 is an even function we obtain

f (x) = F 0 (x + µ 0 ) -F 0 (x -µ 0 ) R (F 0 (x + µ 0 ) -F 0 (x -µ 0 )) dx = 1 2µ 0 (F 0 (x + µ 0 ) -F 0 (x -µ 0 )) .
Finally, computing the second order moment of f , we obtain by the integration by part formula

m = R x 2 f (x)ds = 1 2µ 0 R x 2 (F 0 (x + µ 0 ) -F 0 (x -µ 0 )) dx = 2µ 0 m 0 2µ 0 = m 0 ,
which is not possible, by Condition (I), since m is different from m 0 +µ 2 0 (k ± 2)/3k for all k ∈ N * . Theorem 3.1.

(i) Suppose that Condition (I) is satisfied, Θ is a compact subset of (0, 1)× Φ c , G is strictly increasing on R, and that F 0 and F are Lipschitz on R. Then the estimator θn converges almost surely to ϑ 0 . (ii) If in addition F 0 and F are twice continuously differentiable with second derivatives in L 1 (R), then we have | θn -ϑ 0 | = o a.s. (n -1/4+α ) for all α > 0.

Proof. Let us show (i). This proof follows entirely the proof given in Bordes et al. (2006a) by using (i)-(iii) of Lemma 3.2.

Let us show (ii). By Lemma 3.2 (iv) there exists α > 0 such that for all

v ∈ R 2 , v T d(µ 0 )v > α v 2 2
. By a two order Taylor expansion of d at ϑ 0 , we can find η > 0 such that for all v satisfying v 2 < η and In conclusion θn converges almost surely towards ϑ 0 at rate n -1/4+δ , with δ > 0 chosen arbitrarily small.

ϑ 0 + v ∈ • Θ, we have d(ϑ 0 + v) ≥ α 4 v 2 

Asymptotic normality.

Let us introduce some notations. We define the 3×3 real valued matrix Σ(x, y) by its components σ ij (x, y) (1 ≤ i, j ≤ 3) where for (x, y) ∈ R 2

σ 11 (x, y) ≡ σ 11 = 4 p 2 0 R 2 h 1 (u)h 1 (v)k(u, v)dG(u)dG(v), σ 22 (x, y) ≡ σ 22 = 4 p 2 0 R 2 h 2 (u)h 2 (v)k(u, v)dG(u)dG(v), σ 12 (x, y) ≡ σ 21 = 4 p 2 0 R 2 h 1 (u)h 2 (v)k(u, v)dG(u)dG(v), σ 13 (x, y) ≡ σ 13 (y) = 2 p 0 R h 1 (u) (y, u)dG(u), σ 23 (x, y) ≡ σ 23 (y) = 2 p 0 R h 2 (u) (y, u)dG(u), σ 31 (x, y) = σ 13 (x), σ 32 (x, y) = σ 23 (x), σ 33 (x, y) = ρ(x + µ 0 , y + µ 0 ), with h 1 (x) = 1 p 0 (F 0 (µ 0 + x) + F 0 (µ 0 -x) -1) , h 2 (x) = 2f (x), ρ(x, y) = G(x ∧ y)(1 -G(x ∨ y)),
(x, y) = ρ(µ 0 + x, µ 0 + y) + ρ(µ 0 + x, µ 0 -y), k(x, y) = (x, y) + (-x, y).

Note that (h 1 , h 2 ) T is equal to Ḣ(•; ϑ 0 , G) by (3.8) and (3.9). Let J(ϑ 0 ) = (J ij (ϑ 0 )) 1≤i,j≤3 be the 3 × 3 real valued matrix with entries

J 11 (ϑ 0 ) = -2 R h 2 1 (u)dG(u), J 12 (ϑ 0 ) = J 21 (ϑ 0 ) = -2 R h 1 (u)h 2 (u)dG(u), J 22 (ϑ 0 ) = -2 R h 2 2 (u)dG(u), J 13 (ϑ 0 ) = J 23 (ϑ 0 ) = J 31 (ϑ 0 ) = J 32 (ϑ 0 ) = 0, J 33 (ϑ 0 ) = 1.
We also define the 3 × 3 real valued matrix L(x; ϑ 0 ) by

