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Introduction

A complex manifold X is hyperbolic in the sense of S. Kobayashi if the hyperbolic pseudodistance defined on X is a distance (see, for example, [START_REF] Kobayashi | Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften[END_REF]). In the case of hypersurfaces in P n , we have the logarithmic Kobayashi conjecture [START_REF] Kobayashi | Hyperbolic manifolds and holomorphic mappings[END_REF]:

Conjecture 1 P n \X (n ≥ 2) is hyperbolic for a generic hypersurface X ⊂ P n of degree deg X ≥ 2n + 1.
Here we will study the case of complements of curves in P 2 . Several authors have studied this case, especially when the curve has several irreducible 1 components. It is well known that the conjecture is the more difficult the smaller the logarithmic irregularity (equivalently the number of irreducible components) is. The conjecture is known to be true for logarithmic irregularity equal to 2 or more (equivalently 3 or more irreducible components). We refer to [START_REF] Dethloff | Hyperbolicity of the complements of plane algebraic curves[END_REF], [START_REF] Dethloff | On the hyperbolicity of the complements of curves in algebraic surfaces: the three component case[END_REF] and [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] for the details and the references for these cases. In the case of logarithmic irregularity equal to 2, Dethloff and Lu proved in [START_REF] Dethloff | Logarithmic surfaces and hyperbolicity[END_REF] that every Brody curve in the complement of a normal crossing curve in P 2 of degree at least 4 consisting of three components is algebraically degenerate. See also [START_REF] Noguchi | Degeneracy of holomorphic curves into algebraic varieties[END_REF] for more general results on the algebraic degeneracy of entire curves when the logarithmic irregularity is equal to the dimension of the manifold.

When the logarithmic irregularity is strictly smaller than the dimension of the manifold, much less is known. In this paper, we are interested in the more difficult cases where the logarithmic irregularity is strictly smaller than 2, i.e the curve is either smooth or has two irreducible components. For the complement of smooth curves, studying the compact analogue of the above conjecture, Demailly and El Goul obtained in [START_REF] Demailly | Hyperbolicity of generic surfaces of high degree in projective 3-space[END_REF] that complements of very generic curves in P 2 of degree d ≥ 21 are hyperbolic. Later, using logarithmic jets, El Goul improved that result in [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF] obtaining the bound 15. Using different techniques we obtain here Theorem 2 Let C be a very generic irreducible complex algebraic curve in P 2 of degree d. Then P 2 \C is hyperbolic and hyperbolically embedded in P 2 if d ≥ 14.

Previously in [START_REF] Rousseau | Hyperbolicité du complémentaire d'une courbe : le cas de deux composantes[END_REF] we obtained some results for the two-components case. Using the same techniques as in the proof of the previous theorem we improve them by the following result The proofs of these two results are based on techniques introduced by Siu and Paun (see [START_REF] Siu | Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel[END_REF], [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF], [START_REF] Rousseau | Weak analytic hyperbolicity of generic hypersurfaces of high degree in P 4[END_REF] and [START_REF] Rousseau | Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space[END_REF]).

The first one is a generalization in the logarithmic setting of an approach initiated by Clemens [START_REF] Clemens | Curves on generic hypersurface[END_REF], Ein [START_REF] Ein | Subvarieties of generic complete intersections[END_REF], Voisin [START_REF] Voisin | On a conjecture of Clemens on rational curves on hypersurfaces[END_REF] and used by Y.-T. Siu [START_REF] Siu | Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel[END_REF] and M. Paun [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF] to construct vector fields on the total space of hypersurfaces in the projective space. Here we construct vector fields on logarithmic spaces.

The second one is based on bundles of logarithmic jet differentials (see [START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF]). The idea, in hyperbolicity questions, is that global sections of these bundles vanishing on ample divisors provide algebraic differential equations for any entire curve f : C → X\D where D is a normal crossing divisor on X. Therefore, the main point is to produce enough algebraically independent global holomorphic logarithmic jet differentials.

Logarithmic jet bundles

In this section we recall briefly the basic facts and results of J. Noguchi in [START_REF] Noguchi | Logarithmic jet spaces and extensions of de Franchis' Theorem, Contributions to Several Complex Variables[END_REF] about logarithmic jet bundles. We refer to [START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF] and [START_REF] Rousseau | Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space[END_REF] for details.

