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Summary

1.

 

Debate continues regarding the ecological impacts of genetically modified (GM) crops
and their coexistence with non-GM crops in Europe. In this debate, quantitative pre-
dictions of gene dispersal by pollen are necessary, and as a result numerous plot-to-plot
gene flow experiments have been performed with various crops. However, plot-to-plot
cross-pollination rates (CPR) depend on spatial configuration of  plots, implying that
(i) they are difficult to compare among experiments and (ii) functions directly fitted on
CPR data are inappropriate for predictions in other spatial contexts.

 

2.

 

Modelling pollen dispersal via an individual dispersal function (IDF) circumvents
these problems by accounting for spatial designs. We detail for oilseed rape how this
approach can be used to both estimate an IDF from field data and predict CPR between
two neighbouring fields of various sizes and shapes. Predictions were used to investigate
the sensitivity of CPR to the family of IDF, the uncertainty in parameter estimates and
the effects of field dimensions and isolation distances.

 

3.

 

We fitted a range of families of IDF, including several types of tails, on previously
published data. The best IDF was a fat-tailed power-law function, meaning frequent
long-distance dispersal.

 

4.

 

The choice of IDF appeared crucial when predicting CPR between fields, occasionally
being even more important than the distance between fields. Width of the source field
and depth of the recipient field were next in importance. When approximated CPR were
calculated without considering field dimensions, using distance between field centres
gave better performance than field margins.

 

5.

 

Synthesis and applications.

 

 This study demonstrates the value of IDF for quantitative
predictions of pollen flow in variable spatial configurations. A spatially explicit model
of  agro-ecosystems used to define management rules for the commercial release of
GM crops in Europe already employs IDF but underestimates long-distance dispersal
for oilseed rape. These new parameter estimates will refine the performance of these
models. Moreover, the detailed guidelines for estimating an IDF should encourage
such statistical analysis of other dispersal data, enabling comparisons of dispersal data
obtained for different environments and species and providing new IDF for manage-
ment models.
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Introduction

 

The debate about the commercial release of GM plants
in the environment has stimulated research on quantita-
tive modelling of gene flow, particularly by pollen dispersal
(Beringer 2000; Gray 2004). Indeed, pollen flow is a main
cause of harvest pollution by cross-pollination between
genetically modified (GM) and non-GM fields (Rieger

 

et al

 

. 2002), introgression of  transgenes into wild
species through hybridization (Raybould & Gray 1993)
and stacking of transgenes following cross-pollination
among GM fields (Hall 

 

et al

 

. 2000) or between fields
and feral populations (Desplanque, Hautekeete &
Van Dijk 2002). The need for quantitative predictions
in different agricultural landscapes has been strengthened
recently by European legislation requiring low thresholds
of GM presence to avoid GM-labelling of feed and food
products. In order to derive landscape management
rules to limit cross-pollination, several recent spatially
explicit models (Thompson 

 

et al

 

. 1999; Colbach,
Clermont Dauphin & Meynard 2001; Wilkinson 

 

et al

 

.
2003) predict pollen flow among cultivated, wild and
feral plant populations that differ in size, shape, density
and isolation distance.

Long-distance pollination has been observed in oilseed
rape using male-sterile bait plants (2·5 km in Timmons

 

et al

 

. 1996; probably 26 km in Ramsay, Thompson &
Squire 2003) and male-fertile plants (400 m in Scheffler,
Parkinson & Dale 1995; 800 m in Beckie 

 

et al

 

. 2003;
3 km in Rieger 

 

et al

 

. 2002). Pollen is dispersed both
by wind and insects (Williams, Martin & White 1986;
Mesquida, Renard & Pierre 1988); the main insect
pollinators are honeybees and bumblebees (Pierre 

 

et al

 

.
2003; Cresswell & Osborne 2004). The relative contribu-
tion of wind and insects to transport and pollination is
as yet unresolved (Cresswell & Osborne 2004; Cresswell

 

et al

 

. 2004; Walklate 

 

et al

 

. 2004). There is some agree-
ment that insects carry pollen over short distances within
fields, but questions exist regarding their contribution
to pollination among fields or between fields and feral
populations. Pollen beetles may also contribute to very
long-distance pollen movement (Ramsay, Thompson
& Squire 2003). This lack of knowledge about pollen
vectors hinders the development of mechanistic models
for pollen dispersal at the landscape scale, despite a
wealth of published data (for an overview see Eastham
& Sweet 2002; for oilseed rape see Beckie 

 

et al

 

. 2003).
There are two main approaches to studying oilseed

rape pollination. The first is mechanistic and includes
examples addressing wind dispersal (Aylor, Schultes &
Shields 2003; Cresswell 

 

et al

 

. 2004; Walklate 

 

et al

 

. 2004),
insect-mediated dispersal (Cresswell, Osborne & Bell 2002;
Ramsay, Thompson & Squire 2003; Reboud 2003) and
their respective contributions (Mesquida, Renard & Pierre
1988). Despite significant advances recently, these mech-
anistic approaches are far from being integrated into
landscape models because of (i) the ‘cost’ of numerical
simulations, (ii) the necessity of many precise data to
perform the simulations and (iii) an imperfect under-

standing of the mechanisms. The second approach
models pollen dispersal statistically, by fitting dispersal
functions to data measured directly at the temporal
and spatial scales of  interest (Lavigne 

 

et al

 

. 2004).
Two phenomena are still poorly understood in these
approaches that render both estimation of dispersal
functions and their use for predictions difficult: (i)
the impact of sizes and shapes of both source and
receptor plots on cross-pollination rates (CPR) and (ii)
the amount of long-distance dispersal (Meagher &
Vassiliadis 2003).