L(x; ϑ 0 ) =    1 0 0 0 1 0 h 3 (x) f (x) 1/p 0    ,
where

h 3 (x) = F 0 (x + µ 0 ) -G(x + µ 0 ) p 2 0 .
For each of the above quantities we can define natural estimators. Let us define

ĥ1 (x) = 1 pn (F 0 (μ n + x) + F 0 (μ n -x) -1) , ĥ2 (x) = 2 fn (x), ĥ3 (x) = F 0 (x + μn ) -Ĝn (x + μn ) p2 n , ρ(x, y) = Ĝn (x ∧ y)(1 -Ĝn (x ∨ y)), ˆ (x, y) = ρ(μ n + x, μn + y) + ρ(µ n + x, μn -y), k(x, y) = ˆ (x, y) + ˆ (-x, y).
Then we can estimate Σ(x, y) by Σ(x, y) where σ11 (x, y)

≡ σ11 = 8 n(n -1)p 2 n 1≤i<j≤n ĥ1 (X i ) ĥ1 (X j ) k(X i , X j ), σ22 (x, y) ≡ σ22 = 8 n(n -1)p 2 n 1≤i<j≤n ĥ2 (X i ) ĥ2 (X j ) k(X i , X j ), σ12 (x, y) ≡ σ21 = 4 n(n -1)p 2 n 1≤i =j≤n ĥ1 (X i ) ĥ2 (X j ) k(X i , X j ), σ13 (x, y) ≡ σ13 (y) = 2 np n n i=1 ĥ1 (X i ) ˆ (y, X i ), σ23 (x, y) ≡ σ23 (y) = 2 np n n i=1 ĥ2 (X i ) ˆ (y, X i ), σ31 (x, y) = σ13 (x), σ32 (x, y) = σ23 (x), σ33 (x, y) = ρ(x + μn , y + μn ), and Ĵ = ( Ĵij ) 1≤i,j≤3 with Ĵ11 = - 2 n n i=1 ĥ2 1 (X i ), Ĵ12 = Ĵ21 = - 2 n n i=1 ĥ1 (X i ) ĥ2 (X i ), Ĵ22 = - 2 n n i=1 ĥ2 2 (X i ), Ĵ13 = Ĵ23 = Ĵ31 = Ĵ32 = 0 and Ĵ33 = 1.
The L(x; ϑ 0 ) matrix is estimated by L(x) the third line of which being therefore ( ĥ3 (x), ĥ2 (x)/2, 1/p n ).

Theorem 3.2. Suppose that Conditions (I), (K) and (B) are satisfied, and that Θ is a compact subset of (0, 1) × Φ c , G is strictly increasing on R, and that F 0 and F are twice continuously differentiable with second derivatives in -→ 0.

L 1 (R). Then √ n μn -µ 0 , pn -p 0 , Fn (•) -F (•) T G in R 2 × D(R), (3.11) where G = (G 1 , G 2 , G 3 ) T is a Gaussian process with correlation function Γ(x, y; ϑ 0 ) = L(x; ϑ 0 ))J -1 (ϑ 0 )Σ(x, y)J -1 (ϑ 0 )(L(x; ϑ 0 )) T
Proof. By a Taylor expansion of ḋn around ϑ 0 , we have

(3.13) dn (ϑ * n ) √ n( θn -ϑ 0 ) = - √ n ḋn (ϑ 0 ),
where ϑ * n lies in the line segment with extremities θn and ϑ 0 .

Step 1. Let us prove that

(3.14) ḋn (ϑ 0 ) = 2 n n i=1 H(X i ; ϑ 0 , Ĝn ) Ḣ(X i ; ϑ 0 , G) + o a.s. (n -1/2 ).
We only investigate the partial derivative of d n (θ 0 ) with respect to µ, the partial derivative with respect to p being easier to study. According to expression (2.4) we have

∂d n ∂µ (ϑ 0 ) = 2 n n i=1 H(X i ; ϑ 0 , Gn ) ∂H ∂µ (X i ; ϑ 0 , Gn ). (3.15)
Let us consider now the following decomposition

∂d n ∂µ (ϑ 0 ) - 2 n n i=1 H(X i ; ϑ 0 , Ĝn ) ∂H ∂µ (X i ; ϑ 0 , G) = L (1) n + L (2)
n where