Let X be a complex manifold of dimension n. Denote by J k X the k-jet bundle over X. Let T * X be the holomorphic cotangent bundle over X. Take a holomorphic section ω ∈ H 0 (O, T * X ) for some open subset O. For j k (f ) ∈ J k X |O , we have f * ω = Z(t)dt and a well defined holomorphic mapping

ω : J k X |O → C k ; j k (f ) → d j Z dt j (0) 0≤j≤k-1
.

If ω 1 , . . . , ω n are holomorphic 1-forms on O such that ω 1 ∧• • •∧ω n vanishes nowhere, then we have a biholomorphic map

( ω 1 , . . . , ω n ) × π : J k X |O → C k n × O,
which gives the trivialization of J k X |O associated to ω 1 , . . . , ω n .

Let X be a complex manifold with a normal crossing divisor D. Consider the log manifold (X, D). Let X = X\D. Denote by T *

X = T * X (log D) the logarithmic cotangent sheaf. Let s ∈ H 0 (O, J k X) be a holomorphic section over an open subset O ⊂ X. We say that s is a logarithmic k-jet field if the map ω • s |O ′ : O ′ → C k is holomorphic for all ω ∈ H 0 (O ′ , T * X ) for all open subsets O ′ of O.
The set of logarithmic k-jet fields over open subsets of X defines a subsheaf of the sheaf J k X, which we denote by J k X. J k X is the sheaf of sections of a holomorphic fibre bundle over X, denoted again J k X and called the logarithmic k-jet bundle of (X, D).

A log-morphism F : (X ′ , D ′ ) → (X, D) induces a canonical map

F k : J k X ′ → J k X.
We can express the local triviality of J k X explicitly in terms of coordinates. Let z 1, . . . , z n be coordinates in an open set O ⊂ X in which

D = {z 1 z 2 . . . z l = 0}. Let ω 1 = dz 1 z 1 , . . . ω l = dz l z l , ω l+1 = dz l+1 , . . . , ω n = dz n . Then we have a biholomorphic map ( ω 1 , . . . , ω n ) × π : J k X |O → C k n × O.
Let s ∈ H 0 (O, J k X) be given by s(x) = (ξ (i) j (x), x) in this trivialization where the indices i correspond to the orders of derivative. Then the same s considered as an element of H 0 (O, J k X) and trivialized by ω 1 = dz 1 , . . . ω n = dz n is given by s(x) = ( ξ

(i) j (x), x) where ξ (i) j = z i (ξ (i) j + g i (ξ (1) j , . . . , ξ (i-1) j )) : j ≤ l, ξ (i) j : j ≥ l + 1.
The g i are polynomials in the variables ξ In summary, we have a holomorphic coordinate system on J k X |O given by (ξ

(1) 1 . . . , ξ (k) 
n ; z 1 , . . . , z n ) and one on J k X |O given by ( ξ

(1) 1 . . . , ξ (k) n ; z 1 , . . . , z n ).
The previous relation exhibits the sheaf inclusion J k X |O ⊂ J k X |O . We will use these coordinates for the computations of the next section.

Logarithmic vector fields 3.1 The smooth case

In this section we generalize the approach used in [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF] (see also [START_REF] Pacienza | On the logarithmic Kobayashi conjecture[END_REF] and [START_REF] Rousseau | Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space[END_REF]) to logarithmic jet bundles. Once we have the logarithmic tools of the previous section, the explicit construction of the vector fields on logarithmic jet spaces is very similar to the compact case treated in [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF]. Nevertheless, we provide the details of the computations for the convenience of the reader.

Let X ⊂ P 2 ×P N d be the universal curve of degree d given by the equation

|α|=d a α Z α = 0, where [a] ∈ P N d and [Z] ∈ P 2 .
We use the notations:

for α = (α 0 , . . . , α 2 ) ∈ N 3 , |α| = i α i and if Z = (Z 0 , Z 1 , Z 2 ) are homogeneous coordinates on P 2 , then Z α = Z α j j . X is a smooth hypersurface of degree (d, 1) in P 2 × P N d .
We consider the log-manifold (P 2 × P N d , X ). We denote by J 2 (P 2 × P N d ) the manifold of the logarithmic 2-jets, and J v 2 (P 2 × P N d ) the submanifold of J 2 (P 2 × P N d ) consisting of 2-jets tangent to the fibers of the projection

P 2 × P N d → P N d .
We are going to construct meromorphic vector fields on

J v 2 (P 2 × P N d ). Let us consider Y = (a 000d Z d 3 + |α|=d a α Z α = 0) ⊂ P 3 × U,
where

