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Abstract

The concept of p-orthogonality (1 ≤ p ≤ n) between n-particle states is introduced.

It generalizes common orthogonality, which is equivalent to n-orthogonality, and

strong orthogonality between fermionic states, which is equivalent to 1-orthogonality.

Within the class of non p-orthogonal states a finer measure of non p-orthogonality is

provided by Araki’s angles between p-internal spaces. The p-orthogonality concept

is a geometric measure of indistinguishability that is independent of the representa-

tion chosen for the quantum states. It induces a new hierarchy of approximations for

group function methods. The simplifications that occur in the calculation of matrix

elements between p-orthogonal group functions are presented.

Preprint to be published



1 Introduction

Recent studies have aimed at defining a geometric measure of entanglement (see [1] and

therein). Entanglement is also related to the Von Neumann entropy of reduced density

operators, however, in the case of quantum systems made of identical particles, it has

proved important to take apart the uncertainty due to the indistinguishability of the

identical particles from that due to entanglement [2]. In this work we provide a geometric

measure of indistinguishability.

Indistinguishability of identical particles is related to orthogonality properties of Hilbert

subspaces. It is common knowledge that sets of identical fermions can be considered as

distinguishable, when their respective wave functions (or density operators) are built

from one-particle functions belonging to orthogonal Hilbert spaces [3]. In other words,

when any one-particle state of a set of particles does not overlap with any one-particle

state of another set, then antisymmetrizing or not antisymmetrizing the tensor product

of the wave functions of the two sets give the same physical predictions. Such sets of

fermions are said strongly orthogonal to each other [4,5]. However, as far as we are aware,

when some one-particle states of the two sets do have non-zero overlap, so that the sets

become indistinguishable, there is no measure to quantify to which extend the particles

of both sets are actually mixed.

More specifically, let, a†1, . . . , a
†
2n be 2n creation operators of orthonormal one-particle (ei-

ther boson or fermion) states. The n-particle states, a†1 · · ·a
†
n|0〉, and, a†1 · · ·a

†
n−1a

†
n+1|0〉,

are orthogonal. So are, a†1 · · ·a
†
n|0〉, and, a†n+1 · · ·a

†
2n|0〉. Intuitively the latter pair is

“more” orthogonal than the former. In fact, it is “strongly” orthogonal [4,5]. Between

these two extreme cases, there are intermediate cases, like for example the pairs, a†1 · · ·a
†
n|0〉,

and, a†1 · · ·a
†
n−pa

†
n+1 · · ·a

†
n+p|0〉, which are orthogonal but not strongly orthogonal. The

aim of the present article is to introduce a graded orthogonality concept which discrimi-

nates between all these cases. Our geometric concept is well-defined (i.e. independent of

the arbitrarily chosen representation of quantum states) for general, multiconfigurational

wave functions of possibly different particle numbers as well as for mixed (i.e ensemble)
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states.

The article is organised as follow, we first recall the definition of the p-internal space

of an n-particle quantum state, then we define the concept of p-orthogonality and the

Araki’s angles between the p-internal spaces, finally we show the usefulness of these

concepts to simplify the calculation of matrix elements appearing in a class of general

approximation methods for solving the Schrödinger equation of n identical particles.

Note that throughout the article, the emphasis will be put on fermions, because p-

orthogonality will be a priori more useful for sets of particles obeying the Pauli principle,

than for bosonic particles, whose states tend to degeneracy rather than to orthogonality.

2 p-internal space of an n-particle state

Let H denotes the one-particle Hilbert space and ∧nH, (respectively, ∨nH), the Hilbert

space of antisymmetric, (respectively, symmetric), n-particle states built from H. Let

Ψ ∈ ∧nH (respectively, Ψ ∈ ∨nH) be a normalized n-fermion (respectively, n-boson)

wave function. Its reduced density operator, DΨ acts on a wave function, Φ ∈ ∧H

(respectively, Φ ∈ ∨H) in the following way [7],

DΨ(Φ) = Ψ →֒ Φ ←֓ Ψ, (1)

where →֒ (resp. ←֓) denotes the right (resp. left) interior product.