L (1) n = 2 n n i=1 H(X i ; ϑ 0 , Gn ) ∂H ∂µ (X i ; ϑ 0 , Gn ) - ∂H ∂µ (X i ; ϑ 0 , G)
and

L (2) n = 2 n n i=1 ∂H ∂µ (X i ; ϑ 0 , G) H(X i ; ϑ 0 , Gn ) -H(X i ; ϑ 0 , Ĝn ) ,
with ∂H ∂µ (x; ϑ 0 , G) = 2f (x) by (3.8). Notice first that if f and f 0 are bounded on R, then x → ∂H ∂µ (x; ϑ 0 , G) is bounded on R. Because H(•; ϑ 0 , G) = 0 we have 

|L (1) n | ≤ 2 n n i=1 H(X i ; ϑ 0 , Gn ) -H(X i ; ϑ 0 , G) ∂H ∂µ (X i ; ϑ 0 , Gn ) - ∂H ∂µ (X i ; ϑ 0 , G) ≤ 2 H(•; ϑ 0 , Gn ) -H(•; ϑ 0 , G) ∞ × ∂H ∂µ (•; ϑ 0 , Gn ) - ∂H ∂µ (•; ϑ 0 , G) ∞ ≤ c Gn -G ∞ × gn -g ∞ = o a.s. (n -1/2 ) since c is a constant, Gn -G ∞ = O a.s. ( n -
n term. We have

|L (2) n | ≤ 2 n n i=1 ∂H ∂µ (X i ; ϑ 0 , G) H(X i ; ϑ 0 , Gn ) -H(X i ; ϑ 0 , Ĝn ) ≤ 2 ∂H ∂µ (•; ϑ 0 , G) ∞ × H(•; ϑ 0 , Gn ) -H(•; ϑ 0 , Ĝn ) ∞ ≤ c Gn -Ĝn ) ∞ = O a.s. (h 2 n ),
which in turn gives the wanted result because by Condition (B) we have √ nh 2 n = o(1). This finishes the proof of the first step.

Step 2. We need to prove that dn (ϑ * n )

a.s.

-→ I(ϑ 0 ), (3. [START_REF] Pal | Optimal tests for no contamination in reliability models[END_REF] According to [START_REF] Silverman | Weak and strong consistency of the kernel estimate of a density and its derivatives[END_REF], dealing with the uniform consistency of kernel estimators of a density and its derivatives, we have gn -g ∞ = o a.s. [START_REF] Arcones | Some bootstrap tests of symmetry for univariate continuous distributions[END_REF] and g n -g ∞ = o a.s. [START_REF] Arcones | Some bootstrap tests of symmetry for univariate continuous distributions[END_REF] . Painfull but straitghforward calculations lead to

H(•; ϑ * n , Gn ) -H(•; ϑ 0 , G) ∞ ≤ O a.s. θn -ϑ 0 2 + O a.s. Gn -G ∞ .
According to Corollary 1 in Shorack and Wellner (1986, p. 766) and the Law of the Iterated Logarithm for the empirical cdf, we have

Gn -G ∞ = O a.s ( n -1 log log(n)),
hence by (3.17) and the above results we have

T (1) n = O a.s. ϑ * n -ϑ 0 2 + n -1 log log(n) . (3.18)
Finally by Theorem 3.1 we have that ϑ * n -ϑ 0 2 = o a.s. (n -1/4+α ) for any α > 0, then T Step 3. Using the fact that at the √ n-rate Ĝn and Gn are interchangeable, and using the properties of F and F 0 we obtain the following uniform (with respect to x ∈ R) approximation 

√ n Fn (x) -F (x) (3.19) = √ n(p n -p 0 ) F 0 (x + µ 0 ) -G(x + µ 0 ) p 2 0 + √ n 1 p 0 Ĝn (x + µ 0 ) -G(x + µ 0 ) + √ n(μ n -µ 0 )f (x) + o a.s. ( 1 
(3.20) √ n    pn -p 0 μn -µ 0 Fn -F    = L(•; ϑ 0 )J -1 (ϑ 0 ) √ n    U 1 ( Ĝn ) U 2 ( Ĝn ) U 3 ( Ĝn )    + o a.s. (1),
where for a cdf V