The estimation of  dispersal functions does not
simply require fitting functions to CPR data. Indeed,
CPR data obtained from pollen-dispersal experiments
vary with the spatial shape of the experimental design
and misrepresent the effect of distance alone on gene
flow (Lavigne 

 

et al

 

. 1998; Meagher & Vassiliadis
2003). The impact of experimental design on CPR data
is illustrated by the variability of dispersal data when
presented only as a function of distance and not as a
function of the size and shape of pollen sources (Beckie

 

et al

 

. 2003). One way to account for variation in spatial
designs of cross-pollination experiments is to retrieve the
individual dispersal function (IDF) from observations
of CPR at different distances from a pollen source. This
IDF, also named dispersal kernel (Clark 

 

et al

 

. 1999),
describes the probability that a pollen grain dispersed
by a plant at point (0, 0) pollinates at any point (

 

x

 

, 

 

y

 

)
(Lavigne 

 

et al

 

. 1998). It is generally accepted that this
function depends less strongly on the spatial design than
the function describing the CPR at different distances,
and it can thus be used to predict effective dispersal under
different spatial designs. Despite the supplementary ‘cost’
in statistical analysis, this approach has been used several
times for pollen (Tufto, Engen & Hindar 1997; Lavigne

 

et al

 

. 1998; Klein 

 

et al

 

. 2003) and seed dispersal data
(Clark 

 

et al

 

. 1999).
Estimating the appropriate shape of the tail of the IDF

is critical (Clark, Lewis & Horvath 2001). Most dispersal
functions are ‘leptokurtic’, with dispersal to both short
and long distances occurring more frequently than they
would under a Gaussian function. However, among
leptokurtic functions different types of  tails exist,
such as thin-tailed functions (quicker decrease than an
exponential), exponential-like functions (long-range
decrease similar to an exponential) and fat-tailed
functions (slower decrease than an exponential). These
functions generate different colonization patterns (Clark,
Lewis & Horvath 2001), mixing of propagules and gene
flow at long distances (Devaux 

 

et al

 

. 2005).
In this study we (i) illustrate the process of estimating

and comparing IDF by reconsidering data from an oilseed
rape pollen-dispersal experiment (Lavigne 

 

et al

 

. 1998);
(ii) propose fitted functions for modellers wishing to
integrate a dispersal function in a model; (iii) derive
CPR predictions for different spatial designs and use
these predictions to test the sensitivity of the CPR to
shapes and sizes of  source and receptor plots and to
the choice of the IDF; and (iv) provide a first step in



         

scaling-up models of dispersal from the plant to the
plot scale by comparing different approximations in
the description of these source and receptor plots.

 

Materials and methods

 

 

 

The experiment was carried out in 1995 in Brittany, France.
It consisted of a 90 

 

×

 

 90-m field of conventional winter
oilseed rape (‘BOO4’ line), in the middle of which was
sown a 10 

 

×

 

 10-m plot of nearly isogenic winter oilseed
rape homozygous for a transgene conferring resistance
to oxynil herbicides (obtained by three back-crosses
from a Westar 

 

× 

 

BOO4 cross). Ten seeds of male-sterile
(MS) plants (ogu-INRA cytoplasmic male sterility)
were sown on each node of a 3 

 

×

 

 3-m grid covering the
entire field. At harvest, the seeds produced by these male-
sterile plants and by six neighbouring male-fertile (MF)
plants (biological receptors) were collected on each of
the 841 nodes of the grid.

This experiment took place at a flat site, surrounded
by open spaces (maize fields that were still barren when
oilseed rape bloomed) without any noticeable obstacle
(e.g. forest or hedges). The field was supplied with a bee
hive at its northern border. Wind data were recorded at
the Institut National de la Recherche Agronomique
(INRA) station near the field. Pollen dispersal occurred
mainly from week 16 to week 20 (17 April–21 May),
with a lower estimated density of flowers in the trans-
genic plot than in the surrounding conventional field
during the two main weeks of female receptivity (weeks
16–18). The GM plants had actually started flowering
earlier but their early racemes had been cut to provide
better synchrony. Bees were observed throughout the
field and we recorded no difference between the plots of
susceptible and resistant plants. Wind speed was quite
high over the period (maximal daily speed between 4 and
13 ms

 

−

 

1

 

, mean 

 

=

 

 7·7 ms

 

−

 

1

 

), mostly southwards and occa-
sionally south-eastwards and eastwards.

Two months later, seeds from each of the biological
receptors (841 MF and 841 MS) were weighed and sown
on separate plots using a maximum of 50 g seeds plant

 

−

 

1

 

.
To estimate the number of seedlings in each plot, we first
regressed the number of emergent seedlings on the mass
of  seeds sown for a subset of  29 plots and then used
this regression for all other plots. These seedlings were
sprayed twice with the herbicide Oxytril (Bayer Crop
Science), at the one- to two-leaf stage and 2 weeks later.
Surviving seedlings were counted as resistant.

The proportions of resistant seedlings for each receptor,
i.e. CPR, were then obtained as the ratio between the
number of resistant seedlings and the estimated number
of sprayed seedlings.

 

   

 

The IDF is a 2-dimensional probability density function

 

γ

 

(

 

x

 

, 

 

y

 

) describing the probability that a pollen grain

released by a plant located at (0, 0) pollinates a plant
located at (

 

x

 

, 

 

y

 

). We investigated eight families of IDF,
presented in Table 1 (from Tufto, Engen & Hindar 1997;
Clark 

 

et al

 

. 1999; Austerlitz 

 

et al

 

. 2004).
Thin-tailed functions included the exponential power

(with 

 

b

 

 

 

>

 

 1) and Weibull models (with 

 

b

 

 

 

>

 

 1); exponential-
like functions included exponential, exponential power
(with 

 

b

 

 

 

=

 

 1), Weibull (with 

 

b

 

 

 

=

 

 1) and gamma models; and
fat-tailed functions included the exponential power
(with 

 

b

 

 

 

<

 

 1) and Weibull models (with 

 

b

 

 

 

<

 

 1) as well as
three power-law tails, the geometric, logistic and 2Dt
models.