We recall that the interior products for fermions are defined by conjugation with respect

to the Grassmann product: Θ ∈ ∧q−pH, Ψ ∈ ∧pH, Φ ∈ ∧qH,

〈Θ|Ψ ←֓ Φ〉 = 〈Ψ ∧Θ|Φ〉, (2)

〈Θ|Φ →֒ Ψ〉 = 〈Θ ∧Ψ|Φ〉. (3)

Similarly, for bosonic states the interior products are conjugated to the symmetrical

product ∨.
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The interior products are equivalent to “annihilation” in the second quantization lan-

guage; using this formalism DΨ(Φ) would be written: DΨ|Φ〉 =
∑

Θ
〈0|ΨΘ†ΦΨ†|0〉 |Θ〉,

where Ψ,Θ, (bold symbol) denote the annihilation operators associated to Ψ,Θ; Ψ†,Θ†,

denote their conjugate creation operators. The reduced density operator preserves the

number of particles, that is to say, ∧pH, (respectively, ∨pH), is stable under DΨ. The

restriction of DΨ to the p-particle space, Dp
Ψ, is the so called “p-order reduced density

operators”, (the action of Dp
Ψ can be extended to the whole of ∧H, (respectively, ∨H)

by Dp
Ψ(Φ) = 0 if Φ ∈ ∧qH (respectively, ∨qH) and q 6= p, then DΨ decomposes as a

direct sum DΨ =
∑

p≥0 Dp
Ψ).

We call “p-internal space” the sum of the eigenspaces of the p-order reduced density

operator Dp
Ψ associated to non zero eigenvalues. The p-particle functions of this space

are called “p-internal functions”. An alternative definition of the p-internal space, of

Ψ ∈ ∧nH, denoted Ip[Ψ], is:

Ip[Ψ] := {Φ ∈ ∧pH, ∃Ω ∈ ∧n−pH,Ω ←֓ Ψ = Φ}, (4)

that is to say, Ip[Ψ] is the vector space obtained by annihilating a (n−p)-fermion function

in Ψ in all possible manners. A similar definition holds for bosons.

Examples from electronic structure theory: The 1-internal space, or simply “internal

space”, I1[Ψ], is the space spanned by the, so-called, occupied, natural spinorbitals, in

quantum chemistry. The 2-internal space, I2[Ψ], is the space spanned by the occupied,

natural geminals. The n-internal space is the one-dimensional vector space spanned by

the wave function Ψ. The p-internal space of a single configuration function (Slater

determinant) built over a set of n orthogonal spinorbitals, Ψ := φ1 ∧ . . . ∧ φn, is the
(

n

p

)

-dimensional vector space spanned by the p-particle functions, φi1 ∧ . . . ∧ φip, built

over p spinorbitals of Ψ.
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The definition extends to ensemble states described by a general density operators, Dn,

that is, by a convex combination of pure states density operators:

Dn :=
∑

i

ci D
n
Ψi

with ci > 0 and
∑

i

ci = 1. (5)

In such a case, the p-order reduced density operator to consider is, simply,

Dp =
∑

i

ci D
p
Ψi
. (6)

It is easy to see that the p-internal space of Dn is the sum (not necessarily direct) of its

pure states p-internal space,

Ip[Dn] =
∑

i

Ip[Ψi]. (7)

The orthogonal complement of the p-internal space, that is the kernel of Dp, is called

the p-external space, Ep[Dn] := Ip[Dn]⊥, and satisfies,

Ep[Dn] =
⋂

i

Ep[Ψi]. (8)

3 p-orthogonality

3.1 Definition

Let Ψ1 ∈ ∧
n1H and Ψ2 ∈ ∧

n2H be respectively a n1- and a n2-fermion wave function.

We will say that Ψ1 and Ψ2 are p-orthogonal (for 1 ≤ p ≤ inf(n1, n2)) if and only if

their p-internal spaces are orthogonal,

Ip[Ψ1] ⊥ I
p[Ψ2]. (9)

A similar definition holds for bosonic states, and extends to ensemble states, either
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bosonic or fermionic, by considering the orthogonality of the p-internal space of their

associated density operators, Dn1

1 and Dn2

2 .