U 1 (V ) = 2 R H(x; ϑ 0 , V )h 1 (x)dV (x) U 2 (V ) = 2 R H(x; ϑ 0 , V )h 2 (x)dV (x) U 3 (V ) = V (• + µ 0 ) -G(• + µ 0 ). Considering U = (U 1 , U 2 , U 3 ) T as a function from BV 1 (R) to R 2 × D(R)
where BV 1 (R) is the space of functions with variations bounded by 1 on R and D(R) the space of cadlag functions on R, it is easy to see that U is Hadamard differentiable (see e.g. van der Vaart, 1998) on BV 1 (R) with derivative

K →    2 p 0 R h 1 (y) (K(µ 0 + y) + K(µ 0 -y)) dG(y) 2 p 0 R h 2 (y) (K(µ 0 + y) + K(µ 0 -y)) dG(y) K(• + µ 0 )    .
It follows by the δ-method theorem (see e.g. van der Vaart, 1998) that

√ n    U 1 ( Ĝn ) U 2 ( Ĝn ) U 3 ( Ĝn )    =    2 p 0 R h 1 (y) (G n (µ 0 + y) + G n (µ 0 -y)) dG(y) 2 p 0 R h 2 (y) (G n (µ 0 + y) + G n (µ 0 -y)) dG(y) G n (• + µ 0 )   +o P (1),
where

G n = √ n( Ĝn -G).
By the Donsker theorem G n B where B is a gaussian process with correlation function ρ. Then the following weak convergence holds in R 2 × D(R)

√ n    U 1 ( Ĝn ) U 2 ( Ĝn ) U 3 ( Ĝn )    H =    2 p 0 R h 1 (y) (B(µ 0 + y) + B(µ 0 -y)) dG(y) 2 p 0 R h 2 (y) (B(µ 0 + y) + B(µ 0 -y)) dG(y) B(• + µ 0 )    ,
where H is a gaussian process as a linear form on B the correlation function of which is defined by Σ(x, y) = E H(x)H T (y) . This with (3.20) lead to (3.11).

Step 5. It remains to prove (3.12). For this purpose it is sufficient to prove the convergence in probability of Ĵij to J(ϑ 0 ), that

max i=3,4 ĥi -h i (•; ϑ 0 ) ∞ a.s.
-→ 0, (which gives the strong uniform convergence of L to L(•; ϑ 0 )) and that sup

(x,y)∈R 2 |σ ij (x, y) -σ ij (x, y)| a.s.
-→ 0, for all 1 ≤ i, j ≤ 3. Because the proof is quite repetitive, we only consider one of the more difficult terms, other terms can be handled in the same way. First sup

x∈R | ĥ1 (x) -h 1 (x)| a.s.
-→ 0, by the strong consistency result of Theorem 3.1 and the Lipschitz property of F 0 . Using repetively the telescoping rule we show that

sup x∈R | fn (x) -f (x)| ≤ 1 pn ( ĝ -g ∞ + g(• + μn ) -g(• + µ 0 ) ∞ + f 0 (• + μn ) -f 0 (• + µ 0 ) ∞ ) + g ∞ + f 0 ∞ p 0 pn |p n -p 0 |.
The above inequality with the strong consistency result of Theorem 3.1 and the Lipschitz properties of f 0 and g lead to

sup x∈R | fn (x) -f (x)| a.s. -→ 0. Now recall that s n = R fn (x)1 fn(x) dx a.s.
-→ 1 (see Bordes et al., 2006a), then we can write

| fn (x) -fn (x)| ≤ fn ∞ |1 -s n | s n + | fn (x)|1 fn(x)<0 ,
where because f is bounded and fn -f ∞ a.s.