For all models, we ignore the exact behaviour around

 

d

 

 

 

=

 

 0 because we are mainly interested in the behaviour
of the tail, and because a 3 

 

×

 

 3-m grid does not allow
proper estimation of the decrease of the function over
the first 1·5 m. We use a parameter 

 

θ

 

, modelling the
proportion of pollen falling within the 3 

 

×

 

 3-m square
centred on the source plant. The IDF thus only describes
the way the 1 

 

−

 

 

 

θ

 

 remaining pollen grains are dispersed
outside of this square (see Appendix S1).

 

Modelling the observations with an IDF

 

Experimental results can be summarized in the set of data:

where (

 

x

 

k

 

, 

 

y

 

k

 

) is the position of the 

 

k

 

th node of the grid,
 are the numbers of  sprayed seedlings from

MS and MF plants at this node, and  are the
observed numbers of resistant seedlings.

The expected values of these observed numbers of
resistant seedlings are given by:

eqn 1

and

eqn 2

where 

 

s

 

 is the selfing rate, and A (respectively B) is the
set of only-resistant (respectively susceptible) plants.
The function 

 

µ

 

 provides the proportion of  pollen
grains containing the transgene (i.e. coming from any
resistant plant) in the pollen pool at point (

 

x

 

, 

 

y

 

). It can
be calculated from the IDF 

 

γ

 

 and the experimental
design (sets A and B):

eqn 3

where 

 

m

 

 is the relative pollen production of  1 m

 

2

 

 of
susceptible plants relative to 1 m

 

2

 

 of resistant plants.
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Equations 1 and 2 assume that the proportion of
resistant seeds produced by an MS plant is equal to the
proportion of pollen grains containing the transgene in
the pollen pool. In contrast, all seeds of an MF plant
contain the transgene if  the plant is transgenic (plants
are homozygous) and only the out-crossed seeds (in
proportion 1 

 

−

 

 

 

s

 

) contain the transgene in the propor-
tions given by the pollen pool if  the plant is susceptible.
Equation 3 expresses the proportion of pollen grains
containing the transgene in the pollen pool at point
(

 

x

 

, 

 

y

 

), obtained as the ratio of the amount of pollen
received from all the transgenic plants to that received
from all the plants of the field. This equation relies on
the assumptions that (i) all plants of one type produce
the same amount of pollen and (ii) all plants disperse
their pollen following the same IDF 

 

γ

 

. The parameter

 

m

 

 takes into account not only a difference in pollen
production between transgenic and susceptible plants
but also an asynchrony of flowering periods or differ-
ential pollination success on an ovule of a susceptible
plant.

Besides calculating expectations of   by
equations 1–3, we assume that these observations are
independent and follow binomial distributions. This
assumption allows a maximum likelihood estimation of
parameters 

 

s

 

 and 

 

m

 

, together with the parameters
of the IDF: 

 

θ

 

 and 

 

a

 

, 

 

b

 

, 

 

c

 

 or 

 

c

 

′

 

 depending on the family
of functions (Table 1). The method has already been
described and applied in Tufto, Engen & Hindar (1997)
and Klein 

 

et al

 

. (2003). We also computed confidence
intervals for the estimated parameters from the numer-
ical computation of the variance matrix following the
classical methods associated with log-likelihood (Reid
2002).

 

Predictions of field-to-field CPR in various 
configurations

Equations 1 and 2 can be used to predict the proportion
of seeds in field B that were sired by plants from field A
(see Appendix S1). To illustrate the relation between
spatial design and CPR, we predicted CPR for fields of

R Rk
ms

k
mf, 

Table 1. Families investigated for the IDF. For all these families, the parameter a acts as a scale parameter, whereas the b, c and c′ are shape parameters that

govern the shape of the IDF, particularly of its tail. In these expressions, d stands for  and Γ for the gamma function . To show

the effects of the different parameters in each model, we give the formula for the mean distance travelled by a pollen grain  For

the first four families, the mean distance decreases with the scale parameter a, whereas it increases with a for the last four families. For the exponential power
and Weibull functions, decreasing b leads to heavier tails. For the gamma function, increasing c leads to higher mean distances but the tail remains an
exponential-like one. For the last four families, the c and c′ parameters are exponents of the power-law tail: decreasing one of them leads to heavier tails,
and thus higher mean distances. See Austerlitz et al. (2004) for close expressions of these families and descriptions of the higher order moments
 

Kernel families Expression Parameter values Weight of the tail Mean distance

Exponential a > 0 Exponential 2/a

Exponential 
power

a > 0, b > 0 Thin for b > 1, fat for b < 1, 
exponential for b = 1

Weibull a > 0, b > 0 Thin for b > 1, fat for b < 1, 
exponential for b = 1

Gamma a > 0 Exponential-like c/a

Geometric a > 0, c > 2 Fat-tailed and power law

Logistic a > 0, c′ > 2 Fat-tailed and power law

2Dt a > 0, c > 1 Fat-tailed and power law

Generalized
logistic

a > 0, cc′ > 2 Fat-tailed and power law
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depths and widths DA × WA and DB × WB separated by
a distance d.

The distance d varied from 20 m to 230 m in 30-m
steps; the width parameters WA and WB varied from 60 m
to 210 m in 30-m steps; and the depth parameters DA

and DB varied from 50 m to 200 m in 30-m steps. The
largest design thus simulated two fields of area 4·2 ha
each, separated by 230 m. To predict CPR, we used a
selfing rate of  63% (see the Results) and no difference
in individual pollen production between plants of fields
A and B (m = 1 in equation 3). For each design we
computed the CPR with three models (exponential,
exponential power and logistic) and three IDF within
each model (estimated parameters, minimal and
maximal cases based on the bounds of the confidence
intervals; Table 3).