We see immediately that if n1 = n2 = n, n-orthogonality is the usual orthogonality

between wave functions. In the case of ensemble states, it means that any wave function

associated to a pure state in the convex combination of one density operator is orthogonal

to any wave function associated to a pure state in the convex combination of the other

density operator.

At the other end, 1-orthogonality between Ψ1 and Ψ2 amounts to strong orthogonality,

usually defined by,

∫

dτ1Ψ1(τ1, τ2, . . . , τn1
)Ψ2(τ1, τ

′
2, . . . , τ

′
n2

) = 0 ∀τ2, . . . , τn1
, τ ′2, . . . , τ

′
n2
. (10)

This can be rewritten, using Dirac distributions centered on the Fermion variables, as

the nullity of the kernel,

〈δτ2 ∧ . . . ∧ δτn1
←֓ Ψ1|δτ ′

2
∧ . . . ∧ δτ ′

n2
←֓ Ψ2〉 = 0. (11)

or, by changing to a basis set representation {φi}i in the rigged Hilbert space [8], as,

〈φi2 ∧ . . . ∧ φin1
←֓ Ψ1|φi′

2
∧ . . . ∧ φi′n2

←֓ Ψ2〉 = 0 ∀i2, . . . , in1
, i′2, . . . , i

′
n2
. (12)

Since, the (n1 − 1)-particle functions, φi2 ∧ . . . ∧ φin1
, span all of, ∧(n1−1)H, and the

(n2 − 1)-particle functions, φi′
2
∧ . . . ∧ φi′n2

, span all of, ∧(n2−1)H, the latter equation is

equivalent to orthogonality between any pair of 1-internal functions, that is to say to

1-orthogonality.

Remark: The present definition of “strong orthogonality” as the orthogonality of the

one-internal spaces, and, another characterization of the one-internal space of a function

Ψ ∈ ∧nH as the smallest Hilbert space, F such that Ψ ∈ ∧nF [9], make obvious the sep-

arability property of strongly orthogonal electron pairs [6], or more generally, of strongly
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orthogonal electron groups (see also the definition of “non-overlapping subsystems in

[10]).

3.2 Graded orthogonality

An important property to notice is that p-orthogonality implies q-orthogonality for all

q ≥ p. Its proof relies essentially upon the following lemna:

Lemna 1: If Φ ∈ Ip+1[Dn] then ∀φ ∈ H, (φ ←֓ Φ) ∈ Ip[Dn].

Proof: Consider first the case of fermionic pure states. Let Ψ ∈ ∧nH be an n-particle

wave function, Φ ∈ Ip+1[Ψ] and φ ∈ H. By Eq. (4), there exists Ω ∈ ∧n−p−1H such that

Ω ←֓ Ψ = Φ. So, φ ←֓ Φ = φ ←֓ (Ω ←֓ Ψ) = (Ω ∧ φ) ←֓ Ψ, where (Ω ∧ φ) ∈ ∧n−pH.

This means that (φ ←֓ Φ) ∈ Ip[Ψ] according to Eq. (4), and proves the proposition

for fermionic pure states. The demonstration is the same for bosonic pure states with ∨

instead of ∧.

Now consider a mixed state operator Dn as in Eq. (5), Φ ∈ Ip+1[Dn] and φ ∈ H. By Eq.

(7), there exist Φi’s such that Φ =
∑

i
Φi and Φi ∈ I

p+1[Ψi] for all i. By (anti)linearity

of the interior product, φ ←֓ Φ = φ ←֓
(

∑

i
Φi

)

=
∑

i
(φ ←֓ Φi). But we have just shown

that (φ ←֓ Φi) ∈ I
p[Ψi] for all i, which proves the property for mixed states according

to Eq. (7).

p-orthogonality is a graded property in the sense that:

Proposition 1: If two states represented by the density operators Dn1

1 and Dn2

2 , (or by

the wave functions Ψ1 and Ψ2 for pure states, with Dni

i = |Ψi〉〈Ψi|), are p-orthogonal

then they are a fortiori q-orthogonal for all q such that, inf(n1, n2) ≥ q ≥ p.