U := (a 000d = 0) ∩ ∪ |α|=d,α n+2 =0
(a α = 0) ⊂ P N d +1 . We have the projection π : Y → P 2 × P N d and π -1 (X ) = (Z 3 = 0) := H. Therefore we obtain a log-morphism π : (Y, H)

→ (P 2 ×P N d , X ) which induces a dominant map π 2 : J v 2 (Y) → J v 2 (P 2 × P N d ). Let us consider the set Ω 0 := (Z 0 = 0) × (a 000d = 0) ⊂ P 3 × U. We assume that global coordinates are given on C 3 and C N d +1 . The equation of Y becomes Y 0 := (z d 3 + α a α z α = 0).
Following [START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF] as explained above, we can obtain explicitly a trivialization of

J 2 (Ω 0 ). Let ω 1 = dz 1 , ω 2 = dz 2 , ω 3 = dz 3 z 3 . Then we have a biholomorphic map J 2 (Ω 0 ) → C 3 × U × C 3 × C 3 ,
where the coordinates will be denoted (z i , a α , ξ

(i) j ).
Let us write the equations of J v 2 (Y 0 ) in this trivialization. We have

J v 2 (Y 0 ) = J v 2 (Y 0 ) ∩ J 2 (Ω 0 ). The equations of J v 2 (Y 0 ) in the trivialization of J 2 (Ω 0 ) given by ω 1 = dz 1 , ω 2 = dz 2 , ω 3 = dz 3 can be written in C 3 × U × C 3 × C 3 with coordinates (z i , a α , ξ (i)
j ) as follows:

z d 3 + |α|≤d a α z α = 0, dz d-1 3 ξ (1) 3 + 2 j=1 |α|≤d a α ∂z α ∂z j ξ (1) 
j = 0, dz d-1 3 ξ (2) 3 +d(d-1)z d-2 3 ξ (1) 3 2 + 2 j=1 |α|≤d a α ∂z α ∂z j ξ (2) j + 2 j,k=1 |α|≤d a α ∂ 2 z α ∂z j ∂z k ξ (1) j ξ (1) 
k = 0.
The relations between the two systems of coordinates can be computed as explained above and are given by

ξ (i) j = ξ (i) j for j ≤ 2, ξ (1) 3 
= z 3 ξ (1) 3 , ξ (2) 3 = z 3 ξ (2) 3 + ξ (1) 3 2 .
Therefore, to obtain the equations of J v 2 (Y 0 ) in the first trivialization, we just have to substitute the previous relations

z d 3 + |α|≤d a α z α = 0, ( 1 
)
dz d 3 ξ (1) 3 + 2 j=1 |α|≤d a α ∂z α ∂z j ξ (1) j = 0, ( 2 
)
dz d 3 ξ (2) 3 +d 2 z d 3 ξ (1) 3 2 + 2 j=1 |α|≤d a α ∂z α ∂z j ξ (2) j + 2 j,k=1 |α|≤d a α ∂ 2 z α ∂z j ∂z k ξ (1) j ξ (1) 
k = 0. ( 3 
)
Following the method used in [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF] and [START_REF] Rousseau | Weak analytic hyperbolicity of generic hypersurfaces of high degree in P 4[END_REF] for the compact case, we are going to prove that

T J v 2 (Y) ⊗ O P 4 (c) ⊗ O P N d +1 ( * ) is generated by its global sec- tions on J v 2 (Y)\(Σ ∪ p -1 (H)), where p : J v 2 (Y) → Y is the natural projection,
Σ a subvariety that will be defined below, and c ∈ N a constant independant of d. Consider a vector field

V = |α|≤d v α ∂ ∂a α + j v j ∂ ∂z j + j,k w (k) j ∂ ∂ξ (k) j , on C 3 × U × C 3 × C 3 .
The conditions to be satisfied by V to be tangent to

J v 2 (Y 0 ) are the following |α|≤d v α z α + 2 j=1 |α|≤d a α ∂z α ∂z j v j + dz d-1 3 v 3 = 0, ( 4 
)
2 j=1 |α|≤d v α ∂z α ∂z j ξ (1) j + 2 j,k=1 |α|≤d a α ∂ 2 z α ∂z j ∂z k v j ξ (1) k + 2 j=1 |α|≤d a α ∂z α ∂z j w (1) j +d 2 z d-1 3 v 3 ξ (1) 
3 + dz d 3 w

(1)