The predicted CPR in field B was the mean over set
B of the proportions of seeds sired by set A, i.e.:

eqn 4

where | B | = DBWB is the area of B.
Analyses of variance were conducted on all or part

of  the log(CPR) predicted, including effects of  the
distance d, dimensions (DA, WA, DB, WB) and, occa-
sionally, model, IDF and model × IDF. The mean
square of each effect was recorded.

The ‘exact’ prediction was compared with three
approximations:

eqn 5

eqn 6

eqn 7

The first approximation (equation 5) is obtained by
considering that (i) the amount of  external pollen is
low and (ii) almost the totality of the resident pollen
remains in the field. The denominator of equation 3 is
then close to 0 + m × 1.

The second and third approximations rely on the
supplementary assumption that (iii) γ is sufficiently
flat for the integrals to be equal to the value of the IDF
at a given distance (chosen as the distance between
fields) multiplied by the area covered by the integrals.
As between-field distances, equation 6 considers the
distance between the closest borders of the two fields
and equation 7 that between their central points.

Results

 ,   
  

The data showed dispersal events at all distances screened
(up to 50 m). The majority were concentrated in the
first few metres around the plot of resistant plants. The
CPR values observed at different distances (propor-
tions of resistant seedlings among all seeds collected at
that distance from the central plot) appeared consistent
with those from previous studies, with a rapid decrease
over the first metres from the source plot (Fig. 1 and
Table 2). The observed pattern of dispersal was globally
isotropic (Fig. 1), although a slight anisotropy had been
detected in Lavigne et al. (1998).

The difference between the proportions of resistant
seedlings in the MS progenies and in the MF progenies
(Fig. 1) was because of  the selfing rate s, which was
estimated at 63% regardless of  the dispersal model
chosen (Table 3). It was estimated that about 52% of
the pollen released by one plant remains in a square
of 9 m2 around this plant (almost independently of the
dispersal family, except for the exponential family).
This indicated that 52% of the pollen pool originated
from the 9 m2 surrounding each plant. These two values

Table 2. Number of seeds screened and number of resistant seedlings found for MS and MF plants at different distances from the
central plot containing resistant plants. The mean CPR obtained at different distances [CPR(MS) and CPR(MF)] are expressed
as a percentage
 

MS receptors MF receptors 

n No. R CPR(MS) n No. R CPR(MF)

Inside R patch  51 403 31 014 60·3
1·5 m (first crown)  123 108 5 906 4·80  111 661 2088 1·87
4− > 10 m  243 845 1 396 0·57  301 082 421 0·14
10− > 20 m  890 937  662 0·074  920 094 225 0·024
20− > 30 m 1 131 333  259 0·023 1 187 045 81 0·007
30− > 40 m 1 569 338  97 0·0062 1 706 260 102 0·0060
> 40 m (angles)  636 294  15 0·0024  636 945 17 0·0027
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explained the low proportions of resistant seedlings in
the progenies of susceptible MF plants (no observation
above 5%). The expected proportion of resistance in
the progeny of a susceptible MF plant growing in the
centre of a 9-m2 susceptible plot isolated in a resistant
field would only be about 15% [i.e. (1 − 0·63) × (1 − 0·52)].

Data collected from MS plants showed a strong asym-
metry between the proportions of susceptible seedlings
at the inside border of the central resistant patch (around
40%) and the proportion of  resistant seedlings just
outside its border (around 5%). This asymmetry was
not only because of the smaller size of the central patch
but also because of the lower pollen production of a GM
compared with a non-GM plant. The parameter m was
estimated to be around 1·9 (Table 3), which meant that
each 1 m2 of non-GM plants produced almost twice as
many efficient pollen grains as each 1 m2 of GM plants.
This was probably because of the cutting of early racemes
of resistant plants.

Among the families of IDF fitted to the data, the
exponential family achieved the poorest fit, with a log-
likelihood largely inferior to all the others (Table 3).
This was because of  an underestimate of  the pro-
portions of resistant seedlings both at short and long
distances from the central plot (Fig. 1). All the other
models succeeded in reaching a similar kind of decrease
(Fig. 2), adequately describing the observed pattern
of dispersal (Fig. 1) with similar log-likelihood scores
(Table 3). However, although the estimated IDF were
very similar on the observed range of  distances (0–
50 m; Fig. 2a), their extrapolation to larger distances
(up to 500 m; Fig. 2b) led to differences of several orders
of magnitude among models. These differences were
mostly dependent on the type of function tail. Note
that some models needed an extreme parameterization
to a typical geometric decrease that best explained the
data (Table 3): a low b estimate for the Weibull model
led to a function of form d −2 (negligible effect of the
exponential term), while an estimate of  a close to 0
for the gamma model led to a function of form d −2·51

(exponential term almost cancelled).
Finally, the power-law tails best described the disper-

sal of oilseed rape pollen and, among them, the logistic
model achieved the best fit. This was because of an S-
shape at short distances leading to a better description
of the observations in the vicinity of the resistant plot
(Fig. 2).

Fig. 1. Observed and predicted proportions of  resistant
seedlings in progenies as a function of the positions of the
sampled plants in the experimental field, for male-sterile
plants (left) and male-fertile plants (right). From top to bottom,
observations (crosses indicate missing data) and predictions
from the exponential, exponential power and logistic models.

Fig. 2. Log-plots of the estimated IDF for the seven families
of curves considered. (a) on a range of distances similar to
those observed (0–50 m) and (b) on an extrapolated range of
distances (up to 500 m). 1.E – 0x = 10–0x.
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For the best-fitting IDF (logistic model with estimated
parameters), the predicted CPR from a field A to a field
B ranged from 0·099% to 0·0001% (Fig. 3). The maximal
CPR was logically obtained when the largest field A
(4·2 ha) was contaminating the smallest field B (0·3 ha)
at the smallest distance (20 m) and, inversely, the
minimal CPR was obtained for the smallest field A,
the largest field B and the largest distance (230 m). As
expected, between-field distance had a major effect on
CPR: a reduction by almost two orders of magnitude

was obtained when this distance increased from 20 m
to 230 m. Furthermore the shape of the design played an
important role because, for a given distance, a reduction
by one order of magnitude of the CPR was obtained
between the ‘worst’ and the ‘best’ spatial configurations.
The CPR was most sensitive to the distance d [mean
squares (MS) = 421·7], the width of field A (MS = 69·7),
the depth of field B (MS = 27·0), the depth of field A (MS
= 11·3) and the width of field B (MS = 1·2). By consider-
ing more precisely the effects of these five parameters
on the CPR (Fig. 4), we found that increasing the distance
d decreased CPR in relation to the shape of  the IDF

Fig. 3. Log-plot of the cross-pollination rates between two
fields as a function of distance between these fields. Each point
is the result for one given spatial design (i.e. widths WA and WB

and depths DA and DB).