Proof:

Let 1 ≤ p < n1 ≤ n2 be three integers. Let {φi}i be an orthonormal basis set of

H. Consider the fermionic case, and note that the “particle number” operator, N̂ :=
∑

i φi ∧ (φi ←֓ •), acts on the q-fermion space, ∧qH, as, q.Id∧qH, (Id∧qH denotes the

identity on ∧qH). For all Γ1 ∈ I
p+1[Dn1

1 ], Γ2 ∈ I
p+1[Dn2

2 ], and φi ∈ H, we have
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〈φi ←֓ Γ1|φi ←֓ Γ2〉 = 0 since by lemna 1, (φi ←֓ Γ1) ∈ I
p[Dn1

1 ], (φi ←֓ Γ2) ∈ I
p[Dn2

2 ],

and by hypothesis Dn1

1 and Dn2

2 are p-orthogonal. Therefore, 0 =
∑

i〈φi ←֓ Γ1|φi ←֓

Γ2〉 =
∑

i〈φi ∧ (φi ←֓ Γ1) |Γ2〉 = 〈N̂Γ1|Γ2〉 = (p + 1)〈Γ1|Γ2〉. So, ∀Γ1 ∈ I
p+1[Dn1

1 ],

∀Γ2 ∈ I
p+1[Dn2

2 ], 〈Γ1|Γ2〉 = 0, which proves that, Dn1

1 and Dn2

2 are (p + 1)-orthogonal.

The proof works for bosons, if ∧ is replaced by ∨. By induction, the result holds for all

q such that, inf(n1, n2) ≥ q ≥ p.

So, p-orthogonality provides us with a graded orthogonality concept for states of identical

particles, and the traditional term of “strong orthogonality” attached to 1-orthogonality

is justified in the sense that it implies p-orthogonality for all p.

Example 1: For integers, n > p > 0, the pairs, Ψ1 := φ1 ∧ . . . ∧ φn and Ψ2 := φ1 ∧ . . . ∧

φn−p ∧ φn+1 . . . ∧ φn+p, (equivalent to those denoted with second quantization operators

in the introduction), are (n − p + 1)-orthogonal but not (n − p)-orthogonal since for

Φ1 := φn−p+1 ∧ . . . ∧ φn and Φ2 := φn+1 ∧ . . . ∧ φn+p, 〈Φ1 ←֓ Ψ1|Φ2 ←֓ Ψ2〉 = 〈φ1 ∧ . . . ∧

φn−p|φ1 ∧ . . . ∧ φn−p〉 = 1 is non zero, although (Φi ←֓ Ψi) ∈ I
n−p[Ψi], for i ∈ {1, 2}, by

definition.

Example 2: Let (φi)i=1,...,8 be 8 orthogonal spinorbitals. The functions Ψ1 := φ1 ∧ φ2 ∧

φ3+φ4∧φ5∧φ6 and Ψ2 := φ1∧φ7+φ2∧φ8 are 2-orthogonal (it is impossible to obtain Ψ2

by annihilating a spinorbital in Ψ1) but not 1-orthogonal since both φ1 and φ2 belongs

to their one-internal space.

3.3 Araki angles

Within a given “graduation”, e.g. the set of functions which are (p + 1)-orthogonal but

not p-orthogonal for some p, a finer measure of non p-orthogonality is given by the Araki

angles between the p-internal spaces. The Araki angles between the spin α- and the spin

β-part of the one-internal spaces have already been introduced by the present author to

study spin contamination in spin-unrestricted wave functions [11]. The cosines of these

angles are the overlaps between biorthogonal functions.
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Consider the p-internal spaces Ip[Dn1

1 ] and Ip[Dn2

2 ] of two density operators (or wave

functions in case of pure states), with n1 ≤ n2. Let us set E := Ip[Dn1

1 ] + Ip[Dn2

2 ] and

denote Pj (j ∈ {1, 2}) the orthogonal projector on Ip[D
nj

j ] in E. The construction is the

same as that of [11]. We define the operators, “COSΘp” and “SINΘp”,

COSΘp := |P1 + P2 − IdE|, SINΘp := |P1 − P2|, (13)

which satisfy,

(COSΘp)2 + (SINΘp)2 = IdE. (14)

(COSΘp)2 is a Hermitian, positive operator, whose eigenvalues are in the interval [0, 1].