3 = 0, (5) |α|≤d ( 2 j=1 
∂z α ∂z j ξ

(2)

j + 2 j,k=1 ∂ 2 z α ∂z j ∂z k ξ (1) j ξ (1) 
k )v α + 2 j=1 |α|≤d a α ( 2 k=1 ∂ 2 z α ∂z j ∂z k ξ (2) k + 2 k,l=1 ∂ 3 z α ∂z j ∂z k ∂z l ξ (1) 
k ξ

(1)

l )v j + |α|≤d ( 2 j,k=1 a α ∂ 2 z α ∂z j ∂z k (w (1) j ξ 
(1)

k + w (1) 
k ξ

(1)

j ) + 2 j=1 a α ∂z α ∂z j w (2) j ) +v 3 d 2 z d-1 3 (ξ (2) 3 + d ξ (1) 3 
2

) + 2d 2 z d 3 w (1) 3 ξ (1) 
3 + dz d 3 w

(2)

3 = 0. ( 6 
)
We can introduce the first package of vector fields tangent to J v 2 (Y 0 ). We denote by δ j ∈ N 2 the multi-index whose j-component is equal to 1 and the other are zero.

For α 1 ≥ 3 :

V 30 α := ∂ ∂a α -3z 1 ∂ ∂a α-δ 1 + 3z 2 1 ∂ ∂a α-2δ 1 -z 3 1 ∂ ∂a α-3δ 1 .
For α 1 ≥ 2, α 2 ≥ 1 :

V 21 α : = ∂ ∂a α -2z 1 ∂ ∂a α-δ 1 -z 2 ∂ ∂a α-δ 2 + 2z 1 z 2 ∂ ∂a α-δ 1 -δ 2 +z 2 1 ∂ ∂a α-2δ 1 -z 2 1 z 2 ∂ ∂a α-2δ 1 -δ 2 .
Similar vector fields are constructed by permuting the z-variables, and changing the index α as indicated by the permutation. The pole order of the previous vector fields is equal to 3.

Lemma 4 For any (v i ) 1≤i≤3 ∈ C 3 , there exist v α (a), with degree at most 1 in the variables (a γ ), such that

V := α v α (a) ∂ ∂aα + 1≤j≤2 v j ∂ ∂z j + v 3 z 3 ∂ ∂z 3 is tangent to J v 2 (Y 0 ) at each point.
Proof. First, we substitute equations 1, 2, 3 in equations 4, 5, 6 to get rid of z 3 , ξ

(i) 3 (1 ≤ i ≤ 2)
. Then, we impose the additional conditions of vanishing for the coefficients of ξ 

v α z α + 2 j=1 |α|≤d a α ∂z α ∂z j v j -dv 3 |α|≤d a α z α = 0, |α|≤d v α ∂z α ∂z j + 2 k=1 |α|≤d a α ∂ 2 z α ∂z j ∂z k v k -dv 3 |α|≤d a α ∂z α ∂z j = 0, |α|≤d ∂ 2 z α ∂z j ∂z k v α + 2 l=1 |α|≤d a α ∂ 3 z α ∂z j ∂z k ∂z l v l -dv 3 |α|≤d a α ∂ 2 z α ∂z j ∂z k = 0.
Now we can observe that if the v α (a) satisfy the first equation, they automatically satisfy the other ones because the v α are constants with respect to z. Therefore it is sufficient to find (v α ) satisfying the first equation. We identify the coefficients of

z ρ = z ρ 1 1 z ρ 2 2 : v ρ + 2 j=1
a ρ+δ j v j (ρ j + 1) -dv 3 a ρ = 0.

Another family of vector fields can be obtained in the following way. Con-

sider a 3 ×3-matrix A =   A 1 1 A 2 1 0 A 1 2 A 2 2 0 A 1 3 A 2 3 0   ∈ M 3 (C) and let V := j,k w (k) j ∂ ∂ξ (k) j
, where w (k) := Aξ (k) , for k = 1, 2. 

V := α v α (z, a) ∂ ∂a α + V is tangent to J v 2 (Y 0 ) at each point.
Proof. First, we substitute equations 1, 2, 3 in equations 4, 5, 6 to get rid of z 3 , ξ

(i) 3 (1 ≤ i ≤ 2)
. We impose the additional conditions of vanishing for the coefficients of ξ 

|α|≤d v α ∂z α ∂z j + 2 k=1 |α|≤d a α ∂z α ∂z k A j k -dA j 3 |α|≤d a α z α = 0, (8 j ) α ∂ 2 z α ∂z j ∂z k v α + α,p a α ∂ 2 z α ∂z j ∂z p A k p + α,p a α ∂ 2 z α ∂z k ∂z p A j p -2dA j 3 α a α ∂z α ∂z k = 0. (9 jk )
The equations for the unknowns v α β are obtained by identifying the coefficients of the monomials z ρ in the above equations.