Fig. 4. Effects of the field sizes and distance between fields on
the cross-pollination-rate in field B (CB). For each curve, the
corresponding variable d, WA, WB, DA or DB is plotted on the
x-axis. The CPR (mean over all the combinations of the others
variables) is plotted on the y-axis.

Table 3. Maximum likelihood estimation of the parameters for the different models of IDF. –Ln is the opposite of the log-likelihood: the smaller the –Ln,
the better the fit to the data. θ is the proportion of pollen remaining in the 9-m2 square centred on a plant, and a, b, c, c′ are the parameters defined in Table 1.
δ is the mean dispersal distance of the estimated dispersal function. δ is not equal to what is expected from the mean distance formula in Table 1 because
θ is taken into account. α is the normalizing constant that corrects for the introduction of θ (see Appendix S1); 95% confidence intervals are given for each
parameter but because of strong correlations between parameter estimates they should not be read independently
 

Model –Ln θ a b c c′ δ m s α

Constant + negative
exponential (from 
Lavigne et al. 1998)

19871† 0·56 1·61 (1) 0·589 

Exponential 7236 0·63 0·284 – – 2·8 1·83 0·65 0·40
[0·58′′, 0·67′] [0·274′′, 0·294′] [1·75, 1·91] [0·61, 0·69]

Exponential power 5582 0·52 15·83 0·14 – 3·2 1·90 0·63 2·24
[0·03′′, 1·00′] [8·94′, 36·4′′] [0·07′′, 0·21′] [1·84, 1·97] [0·59, 0·67]

Weibull 5578 0·50‡ 10·97‡ 0·086‡ – 4·4 1·91 0·63 47779
[1·85, 1·98] [0·59, 0·66]

Gamma 5621 0·52 0·048 – −1·51 2·9 1·88 0·64 −0·41
[0·46, 0·58] [0·041, 0·055] [−1·60, −1·43] [1·82, 1·95] [0·61, 0·68]

Geometric 5564 0·52 1·04 – 3·46 4·2 1·90 0·63 1·02
[0·05, 0·98] [−0·6, 2·65] [2·84, 4·08] [1·83, 1·97] [0·60, 0·67]

Logistic 5546 0·55 32·3 – 3·32 4·8 1·90 0·63 0·53
[0·47′′, 0·63′] [3·8′′,53·2′] [3·12′′, 3·52′] [1·84, 1·97] [0·59, 0·67]

2Dt 5555 0·54 4·06 – 1·66 4·7 1·91 0·63 0·66
[0·42, 0·66] [1·29, 6·82] [1·57, 1·76] [1·83, 1·97] [0·60, 0·67]

Generalized Logistic 5546 0·55‡ 32·3‡ – 0·999‡ 3·26‡ 4·8‡ 1·91 0·63 0·53
[1·83, 1·97] [0·60, 0·67]

′ and ″ in confidence intervals indicate the values used, respectively, as minimal and maximal cases to predict the CPR (see the Material and methods).
†The likelihood of the two sets of observations (MS and MF receptors) has been recalculated with the model fitted in Lavigne et al. (1998).
‡For numerical reasons, the computation of the confidence interval failed.



[at least far from (0, 0)]. Increasing the width of A (WA)
increased CPR almost linearly (at least for large distances
between A and B; results not shown). This was because
increasing WA increased the number of donor plants at
similar distances from B. Increasing the depth of B (DB)
resulted in a reduction of CPR because fewer and fewer
contaminated recipient plants were added as DB increased,
i.e. there was a dilution effect. Similarly, increasing the
depth of A (DA) increased CPR less than linearly, because
increasing DA resulted in adding donor plants at increas-
ing distances from B. No effect of DA would have meant
that only the border of the donor field contributed signi-
ficantly to the CPR in the recipient field. Finally, increas-
ing the width of B (WB) only slightly decreased CPR. The
recipient plants added to increase WB were at similar
distances from A as recipient plants already present when
B was not wider than A, and at slightly larger distances
otherwise. This latter effect was larger for short distances,
d (results not shown), because new plants were added at
relatively larger distances in that case.

The relative influence of these four parameters was
model dependent. The thinner the tail, the greater the
contribution of depth of B and the lesser the contribu-
tion of the depth of A [MS(DB)/MS(WA) = 0·38, 0·62
and 1·56, and MS(DA)/MS(WA) = 0·16, 0·08 and 0·008,
for logistic, exponential power and exponential IDF,
respectively]. Thinner tails were steeper, resulting in
a larger dilution effect when increasing DB and a larger
role of the donor border.

The IDF was the main factor underlying the predicted
CPR. Just considering the two fat-tailed models with
three IDF each (estimated, minimal and maximal cases;
Table 3), the model, IDF and their interaction had effects
similar to that of distance and more important than that
of  spatial design [MS(d ) = 3913; MS(model) = 3119;
MS(IDF) = 8080; MS(model × IDF) = 1205; MS(WA)
= 404]. Finally, when only the three IDF from the logistic
model were considered, the effect of the IDF was in-
between that of distance and that of the width of the donor
field [MS(d ) = 1269; MS(IDF) = 529; MS(WA) = 209].