One can associate to each eigenvalue, λp
i , an angle by,

θp
i = arccos(

√

λp
i ). (15)

The eigenspaces of (COSΘp)2, that we write Vθ
p
i

(rather than Vλ
p
i
) decomposes E into a

direct sum of orthogonal vector subspaces,

E :=
⊕

θ
p
i

Vθ
p
i
. (16)

The Araki angle operator, Θp, is defined on E as

Θp :=
∑

i

θp
i . PV

θ
p
i

, (17)

where PV
θ
p
i

is the orthogonal projector on Vθ
p
i
. The remarkable property of the decompo-

sition (16) is that it “respects” the structure of the p-internal spaces Ip[Dn1

1 ] and Ip[Dn2

2 ],

in the sense that, for j ∈ {1, 2},

Ip[D
nj

j ] =
⊕

θ
p
i

Ip[D
nj

j ]
⋂

Vθ
p
i
. (18)

Setting Ip[D
nj

j ]θp
i

:= Ip[D
nj

j ]
⋂
Vθ

p
i

we obviously have that Ip[Dn1

1 ]θp
i

is orthogonal to
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Ip[Dn2

2 ]θp
j

if i 6= j, and if i = j, any pair of function Φ1 ∈ I
p[Dn1

1 ]θp
i
, Φ2 ∈ I

p[Dn2

2 ]θp
i

can

be thought geometrically as making an angle θp
i .

Particular cases:

If there is only one eigenvalue, λp
1 = 0, hence θp

1 = π
2
, the states are in fact p-orthogonal.

If the eigenvalue, λp
i = 1, hence θp

i = 0, is present and its multiplicity equal to n1, then

the p–internal space Ip[Dn1

1 ] is a vector subspace of Ip[Dn2

2 ].

Between these extreme cases, the Araki angles provide us with a quantitative mean to

assess departure from p-orthogonality.

4 Application to group functions

When the respective states of two groups of identical particles are p-orthogonal, at most

p−1 particles are possibly “overlapping” over the two groups, in the sense that the overlap

of any p-particle state occupied in the n1-particle state of the first group with any p-

particle state occupied in the n2-particle state of the other group is zero. In particular,

for p = 1, no particle overlaps and the two groups are distinguishable.

Let us emphasize that this notion of distinguishability does not necessarily imply the

localization of the two groups of particles in two non-intersecting regions of real space.

It has only to do with the orthogonality of abstract Hilbert spaces.

A direct consequence of p-orthogonality is the cancellation of matrix elements between

Hermitian operators that only couple a limited number of particles:

Proposition 2: Two p-orthogonal, n-particle states cannot be coupled through a q-

particle interaction operator, V q, if q ≤ n− p.

Proof: A q-particle operator, V q, is an operator that can be expressed in the second

10



quantization formalism as,

V q =
∑

I:=(i1,...,iq),

J :=(j1,...,jq)

λI,J a
†
i1
. . . a†iqajq

. . . aj1 , (19)

with λI,J = λ∗J,I . Let Ψ1 and Ψ2 be two p-orthogonal, n-particle wave functions. By

linearity,

〈Ψ1|V
q|Ψ2〉 =

∑

I,J

λI,J 〈Ψ1|a
†
i1
. . . a†iqajq

. . . aj1 |Ψ2〉 =
∑

I,J

λI,J 〈aiq . . . ai1Ψ1|ajq
. . . aj1Ψ2〉. By

definition, ∀(i1, . . . , iq), (j1, . . . , jq), aiq . . . ai1Ψ1 ∈ I
n−q[Ψ1], ajq

. . . aj1Ψ2 ∈ I
n−q[Ψ2].

By hypothesis, p ≤ (n− q), so Proposition 1 shows that all these pairs of (n− q)-particle

wave functions are orthogonal:

∀(i1, . . . , iq), (j1, . . . , jq), 〈aiq , . . . , ai1Ψ1| ajq
, . . . , aj1Ψ2〉 = 0, hence 〈Ψ1|V

q|Ψ2〉 = 0.