The monomials z ρ in (7) are z ρ 1 1 z ρ 2 2 with ρ i ≤ d. If all the components of ρ are greater than 2, then we obtain the following system 10. The coefficient of z ρ in (7) impose the condition α+β=ρ v α β = 0.

11 j . The coefficient of the monomial z ρ-δ j in (8 j ) impose the condition

α+β=ρ α j v α β = l j (a).
where l j is a linear expression in the a-variables. 12 jj . For j = 1, . . . , 2 the coefficient of the monomial z ρ-2δ j in (9 jj ) impose the condition α+β=ρ α j (α j -1)v α β = l jj (a).

12 jk . For 1 ≤ j < k ≤ 2 the coefficient of the monomial z ρ-δ j -δ k in (9 jk ) impose the condition

α+β=ρ α j α k v α β = l jk (a).
The determinant of the matrix associated to the system is not zero. Indeed, for each ρ the matrix whose column C β consists of the partial derivatives of order at most 2 of the monomial z ρ-β has the same determinant, at the point z 0 = (1, 1), as our system. Therefore if the determinant is zero, we would have a non-identically zero polynomial

Q(z) = β a β z ρ-β ,
such that all its partial derivatives of order less or equal to 2 vanish at z 0 . Thus the same is true for

P (z) = z ρ Q( 1 z 1 , 1 z 2 ) = β a β z β .
But this implies P ≡ 0. Finally, we conclude by Cramer's rule. The systems we have to solve are never over determined. The lemma is proved.

Remark 6

We have chosen the matrix A with this form because we are interested to prove the global generation statement on J v 2 (Y)\(Σ ∪ p -1 (H)) where Σ is the closure of Σ 0 = {(z, a, ξ (1) , ξ (2) 

) ∈ J v 2 (Y 0 )/ det ξ (j) i 1≤i,j≤2
= 0}.

Proposition 7

The vector bundle

T J v 2 (Y) ⊗ O P 3 (7) ⊗ O P N d +1 ( * ) is generated by its global sections on J v 2 (Y)\(Σ ∪ p -1 (H)). Proof.
From the preceding lemmas, we are reduced to consider

V = |α|≤3 v α ∂ ∂aα .
The conditions for V to be tangent to

J v 3 (Y 0 ) are |α|≤2 v α z α = 0, 2 j=1 |α|≤2 v α ∂z α ∂z j ξ (1) j = 0, |α|≤2 ( 2 
j=1
∂z α ∂z j ξ

(2)

j + 2 j,k=1 ∂ 2 z α ∂z j ∂z k ξ (1) j ξ (1) 
k )v α = 0.
We have W 12 := det(ξ (i) j ) 1≤i,j≤2 = 0. Then we can solve the previous system with v 00 , v 10 , v 01 as unknowns. By the Cramer rule, each of the previous quantity is a linear combination of the v α , |α| ≤ 2, α = (00), [START_REF] Dethloff | On the hyperbolicity of the complements of curves in algebraic surfaces: the three component case[END_REF], (01) with coefficients rational functions in z, ξ (1) , ξ (2) . The denominator is W 12 and the numerator is a polynomial whose monomials have either degree at most 2 in z, and at most 1 in ξ (1) and ξ (2) , or degree 1 in z and three in ξ (1) .

ξ (1) has a pole of order 2, ξ (2) has a pole of order 3 therefore the previous vector field has a pole of order at most 7.

Corollary 8 The vector bundle

T J v 2 (P 2 ×P N d ) ⊗ O P 2 (7) ⊗ O P N d ( * ) is generated by its global sections on J v 2 (P 2 × P N d )\(π 2 (Σ) ∪ p -1 2 (X )), where p 2 is the natural projection J v 2 (P 2 × P N d ) → P 2 × P N d . Remark 9
The pole order 7 is the same as in the compact case of [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF].

Remark 10 If the second derivative of f : (C, 0) → P 2 × P N d \X lies inside π 2 (Σ) then the image of f is contained in a line. Therefore, as far as we are interested in the algebraic degeneracy of f , it is no loss of generality to work away from Σ.