-→ 0, the right hand side of the above inequality converges strongly to 0. It follows that

sup x∈R | ĥ2 (x) -h 2 (x)| a.s. -→ 0.
By similar arguments we prove the uniform strong convergence of ρ, ˆ and k to ρ, and k respectively. Now let us show that σ12 converges strongly to σ 12 . Let us consider, for example, the convergence of σ12 . From previous results it is straightforward to obtain

σ12 = 8 n(n -1)p 2 0 n i=2 i-1 j=1 h 1 (X i )h 2 (X j )k(X i , X j ) + o a.s. (1),
where by the strong law of large numbers the right hand side term is a 2order U -statistic, with kernel function

(u, v) → h(u, v) = h 1 (u)h 2 (v)k(u, v), converging strongly to σ 12 = 4E(h(X 1 , X 2 ))/p 2 0 .
4. Applications to testing and simulations. In this section we address the problem of testing a few hypotheses relative to the semiparametric mixture model (1.1). However, more general testing procedures could be developed. For example it should be possible to test the hypothesis that the nonparametric component belongs to a parametric family, but such a test is beyond the scope of the paper and will be developed elsewhere for a larger class of semiparametric mixture models. First we propose a chi-square test for a simple hypothesis for the three parameters of model (1.1) next the same type of test is proposed to check the hypothesis that the nonparametric component of the mixture model has a symmetric distribution.

4.1. Testing some simple hypothesis. We propose in this section to consider the following simple hypothesis testing problem:

H 0 : (p, µ, F ) = (p , µ , F ) versus H 1 : (p, µ, F ) = (p , µ , F ),
where (p , µ ) ∈ Θ and F is a known cdf function. Because under H 0 the joint asymptotic behavior of √ n(p n -p , μn -p , Fn -F ) is known, it is possible to base a testing procedure on the asymptotic distribution. Such a procedure requires to choose a discrepancy measure between the estimates and the estimators, and of course, several choices are possible. The test we propose is based on the frequently used chi-square measure, leading to chi-square type tests. Let us fix k real numbers [START_REF] Moore | A chi-square statistic with random cell boundaries[END_REF] and [START_REF] Ruymgaart | A note on chi-square statistics with random cell boundaries[END_REF] proved that under smooth conditions chi-square statistics can also be constructed using random cells boundaries it is generally possible to choose equidistributed cells to increase the probability that there are enough data in each interval ]s -1 , s ] for = 1, . . . , k with s 0 = -∞.

s 1 < • • • < s k such that 0 < F (s 1 ) < • • • < F (s k ) < 1. Because
We consider now the random vector W n defined by

W n = √ n         pn -p μn -µ Fn (s 1 ) -F (s 1 ) . . . Fn (s k ) -F (s k )        
.

According to Theorem 3.2 we have

W n N (0, V ) ,
where V is the (k + 2) × (k + 2) correlation matrix with entries defined by

v ij = Γ ij , for 1 ≤ i ≤ j ≤ 2,
v 1j = Γ 13 (s j-2 ) and v 2j = Γ 23 (s j-2 ), for 3 ≤ j ≤ k + 2, and

v ij = Γ 33 (s i-2 , s j-2 ), for 3 ≤ i ≤ j ≤ k + 2.
Defining V as V but using Γ instead of Γ (see the beginning of section 3), we obtain that

W T n V -1 W n χ 2 k+2
, where χ 2 m is the chi-square distribution with m degrees of freedom. We reject

H 0 at the level α ∈ (0, 1) if W T n V -1 W n > χ 2
k+2,1-α where χ 2 k+2,1-α is the quantile of order 1 -α of the χ 2 k+2 distribution.

4.2.

Testing the symmetry of the nonparametric component. Testing the symmetry of the nonparametric component is equivalent to test the hypothesis

H 0 : F (x) + F (-x) = 1, for all x ∈ R + , versus H 1 : there exists x ∈ R + such that F (x) + F (-x) = 1.
It is therefore necessary to compare on R + the random maps x → Fn (x) + Fn (-x) to x → F (x) + F (-x) which is constant equal to 1 under H 0 . When p = 1 in model (1.1), there are several ways to test H 0 . Some test statistics are based on ranks (see e.g. [START_REF] Shorack | Empirical Processes with Applications to Statistics[END_REF]) while others are based on empirical cdf (see e.g. [START_REF] Schuster | Using the bootstrap in testing symmetry versus asymmetry[END_REF]. Again, for simplicity, we choose a chi-square measure to test H 0 . Note that combination of maximum deviation measure with bootstrapped critical value proposed [START_REF] Schuster | Using the bootstrap in testing symmetry versus asymmetry[END_REF] and studied by [START_REF] Arcones | Some bootstrap tests of symmetry for univariate continuous distributions[END_REF] could certainly be used here. Let us consider k positive real numbers 0