In quantum chemistry, general antisymmetric product function methods [4,5,12,13,14,15,16,17,18,19,20,21,22,23

optimize n-electron wave functions of the form:

Ψ = Ψ1 ∧ · · · ∧Ψr , (20)

where Ψi is an ni-electron function and
∑

i ni = n. So far, for practical purposes, all these

approaches (except those of [27,36]), have imposed the constraint that the Ψi’s have to

be 1-orthogonal to one another. In the Electronic Mean Field Configuration Interaction

(EMFCI) approach [36], no orthogonality constraint is a priori imposed on the Ψi. In

particular, in the simple case where, for all i, ni = 2, both APSG (Antisymmetrized

Product of Strongly orthogonal Geminals) [31] and AGP (Antisymmetrized Geminal

Product) of extreme type [38], Ψ1 ∧ · · · ∧ Ψ1, are considered by the EMFCI variational

process.

Therefore, it would be interesting to analyse the optimized EMFCI functions obtained

for different systems and geometries in terms of their p-orthogonality properties, and

see for instance, if they are closer to the APSG case (1-orthogonality) or to the AGP of

extreme type case (non 2-orthogonality with the Araki angle equal to zero for all pairs
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of two-electron group functions). However, in the present study we will limit ourselves

to emphasize how enforcing a p-orthogonality constraint between the Ψi’s, simplifies the

computation of the Hamiltonian and overlap matrix elements between general antisym-

metric product functions (Eq.(20)).

Let us consider another such function, Ψ′ = Ψ′
1∧ · · ·∧Ψ′

r, (with n′
i = ni), and define the

notation,

Ψî := Ψ1 ∧ · · · ∧Ψi−1 ∧Ψi+1 ∧ · · · ∧Ψr, Ψîĵ := (Ψî)ĵ , and so on,

to denote that one or more specified factors have been taken out of a product function.

So, for example Ψ′ = Ψ′
1 ∧ Ψ′

1̂
. It can be shown, using the Hopf algebra tools of [36] ,

that,

〈Ψ′
1 ∧Ψ′

1̂|Ψ1 ∧ · · · ∧Ψr〉 =

∑

I1,...,Ir

∀j |Ij |∈{0,...,nj},∑

j
|Ij |=n1

ρ|I1|,n1−|I1|,...,|Ir|,nr−|Ir| 〈Ψ
′
1|(Ψ1)I1 ∧ · · · ∧ (Ψr)Ir〉〈Ψ′

1̂|(Ψ1)Ī1 ∧ · · · ∧ (Ψr)Īr〉

(21)

where 1 ,

ρ|I1|,n1−|I1|,...,|Ir|,nr−|Ir| = (−1)

r∑

j=2

j−1∑

k=1

|Ij |·(nk−|Ik|)

, (23)

and where, for any p-particle wave function, Φ :=
∑

K:=(k1<...<kp)
λK ψk1

∧ · · · ∧ ψkp
, (K

runs over ordered sequences of positive integers, (ψi)i denotes a one-particle basis set),

1 this formula is a particular case of a formula given in [36,40] with an error on the summation

bounds. A correct version is,

ρn1
1
,...,n1

p,...,n
q
1
,...,n

q
p

= (−1)

∑

1≤j<l≤q

∑

p≥i>k≥1

nl
k
·nj

i

(22)
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and any ordered sequence of length m ∈ {0, . . . p}, I := (1 ≤ i1 < . . . < im ≤ p), the

following compact notation is extensively used,

· · · (Φ)I · · · (Φ)Ī · · · := ρI,Ī

∑

K:=(k1<···<kp)

λK · · · (ψki1
∧ · · · ∧ ψkim

)

· · · (ψkī1
∧ · · · ∧ ψkīp−m

) · · · (24)

with Ī := (1 ≤ ī1 < . . . < īp−m ≤ p), complement of I in {1 < 2 < · · · < p}, ρI,Ī is the

sign of the permutation reordering the concatenated sequence I//Ī in increasing order;

if the length, |I|, of I is 0 then, by convention, (Φ)I := (Φ)∅ = 1, and ρ∅,(1<···<p) = 1;

note that, (Φ)(1<···<p) = Φ.