The two-components case

By the previous method we obtain the same global generation statement, using the same notations,

Proposition 11 The vector bundle T J v 2 (P 2 ×P N d ) ⊗ O P 2 (7) ⊗ O P N d ( * ) is gen- erated by its global sections on J v 2 (P 2 × P N d )\(π 2 (Σ) ∪ p -1 2 (X )
). The proof goes along the same lines considering

X = X 1 ∪ X 2 ⊂ P 2 × P N d 1 × P N d 2 ,
where X i (1 ≤ i ≤ 2) is the universal curve of degree d i given by the equation

|α|=d i a (i) α Z α = 0, where [a (i) ] ∈ P N d i and [Z] ∈ P 2 ,
and

Y = Y 1 ∩ Y 2 ⊂ P 4 × U where Y 1 = (a (1) 
000d 1 0 Z d 1 3 + |α|=d 1 a (1) α Z α = 0) ⊂ P 4 × U, Y 2 = (a (2) 
0000d 2 Z d 2 4 + |α|=d 2 a (2) α Z α = 0) ⊂ P 4 × U
where U is the open subset of P N d 1 +1 × P N d 2 +1 defined by

U := (a (1) 
000d 1 0 = 0)∩ ∪ |α|=d 1 ,α′ ,α 5 =0 (a (1) α = 0) ×(a (2) 
0000d 2 = 0)∩ ∪ |α|=d 2 ,α′ ,α 5 =0
(a (2) α = 0) .

Then we apply the previous method to construct meromorphic vector fields on J v 2 (P 2 × P N d 1 × P N d 2 ).

Logarithmic jet differentials

In this section we recall the basic facts about logarithmic jet differentials following G. Dethloff and S.Lu [START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF]. Let X be a complex manifold with a normal crossing divisor D. Let (X, D) be the corresponding complex log-manifold. We start with the directed manifold (X, T X ) where T X = T X (-log D). We define X 1 := P(T X ),

D 1 = π * (D) and V 1 ⊂ T X 1 : V 1,(x,[v]) := {ξ ∈ T X 1 ,(x,[v]) (-log D 1 ) ; π * ξ ∈ Cv},
where π : X 1 → X is the natural projection. If f : (C, 0) → (X\D, x) is a germ of holomorphic curve then it can be lifted to X 1 \D 1 as f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] .

By induction, we obtain a tower of varieties (X k , D k , V k ) with π k : X k → X as the natural projection. We have a tautological line bundle O X k (1) and we denote

u k := c 1 (O X k (1)).
Let us consider the direct image π k * (O X k (m)). It is a locally free sheaf denoted E k,m T * X generated by all polynomial operators in the derivatives of order 1, 2, ..., k of f , together with the extra function log s j (f ) along the j -th component of D, which are moreover invariant under arbitrary changes of parametrization: a germ of operator Q ∈ E k,m T * X is characterized by the condition that, for every germ of holomorphic curve f : (C, 0) → (X\D, x) and every germ φ ∈ G k of k-jet biholomorphisms of (C, 0),

Q(f • φ) = φ ′m Q(f ) • φ.
The following theorem makes clear the use of jet differentials in the study of hyperbolicity: Theorem 12 ([13], [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF], [START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF]). Assume that there exist integers k, m > 0 and an ample line bundle L on X such that

H 0 (X k , O X k (m) ⊗ π * k L -1 ) ≃ H 0 (X, E k,m T * X ⊗ L -1
) has non zero sections σ 1 , . . . , σ N . Let Z ⊂ X k be the base locus of these sections. Then every entire curve f : C → X\D is such that f [k] (C) ⊂ Z. In other words, for every global G k -invariant polynomial differential operator P with values in L -1 , every entire curve f : C → X\D must satisfy the algebraic differential equation P (f ) = 0.

In the case of logarithmic surfaces (X, D), we have the following filtration (see [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF]) of log-jet differentials of order 2:

Gr • E 2,m T * X = ⊕ 0≤j≤m/3 S m-3j T * X ⊗ K ⊗j X .
A Riemann-Roch calculation based on the above filtration yields

χ(X, E 2,m T * X ) = m 4 648 (13c 2 1 -9c 2 ) + O(m 3 ),
where c 1 and c 2 denote the logarithmic Chern classes. This gives by Bogomolov's vanishing theorem [START_REF] Bogomolov | Holomorphic tensors and vector bundles on projective varieties[END_REF]:

Theorem 13 [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF] If (X, D) is an algebraic log surface of log general type and A an ample line bundle over X, then 

h 0 (X, E 2,m T * X ⊗ O(-A)) ≥ m 4 648 (13c 2 1 -9c 2 ) + O(m 3 ).