< s 1 < • • • < s k satisfying F (s 1 ) < • • • < F (s k ) under H 0 .
We consider the following discrepancy measure

Z n = √ n     Fn (-s 1 ) + Fn (s 1 ) -1 . . . Fn (-s k ) + Fn (s k ) -1     .
Then, under H 0 we have Z n = AY n where A is the k × 2k matrix defined by A = (I k , I k ) with I k is the identity matrix of order k, and Y n is the 

Y n = √ n             Fn (s 1 ) -F (s 1 ) . . . Fn (s k ) -F (s k ) Fn (-s 1 ) -F (-s 1 ) . . . Fn (-s k ) -F (-s k )            
.

According to Theorem 3.2 we have

Y n N (0, Λ) ,
where Λ is the 2k × 2k correlation matrix with entries λ ij defined by

λ ij = Γ 33 (s * i , s * j ), for 1 ≤ i, j ≤ 2k,
where s * i = s i for 1 ≤ i ≤ k and s * i = -s i for k + 1 ≤ i ≤ 2k. Defining Λ as Λ but using Γ instead of Γ, we obtain that

Z T n (A ΛA T ) -1 Z n χ 2 k .
We reject H 0 at the level α ∈ (0, 1) if

Z T n (A ΛA T ) -1 Z n > χ 2 k,1-α .
4.3. Simulation study. Let Φ be the cdf of a N (0, 1) distribution. In this section data are simulated from model (2.1) with p = 0.7, µ = 3, F 0 = Φ and F = Φ(•/0.5). We used the triangular kernel q defined by q(x) = (1-|x|)1 |x|<1 and the bandwidth is obtained by the function density of R software. Table 1 shows the good behavior of our estimators even for moderate sample size. The standard deviations, within parentheses, are computed from the 200 estimates of each parameter and are quite small.

Another important question is the quality of the asymptotic variance estimators. Let us recall that these estimators involve both U -statistics and estimation of the density f . It is therefore important to check that these estimators have sufficiently good properties to make our central limit theorem useful in practice. Figure 1 shows that these good properties are satisfied even when the sample size is moderate. This is especially true for the functional parameter F the estimator of which has very good behavior even if its variance estimation requires to estimate the unknown density function f . With the same data as those we used to obtain Figure 1 we calculated the power of some basic tests based on direct application of the central limit theorem (see Figure 2). Indeed, for various values of n (100, 400 and 1000) we calculate the power as a function of:

(first row) p ∈ (0, 1), H 0 : p = p vs. H 1 : p = 0.7. (second row) µ ∈ (2, 4), H 0 : µ = µ vs. H 1 : µ = 3. (third row) s ∈ (0.1, 2), H 0 : F (0.5) = Φ(0.5/s ) vs. H 1 : F (0.5) = Φ(0.5/σ) with σ = 0.5.

All the graphs show that the power of the various tests increases with the sample size. Because these test are constructed at the 95% level we can see that when H 0 and H 1 are identical the 5% rejection rate is well satisfied. To finish this section let us show that chi-square tests proposed in Sections 4.1 and 4.2 have the expected asymptotically free chi-square distributions.

Figure 3 shows the level plot of the power as a function of p and µ in testing H 0 : (p, µ) = (p , µ ) versus H 1 : (p, µ) = (0.7, 3). The sample size is quite large and as a consequence the power is quickly close to one whenever (p, µ) moves away from (0.7, 3).

In Figure 4 we compare the asymptotic chi-square cdf of the symmetry tests we proposed in Section 4.2 with the empirical cdf obtained from 200 tests produced under the null hypothesis. The test is based on the comparison of F (-x) + F (x) and 1. For one value of x (first row) the asymptotic distribution is a chi-square distribution with 1 degree of freedom, whereas for two (resp. three) values of x (second row) (resp. third row) the asymptotic law is a chi-square distribution with 2 (resp. 3) degrees of freedom. The asymptotic distribution is generally well reached even if from time to time the test may appear a little bit conservative. 

  (i) If g and g are uniformly continuous on R, then ĝn -g ∞ = o a.s. (1) and ĝ n -g ∞ = o a.s. (1).