If we assume that the group-1 (called the group of active electrons in the EMFCI method)

wave function, Ψ′
1, is q-orthogonal to the product of the wave functions of the other

groups (called spectator groups in the EMFCI method), Ψ1̂ = Ψ2 ∧ · · · ∧ Ψr, Eq.(21)

becomes,

〈Ψ′
1 ∧Ψ′

1̂|Ψ1 ∧ · · · ∧Ψr〉 =

∑

I1,...,Ir

|I1|∈{n1−q+1,...,n1},

∀j>1 |Ij |∈{0,...,nj},
r∑

j=1

|Ij |=n1

ρ|I1|,n1−|I1|,...,|Ir|,nr−|Ir| 〈Ψ
′
1|(Ψ1)I1 ∧ · · · ∧ (Ψr)Ir〉〈Ψ′

1̂|(Ψ1)Ī1 ∧ · · · ∧ (Ψr)Īr〉

(25)

that is to say, the summation on the ordered sequences, I1, is limited to those with length

strictly more than n1 − q. Without this restriction, the number of I1-sequences would

be
(

n

n1

)

=
n1∑

i=0

(
n1

i

)(
n−n1

n1−i

)

, whereas with the q-orthogonality restriction, it falls down to

n1∑

i=n1−q+1

(
n1

i

)(
n−n1

n1−i

)

. In the limit case of 1-orthogonality, only the sequence I1 = (1 < 2 <

· · · < n1) remains, and Eq.(25) simplifies to,

〈Ψ′
1 ∧Ψ′

1̂|Ψ1 ∧ · · · ∧Ψr〉 = 〈Ψ′
1|Ψ1〉〈Ψ

′
1̂|Ψ2 ∧ · · · ∧Ψr〉. (26)
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At the other end, enforcing n1-orthogonality between active and spectator groups, that

is the weakest q-orthogonality constraint, rules out only the case I1 = ∅. However, this

eliminates already
(

n−n1

n1

)

I1-sequences, and this number becomes comparable to the

total number of I1-sequences,
(

n

n1

)

, in the limit of practical interest where the number

of active electrons, n1, is small with respect to the total number of electrons, n.

Consider now the matrix elements between general antisymmetric product functions, of

an operator, H , whose action on n-electron wave functions is induced by a s-particle

operator, ĥ, (with s ≤ n). Typically, ĥ will be a Coulombian Hamiltonian, so that s = 2.

Its induced action on the n-electron wave function of Eq.(20) can be expressed using

Hopf algebra techniques as,

H [Ψ1 ∧ · · · ∧Ψr] =

∑

J1,...,Jr

∀j |Jj |∈{0,...,nj},∑

j
|Jj |=n−s

ρ|J1|,|J̄1|,...,|Jr|,|J̄r|(Ψ1)J1 ∧ · · · ∧ (Ψr)Jr ∧ ĥ [(Ψ1)J̄1 ∧ · · · ∧ (Ψr)J̄r ] .(27)

So, a matrix element, 〈Ψ′
1 ∧ Ψ′

1̂
|H [Ψ1 ∧ · · · ∧ Ψr]〉, is a sum of terms of the form,

〈Ψ′
1 ∧ Ψ′

1̂
|(Ψ1)J1 ∧ · · · ∧ (Ψr)Jr ∧ ĥ [(Ψ1)J̄1 ∧ · · · ∧ (Ψr)J̄r ]〉, similar to Eq.(21) but with,

in the ket, (r + 1) groups of |J1|, . . . , |Jr|, s particles respectively, instead of r groups of

n1, . . . , nr particles. In particular, |J1| can be less than n1, the number of particles in

Ψ′
1. However, essentially the same development can be carried out, the q-orthogonality

constraint limiting the summation for each term,
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〈Ψ′
1 ∧Ψ′

1̂|(Ψ1)J1 ∧ · · · ∧ (Ψr)Jr ∧ ĥ [(Ψ1)J̄1 ∧ · · · ∧ (Ψr)J̄r ]〉 =

∑

I1,...,Ir+1

|I1|∈{|J1|−q+1,...,|J1|}

1<j≤r, |Ij |∈{0,...,|Jj |}

|Ir+1|∈{0,...,s},
r+1∑

j=1

|Ij |=n1

ρ|I1|,|Ī1|,...,|Ir+1|,|Īr+1|

· 〈Ψ′
1| ((Ψ1)J1)I1 ∧ · · · ∧ ((Ψr)Jr)Ir ∧

(

ĥ [(Ψ1)J̄1) ∧ · · · ∧ (Ψr)J̄r ]
)

Ir+1
〉

· 〈Ψ′
1̂| ((Ψ1)J1)Ī1 ∧ · · · ∧ ((Ψr)Jr)Īr ∧

(

ĥ [(Ψ1)J̄1) ∧ · · · ∧ (Ψr)J̄r ]
)

Īr+1
〉.