Proof of theorem 2

Let us consider an entire curve f : C → P 2 \C for a generic curve in P 2 of degree d ≥ 14. Let us assume that the projectivized first derivative f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] : C → X 1 is Zariski dense. By the proposition of the previous section we have a section σ ∈ H 0 (P ) ), such that the family (P a ) a∈U d varies holomorphically. We have the following numerical criterion due to El Goul Proof. Following [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF], we have for m ≤ 5 the exact sequence 0 → S m T *

P 2 ⊗ K -t P 2 → E 2,m T * P 2 ⊗ K -t P 2 φ → S m-3 T * P 2 ⊗ K 1-t P 2 → 0,
which gives an injective morphism for any positive t [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF]). Let us consider as above the logarithmic manifold (Y, H) with the logmorphism π : (Y, H) → (P 2 × P N d , X ). We can take the pull-back with π of the algebraic family of sections (P a ) providing logarithmic 2-jet differentials on Y a . Let us do some local computations on these 2-jet differentials. We take some affine coordinates on C 3 and the equation of Y 0 is

Φ : H 0 (P 2 , E 2,m T * P 2 ⊗ K -t P 2 ) → H 0 (P 2 , S m-3 T * P 2 ⊗ K 1-t P 2 ), because H 0 (P 2 , S m T * P 2 ⊗ K -t P 2 ) = 0 (see
Y 0 := (z d 3 + α a α z α = 0) ⊂ C 3 × U,
with H 0 := (z 3 = 0). Now, the proof is similar to the compact case (see [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF]) which we recall for the convenience of the reader.

If we assume that α a α ∂z α ∂z 1 = 0 identically on Y 0 , we can write a logarithmic 2-jet differential on the corresponding affine open set with logarithmic coordinates in the following way Q(z, a, ξ (1) , ξ (2) ) = R 0 (z, a, ξ (1) )(ξ

(1) 2 ξ (2) 3 -ξ (1) 3 ξ (2)
2 ) + R 1 (z, a, ξ (1) ), where R 0 and R 1 are local symmetric differentials, of degree m -3 and m. For a generic point z ∈ Y 0 , R 0 and R 1 are not identically zero since the zero set of the (P a ) is irreducible.

For generic z 0 = (z 0 1 , z 0 2 , z 0 3 ) ∈ Y 0 , R 0 and R 1 are not identically zero. By translation we can assume that z 0 1 = z 0 2 = 0. We can make a linear transformation on (z 1 , z 2 ) to diagonalize the quadratic part and the equation of Y 0 becomes

Y 0 = (z d 3 + 3≤α≤d c α z α + c 0 (z 2 1 + z 2 2 + c 100 z 1 ) = 0).
Notice that the equation of the divisor H 0 is still (z 3 = 0). In these coordinates, we consider as above the manifold J v 2 (Y 0 ) and V :=

j ξ (j) 2 ∂ ∂ξ (j) 3 - ξ (j) 3 ∂ ∂ξ (j) 2
. According to lemma 5, there exists a global meromorphic vector field

V ∈ H 0 (J v 2 (Y), T J v 2 (Y) ⊗ O P 3 (3)) such that V := α v α ∂ ∂aα + V .
Moreover, from the proof of the lemma we see that for each index α, |α| ≤ 2, we have v α (0, 0) = 0. Now, using the first package of vector fields and the relation dP (v) = ρ v P , we obtain that there exists λ ∈ C such that

j ξ (j) 2 ∂ ∂ξ (j) 3 -ξ (j) 3 ∂ ∂ξ (j) 2
Q(z 0 , a 0 , ξ (1) , ξ (2) ) = λQ(z 0 , a 0 , ξ (1) , ξ (2) ), for any 2-jet (ξ (1) , ξ (2) ) of Y 0 at z 0 . We remark that

j ξ (j) 2 ∂ ∂ξ (j) 3 -ξ (j) 3 ∂ ∂ξ (j) 2 (ξ (1) 2 ξ (2) 3 -ξ (1) 3 ξ (2) 2 ) = 0.
If m = 3, then we have λ = 0 since R 0 is not 0, so ξ If m = 5 we obtain λ(λ 2 + 4) = 0, λ 2 (13 + λ 2 ) 2 + 9(5 + λ 2 ) = 0, with no common solutions.