2 .

 2 (3.10) Let us consider B 0 (η n ) the open ball centered at ϑ 0 with radius η n > 0. Following the proof of Theorem 3.3 in Bordes et al. (2006a) we show that for all ϑ ∈ Θ \ B 0 (η n ), we have the following events inclusion lim sup n θn / ∈ B 0 (η n ) ⊆ lim sup n inf ϑ∈Θ\B 0 (ηn) d(ϑ) < γ n ∪ lim sup n γ n ≤ 2 sup ϑ∈Θ |d n (ϑ) -d(ϑ| .for any arbitrary sequence γ n . Choosing now γ n = n -1/2+α , and η n = n -1/4+β/2 , with 0 < α < β taken arbitrarily small, it follows from (3.10) and the uniform almost sure rate of convergence of d n towards d given in Lemma 3.2 (iii), that

2 Γ

 2 such that for Γ(x, y) = L(x) Ĵ-1 Σ(x, y) Ĵ-1 ( L(y)) T , (x, y) -Γ(x, y; ϑ 0 ) ∞ a.s.

=

  o a.s. (1) + O a.s. (1) = O a.s. (1).

( 1 )

 1 n converges almost surely to 0. The same kind of calculations allow to prove that T (2) n → 0 almost surely, which concludes the proof of statement (3.16).

Fig 1 .

 1 Fig 1.Comparison of the empirical cdf of 200 estimates of p (first column), µ (second column) and F (0.5) (third column) with the cdf of a N (0, 1) for sample sizes equal to 100 (first row), 400 (second row) and 1000 (third row). Each estimate is centered on the parameter and reduced using the estimated standard deviation.

Fig 2 .

 2 Fig 2. Power calculations for n = 100 (first row), 400 (second row) and 1000 (third row) for testing p = p (first column), µ = µ (second column) and F (0.5) = F (0.5) ≡ Φ(0.5/s ). Under H1 we have (p, µ, F (0.5) = (0.7, 3, Φ(1)). The horizontal lines correspond to the 5% level.

Fig 3 .

 3 Fig 3. Power estimation based on 200 estimates of (p, µ). The null hypothesis is that (p, µ) ∈ [0.6, 0.8] × [2.8, 3.2] against (p, µ) = (0.7, 3). The sample size is n = 1000.

  log log n → +∞ and there exists a real number c such that h n ≤ ch 2n for all n ≥ 1, (iii)| log h n |/(nh 3 n ) → 0.Comments. The two first conditions in (B) (i) are necessary to obtain the pointwize consistency of g kernel estimators. The third condition allows to control the distance between the empirical cdf Ĝn and its regularized version Gn . By using Corollary 1 in Shorack and Wellner (1986, p. 766) we obtain

  ).

	Step 4. Let us prove (3.11). By (3.14), (3.16) and (3.19) we obtain

Table 1

 1 Mean (Stand. Dev.) of 200 estimates of p, µ and F (0.5).

	Sample size	p = 0.7	µ = 3	F (0.5) = 0.8413
	100	0.7106 (0.0498) 2.9912 (0.0757) 0.8415 (0.0378)
	400	0.7048 (0.0277) 2.9959 (0.0355) 0.8390 (0.0177)
	1000	0.7018 (0.0167) 2.9977 (0.0225) 0.8409 (0.0107)
	2k-dimensional random vector defined by	

where I(ϑ 0 ) = R Ḣ(x; ϑ 0 , G) ḢT (x; ϑ 0 , G)dG(x) > 0.

In order to prove statement (3.16) let us remark that

where

Because the df f and f 0 are bounded it easy to show that the strong law of large numbers holds for T

(3) n and therefore T 

Because Ḧ = Ḧ1 -Ḧ2 and H 1 and H 2 are very similar, we only prove that the supremum norm of each term in Ḧ1 (•; ϑ * n , Gn ) matrix is bounded. We only handle the more complicated term in Ḧ1 (•; ϑ * n , Gn ) which is the second order derivative with respect to µ. We have

where g n = G n is an estimator of g . Because f and f 0 are bounded we have

). First row: testing at one point, second row: testing at two points, and third row: testing at three points. The horizontal lines correspond to the 95% level.