(28)

5 Conclusion and prospects

We have defined the geometric concept of p-orthogonality between quantum states of

sets of identical particles. This concept provides us with a graded measure of indistin-

guishability in the sense that two sets of identical particles that are q-orthogonal can be

seen as “more indistinguishable” than two sets that are p-orthogonal if q > p, because a

larger subset of particles can possibly share i.e. occupy a substate, common i.e. internal

to the quantum states of both sets.

A classical anology can be attempted with the case of two groups of billiard balls of the

same color. When p = 1, no particle is mixed and the two sets of particles are in fact

distinguishable like two sets of balls localized in distinct areas of a billiard table. Pushing

this classical picture one step beyond for p > 1, the two sets of balls would be connected

but at most p−1 balls of one set would be in contact with at most p−1 balls of the other

set. So, the smaller p, the narrower the bridge between the two sets of balls would be.

Assuming that the group of origin of the balls making up the bridge is unknown, these

balls would be the analogues of the genuinely indistinguishable particles which belong

partially to both sets.

Let us emphasize that this classical picture should not be carried too far, for, in particu-

lar, our notion of distinguishability does not imply the localization of the two groups of

particles in two non-overlapping regions of real space. It has only to do with the orthogo-

nality of Hilbert spaces called the p-internal spaces of the quantum states. p-orthogonality
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can be seen as a mathematical and quantum mechanical rigorous formalisation of this

classical image.

p-orthogonality can be used to remove some arbitrariness in the choice of a representation

for a quantum system in the same manner as localization criteria do. For example, con-

sider n pairs of spin-1
2

fermions whose state can be represented by a Slater determinant,

Ψ := φ1 ∧ φ̄1 ∧ · · · ∧ φn ∧ φ̄n, where φ1, . . . , φn, are orthonormal one-fermion functions of

spin z-component 1
2
, and φ̄1, . . . , φ̄n, their counterparts with spin z-component equal to

−1
2

. Such a wave function is invariant within a phase factor under an unitary transfor-

mation, u, of the one-particle functions, φ1, . . . , φn. There are various techniques [42,43]

that exploit this freedom to reexpress a wave function with a new set of one-particle

functions, ψj = u(φj), localized in real space, and such that Ψ has still the form of a

Slater determinant, Ψ := ψ1∧ ψ̄1∧· · ·∧ψn∧ ψ̄n. However, this only provides a constraint

on one-particle states and there is still more freedom available. For example, Ψ can be

re-expressed as an AGP of extreme type with the same localized one-particle functions,

Ψ = g ∧ g ∧ · · · ∧ g
︸ ︷︷ ︸

nfactors

, (29)

where g = (n!)−
1

n (ψ1 ∧ ψ̄1 + · · ·+ ψn ∧ ψ̄n). If we set, gi = ψi ∧ ψ̄i for all i, we also have

Ψ = g1 ∧ g2 ∧ · · · ∧ gn. (30)

Imposing 1-orthogonality or even 2-orthogonality between the two-fermion functions

appearing in Eqs.(29) and (30) can discriminate between these two equivalent writings.

The graded structure of p-orthogonality constraints naturally leads one to consider a

corresponding hierarchy of approximations for methods based on general antisymmetric

product functions. In this work, we have exhibited the link between p-orthogonality and

the combinatorics involved in the calculation of the matrix elements of particle-number-

preserving observables. In the frame of the EMFCI method, we have shown that even

the weakest p-orthogonality constraint between an active group of particles and the rest
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of spectator particles can be effective in limiting the computational effort required for

the calculation of matrix elements. We will report shortly on the accuracy of EMFCI

wave functions constrained by p-orthogonality, for increasing value of p on a benchmark

of molecular systems.
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