The three approximations proposed to simplify the
predictions of CPR led to contrasting results. The first
approximation,  (equation 5), always slightly under-
estimated the true CPR (Fig. 5a) independently of the
spatial design. In contrast, the two linear approxima-
tions of the effect of field size (  and ) led to large
biases in the approximated CPR (Fig. 5b) and were
particularly poor at smaller distances d (results not
shown). The border-to-border approximation  per-
formed particularly badly, always leading to an over-
estimation of the CPR, often by one order of magnitude
and sometimes by two. The middle-to-middle approxima-
tion  performed better, leading to underestimations
that almost never reached one order of magnitude.

Discussion

IDF can be estimated from data and used for predictions,
as shown for oilseed rape pollen using data from Lavigne

et al. (1998). Lavigne et al. (1998) mainly presented a
non-parametric approach leading to a 2-dimensional
estimation of  the IDF that proved difficult to use to
predict gene flow in various spatial configurations. A first
parametric estimation had also been attained (recalled
here in Table 3) but was much improved in the present
study by (i) taking into account the difference in pollen
production between resistant and susceptible plants,
(ii) simultaneously using the two data sets from MS
and MF plants, (iii) exploring a wide range of dispersal
models and (iv) using a maximum likelihood estimator
rather than a least-square estimator. These improvements
led to satisfactory fits and to more convincing IDF.

Fat-tailed and especially power-law functions achieved
the better fits, with a slight advantage for the logistic model.
This result emphasizes the relevance of considering long-
distance dispersal. In particular, the classical exponential
decreasing function (Timmons et al. 1996; Staniland
et al. 2000) clearly appeared inadequate for describing
the pattern observed in our experiment. The exponential
power model also led to an even fatter tail (b smaller) than
those estimated by Gliddon (1999), probably because
we disconnected the behaviour of the function at 0 and
at long distances. Finally, the best fit was obtained with
a power-law decrease (with exponent −3·32 ± 0·20). This
power law is consistent with other recent models for the
dispersal of oilseed rape pollen. Wilkinson et al. (2003)
used a power law with exponent −0·75 and Walklate et al.

′CB

′′CB ′′′CB

′′CB

′′′CB

Fig. 5. Comparisons of exact (on x-axis, and thus diagonal)
and approximated (on y-axis) CPR. (a) Approximation given
by equation 5, considering the denominator of equation 3 is
equal to m. (b) Approximations that assume linear effects of
the field sizes and use border-to-border distance (diamonds,
above the diagonal) and middle-to-middle distance (squares,
below the diagonal) (equations 6 and 7).



(2004) present a mechanistic model leading to a power-law
decay with exponent ∼ −4.

The parametric estimation of an IDF makes it possible
to predict gene flow in spatial configurations including
larger distances than those used for the estimation. How-
ever, this benefit must be used with caution because, as
shown, extrapolations to larger distances may be very
sensitive to the dispersal function, and particularly to
characteristics of its tail. The major importance of the
model effect in the sensitivity analysis also stressed the
necessity to explore several types of models. Furthermore,
predictions were also largely sensitive to uncertainty
in parameter estimates. IDF thus need be estimated
with care, and the effects of environmental conditions
(e.g. wind regime, insect activity, local topography and
obstacles) on the shape of IDF need further investiga-
tion. More generally, extrapolations need to be validated
on a broader range of distances by collecting data over
larger scales (Beckie et al. 2003; Ramsay, Thompson &
Squire 2003; Devaux et al. 2005).

As a first attempt, we compared the CPR predicted
from the logistic model fitted here with experimental
results from the literature. Our predictions roughly agree
with experimental CPR (in parentheses) for adjacent
plots in Scheffler, Parkinson & Dale (1993): we predicted
CPR of 2·0% (1·6%), 0·47% (0·4%), 0·16% (0·11%),
0·10% (0·016%), 0·02% (0·0041%), 0·006% (0·0011%),
0·001% (0·00034%) and 0·0004% (0·0%). Our predic-
tions are also close to those of Walklate et al. (2004),
who fit their model to these same data. However, we
underestimated, sometimes greatly, the CPR between
distant fields. For example, the predicted maximal CPR
for a 1 × 1-km field to a 0·5 × 0·5-km field was 2 · 10−4 %,
5 · 10−5 % and 8 · 10−6 % for isolation distances of 200 m,
1000 m and 3000 m, respectively, while Rieger et al. (2002)
observed on average 9 · 10−3 %, independently of  the
distance. Not considering the effect of gaps between two
plots (Reboud 2003) may explain these underestimations,
especially as oilseed rape is partly insect pollinated.
This confirms that the functions fitted here are more
adequate for predictions in the range where they were
fitted (no gaps, several dozens of metres) than for large-
scale extrapolations. It thus appears inappropriate to
use these predictions directly for determining isolation
distances (which would probably be underestimated)
or for providing management rules for GM crops. Further-
more, risk assessment and management should be con-
sidered at the landscape scale (e.g. GeneSys; Colbach,
Clermont Dauphin & Meynard 2001).

The models presented here are based on a dispersal
kernel approach (Clark et al. 1999). They thus rely on the
fundamental assumptions that all MF plants disperse
their pollen following the same IDF, and that female
flowers simply sample pollen grains in the resulting pollen
pool without affecting the dispersal pattern. Although
this approach is not specific to wind-borne pollen, these
assumptions are probably less well founded for insect
pollination. For example, plants at the field border may
disperse their pollen further than plants inside the field

because their pollinators may more often fly between
fields. This would lead to higher CPR than predicted with
no effect of gaps (Reboud 2003). Furthermore, even within
species, plants differ in their attractiveness depending
on their genotype, physiological status and level of
isolation. New modelling approaches may be necessary
for large-scale pollen dispersal of  oilseed rape in an
agricultural landscape.

Although extrapolations must be considered cautiously,
some general conclusions on the impact of spatial design
emerge from the predictions. Our results indicate that
a spatial approach appears necessary when modelling
between-field gene flow. Representing fields as point
sources, possibly weighted by their area, is insufficient.
Although the distance between fields appeared as the
main parameter determining the CPR, the shape of the
design also had a large impact, modifying the CPR by
one order of magnitude. For fat-tailed IDF, width of the
source plot and depth of the receptor plot influenced
most the CPR, followed by the depth of the source and,
lastly, the width of the receptor. Mechanisms under-
lying these differences in sensitivity are rather simple.
Increasing the depth of the receptor plot dilutes the
pollen flow from the source plot, while increasing its
width only has a dilution effect if  the new plants are
set at larger distances than plants already present.
Similarly, increasing the width of the source increases
the number of plants with high contributions to the
CPR, while increasing its depth increases the number
of distant and thus little contaminating plants.

Predicting CPR with IDF is the approach currently
used in two models, GeneSys on oilseed rape (Colbach,
Clermont Dauphin & Meynard 2001) and Mapod on
maize (Angevin et al. 2003), for coexistence studies
at the European level. One IDF is used in each of these
models, each fitted on a single data set. Although their
predictions are being validated on numerous data sets,
the lack of other available IDF makes it impossible to
test the sensitivity of their predictions and conclusions
on management strategies to the uncertainty on pollen
dispersal. The approach presented here could thus be
applied to other data sets to provide such IDF. Running
these models has proved that the exact calculation of
CPR described here is very time consuming when deal-
ing with large areas. We thus investigated the validity of
classical approximations that could enhance modelling
efficiency. The approximations tested here were not very
satisfactory for solving this practical drawback. The
first approximation (equation 5) gave good predictions
but required the time-consuming calculation of  a
convolution product. The second (equation 6), con-
sidering only the distance between field borders, greatly
overestimated the CPR and was obviously not adequate.
The third (equation 7) performed better but always under-
estimated the CPR because plot areas do not have
linear effects on CPR. For an efficient integration of the
IDF approach in landscape models, further work is still
needed to find an approximation balancing accuracy of
the CPR prediction and ease of computation.



Acknowledgements

We are grateful to P. Hulme, J. Cresswell, J. Pierre, J.
Shykoff and C. Devaux and referees for improving this
manuscript. This work was partially supported by the
programme ‘AIP OGM et environnement’ funded by
INRA.

References
Angevin, F., Roturier, C., Meynard, J.M. & Klein, E.K.

(2003) Co-existence of GM, non-GM and organic maize
crops in European agricultural landscapes: using MAPOD
model to design necessary adjustments of farming prac-
tices. Proceedings of the First European Conference on the
Co-Existence of Genetically Modified Crops with Conven-
tional and Organic Crops, Borupsgaard, 13–14 November
2003 (ed. B. Boelt), pp. 166–168. Danish Institute of Agri-
cultural Sciences, Slagelse, Denmark.

Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-
Muratorio, S., Smouse, P.E. & Sork, V.L. (2004) Using
genetic markers to estimate the pollen dispersal curve.
Molecular Ecology, 13, 937–954.

Aylor, D.E., Schultes, N.P. & Shields, E.J. (2003) An aerobio-
logical framework for assessing cross-pollination in maize.
Agricultural and Forest Meteorology, 119, 111–129.

Beckie, H.J., Warwick, S.I., Harikumar, N. & Séguin-Swartz, G.
(2003) Gene flow in commercial fields of herbicide-resistant
canola (Brassica napus). Ecological Applications, 13, 1276–1294.

Beringer, J.E. (2000) Releasing genetically modified organ-
isms: will any harm outweigh any advantage? Journal of
Applied Ecology, 37, 207–214.

Clark, J.S., Lewis, M. & Horvath, L. (2001) Invasion by
extremes: population spread with variation in dispersal and
reproduction. American Naturalist, 157, 537–554.

Clark, J.S., Silman, M., Kern, R., Macklin, E. & HilleRis-
Lambers, J. (1999) Seed dispersal near and far: patterns
across temperate and tropical forests. Ecology, 80, 1475–1494.

Colbach, N., Clermont Dauphin, C. & Meynard, J.M. (2001)
GENESYS: a model on the influence of  cropping system
on gene escape from herbicide tolerant rapeseed crops to
volunteers. II. Genetic exchanges among volunteer and
cropped populations in a small region. Agriculture Ecosys-
tems and Environment, 82, 255–270.

Cresswell, J.E. & Osborne, J.L. (2004) The effect of patch size
and separation on bumblebee foraging in oilseed rape:
implications for gene flow. Journal of Applied Ecology, 41,
539–546.

Cresswell, J.E., Davies, T.W., Patrick, M.A., Russell, F.,
Pennel, C., Vicot, M. & Lahoubi, M. (2004) Aerodynamics
of wind pollination in a zoophilous flower, Brassica napus.
Functional Ecology, 18, 861–866.

Cresswell, J.E., Osborne, J.L. & Bell, S.A. (2002) A model of
pollinator-mediated gene flow between plant populations
with numerical solutions for bumblebees pollinating oilseed
rape. Oikos, 98, 375–384.

Desplanque, B., Hautekeete, N. & Van Dijk, H. (2002)
Transgenic weed beets: possible, probable, avoidable?
Journal of Applied Ecology, 39, 561–571.

Devaux, C., Lavigne, C., Falentin-Guyomarc’h, H.,
Vautrin, S., Lecomte, J. & Klein, E.K. (2005) High diversity
of  oilseed rape pollen clouds over an agro-ecosystem
indicates long-distance dispersal. Molecular Ecology, 14,
2269–2280.

Eastham, K. & Sweet, J. (2002) Genetically Modified Organ-
isms (Gmos): the Significance of Gene Flow Through Pollen
Transfer. Report No. 28. European Environment Agency,
Luxembourg.

Gliddon, C.J. (1999) Gene flow and risk assessment. Gene
Flow and Agriculture. Relevance for Transgenic Crops (ed.

P.J.W. Lutman), pp. 49–56. British Crop Protection Council,
University of Keele, UK.

Gray, A.J. (2004) Ecology and government policies: the GM
crop debate. Journal of Applied Ecology, 41, 1–10.

Hall, L., Topinka, K., Huffman, J., Davis, L. & Good, A.
(2000) Pollen flow between herbicide-resistant Brassica
napus is the cause of multiple-resistant B-napus volunteers.
Weed Science, 48, 688–694.

Klein, E.K., Lavigne, C., Foueillassar, X., Gouyon, P.H. &
Larédo, C. (2003) Corn pollen dispersal: quasi-mechanistic
models and field experiments. Ecological Monographs, 73,
131–150.

Lavigne, C., Devaux, C., Deville, A., Garnier, A., Klein, E.K.,
Lecomte, J., Pivard, S. & Gouyon, P.H. (2004) Potentials
and limits of modelling to predict the impact of transgenic
crops in wild species. Introgression from Genetically
Modified Plants Into Wild Relatives (eds H.C.M. den Nijs,
D. Bartsch & J. Sweet), pp. 353–361. CABI Publishing,
Wallingford, UK.

Lavigne, C., Klein, E.K., Vallée, P., Pierre, J., Godelle, B. &
Renard, M. (1998) A pollen-dispersal experiment with
transgenic oilseed rape. Estimation of the average pollen
dispersal of an individual plant within a field. Theoretical
and Applied Genetics, 96, 886–896.

Meagher, T.R. & Vassiliadis, C. (2003) Spatial geometry
determines gene flow in plant populations. Genes in the
Environment (eds R. Hails, J. Beringer & H.C.J. Godfray),
pp. 76–90. Blackwell Science, Oxford, UK.

Mesquida, J., Renard, M. & Pierre, J.S. (1988) Rapeseed
(Brassica napus L.) productivity: the effect of honeybees
(Apis mellifera L.) and different pollination conditions in
cage and field tests. Apidologie, 19, 51–72.

Pierre, J., Marsault, D., Genecque, E., Renard, M., Champolivier,
J. & Pham-Delegue, M.H. (2003) Effects of  herbicide-
tolerant transgenic oilseed rape genotypes on honey bees
and other pollinating insects under field conditions. Entomo-
logia Experimentalis et Applicata, 108, 159–168.

Ramsay, G., Thompson, C. & Squire, G. (2003) Quantifying
Landscape-Scale Gene Flow in Oilseed Rape. Defra Project
RG0216 Final Report. Department for Environment, Food
and Rural Affairs, London, UK.

Raybould, A.F. & Gray, A.J. (1993) Genetically modified
crops and hybridization with wild relatives: a UK perspec-
tive. Journal of Applied Ecology, 30, 199–219.

Reboud, X. (2003) Effect of a gap on gene flow between other-
wise adjacent transgenic Brassica napus crops. Theoretical
and Applied Genetics, 106, 1048–1058.

Reid, N. (2002) Likelihood. Statistics in the 21st Century
(eds A.E. Raftery, M.A. Tanner & M.T. Wells), pp. 419–
430. Chapman & Hall/CRC, Boca Raton, FL.

Rieger, M.A., Lamond, M., Preston, C., Powles, S.B. &
Rousch, R.T. (2002) Pollen-mediated movement of herbi-
cide resistance between commercial canola fields. Science,
296, 2386–2388.

Scheffler, J.A., Parkinson, R. & Dale, P.J. (1993) Frequency
and distance of pollen dispersal from transgenic oilseed
rape (Brassica napus). Transgenic Research, 2, 356–364.

Scheffler, J.A., Parkinson, R. & Dale, P.J. (1995) Evaluating
the effectiveness of isolation distances for field plots of
oilseed rape (Brassica napus) using a herbicide-resistance
transgene as a selectable marker. Plant Breeding, 114, 317–
321.

Staniland, B.K., McVetty, P.B.E., Friesen, L.F., Yarrow, S.,
Freyssinet, G. & Freyssinet, M. (2000) Effectiveness of bor-
der areas in confining the spread of transgenic Brassica
napus pollen. Canadian Journal of Plant Science, 80, 521–
526.

Thompson, C.E., Squire, G., Mackay, G.R., Bradshaw, J.E.,
Crawford, J. & Ramsay, G. (1999) Regional patterns of gene
flow and its consequences for GM oilseed rape. Gene Flow
and Agriculture. Relevance for Transgenic Crops (ed. P.J.W.



Lutman), pp. 95–100. British Crop Protection Council,
University of Keele, UK.

Timmons, A.M., Charters, Y.M., Crawford, J.W., Burn, D.,
Scott, S.E., Dubbels, S.J., Wilson, N.J., Robertson, A.,
O’Brien, E.T., Squire, G.R. & Wilkinson, M.J. (1996) Risks
from transgenic crops. Nature, 380, 487.

Tufto, J., Engen, S. & Hindar, K. (1997) Stochastic dispersal
processes in plant populations. Theoretical Population Biol-
ogy, 52, 16–26.

Walklate, P.J. Hunt, J.C.R. Higson, H.L. & Sweet, J.B. (2004)
A model of pollen-mediated gene flow for oilseed rape. Pro-
ceedings of the Royal Society of London Series B, 271, 441–449.

Wilkinson, M.J., Elliott, L.J., Allainguillaume, J., Shaw,
M.W., Norris, C., Welters, R., Alexander, M., Sweet, J. &
Mason, D.C. (2003) Hybridization between Brassica napus
and B. rapa on a national scale in the United Kingdom.
Science, 302, 457–459.

Williams, I.H., Martin, A.P. & White, R.P. (1986) The
pollination requirements of  oil-seed rape (Brassica
napus L.). Journal of Agricultural Science (Cambridge),
106, 27–30.

http://www.blackwell-synergy.com