So, with f : C → P 2 \C such that f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] : C → X 1 is Zariski dense we have degree at least 6 for the jet differential. But, we have proved that T J v 2 (P 2 ×P N d ) ⊗ O P 2 (7) |X 2 is globally generated on X 2 \(π 2 (Σ) ∪ π * 2,0 (C)). So, we can find a vector field v such that dP (v) is a holomorphic jet differential vanishing on ample divisor and algebraically independent of P provided that m(13c 2 1 -9c 2 ) 12c 2 1 (d -3) > 7, which is the case for d ≥ 14 as m ≥ 6. Then we obtain a contradiction to the fact that f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] : C → X 1 is Zariski dense. Indeed, if f [START_REF] Bogomolov | Holomorphic tensors and vector bundles on projective varieties[END_REF] does not lie in the singular set of (P = 0) then for some t ∈ C, dP f [START_REF] Bogomolov | Holomorphic tensors and vector bundles on projective varieties[END_REF] (t) (v) = 0, which contradicts theorem 12. Therefore f [START_REF] Bogomolov | Holomorphic tensors and vector bundles on projective varieties[END_REF] lies in this singular set and f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] is algebraically degenerate. Then we use El Goul's generalization of McQuillan's results on foliations of surfaces to the logarithmic setting in [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF] which tells us that the entire curve f : C → P 2 \C itself is algebraically degenerate. Finally, algebraic hyperbolicity of P 2 \C (see [START_REF] Pacienza | On the logarithmic Kobayashi conjecture[END_REF] or [START_REF] Chen | On Algebraic Hyperbolicity of Log Varieties[END_REF]) implies that f is constant and P 2 \C is hyperbolic and hyperbolically embedded in P 2 .

Proof of theorem 3

The proof goes along the same lines showing the algebraic degeneracy of the curve f : C → P 2 \C 1 ∪ C 2 provided that the same numerical condition m(13c 2 1 -9c 2 ) 12c The hyperbolicity is deduced from the algebraic hyperbolicity of P 2 \C 1 ∪ C 2 (see [START_REF] Chen | On Algebraic Hyperbolicity of Log Varieties[END_REF]).

Theorem 3

 3 Let C = C 1 ∪ C 2 be a very generic complex algebraic curve in P 2 having two irreducible components C 1 and C 2 of degrees d 1 ≤ d 2 . Then P 2 \C is hyperbolic and hyperbolically embedded in P 2 if the degrees satisfy either d 1 ≥ 4, or d 1 = 3 and d 2 ≥ 5, or d 1 = 2 and d 2 ≥ 8, or d 1 = 1 and d 2 ≥ 11.

j

  of dz i • s(x) by using the chain rule, and then by inverting this system.

  equation) for any 1 ≤ j ≤ k ≤ 2. Then the coefficients of ξ (2) j are automatically zero in the third equation. The resulting equations are |α|≤d

Lemma 5

 5 There exist polynomials v α (z, a) := |β|≤2 v α β (a)z β where each coefficient v α β has degree at most 1 in the variables (a γ ) such that

  third equation) for any 1 ≤ j ≤ k ≤ 2. Then the coefficients of ξ(2) j are automatically zero in the third equation. The resulting equations are |α|≤d v α z α = 0,[START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF] 

Corollary 14 [ 12 ]

 1412 Let C ⊂ P 2 be a smooth curve of degree d ≥ 11 and A an ample line bundle. Then h 0 (X, E 2,m T * X ⊗ O(-A)) = 0 for m large enough. Corollary 15 [20] Let C = C 1 ∪ C 2 be a normal crossing complex algebraic curve in P 2 having two irreducible smooth components C 1 and C 2 of degrees d 1 ≤ d 2 and A an ample line bundle. Then h 0 (X, E 2,m T * X ⊗ O(-A)) = 0 for m large enough if the degrees satisfy either d 1 ≥ 3, or d 1 = 2 and d 2 ≥ 5, or d 1 = 1 and d 2 ≥ 7.

, which imposes the two equations λ 2 -

 2 1 = 0, λ(λ 4 + 8λ + 16) = 0. They do not have common solutions.

2 1(d - 3 )

 23 > 7, is satisfied. An easy computation shows that it is the case if either d 1 ≥ 4, or d 1 = 3 and d 2 ≥ 5, or d 1 = 2 and d 2 ≥ 8, or d 1 = 1 and d 2 ≥ 11.

  2 , E 2,m T * P 2 × P N d of curves of degree d in P 2 . General semicontinuity arguments concerning the cohomology groups show the existence of a Zariski open set U d ⊂ P N d such that for any a ∈ U d , there exists an irreducible and reduced divisor

		P 2 ⊗ K	-t P 2 ) ≃ H 0 ((P 2 ) 2 , O (P 2 ) 2 (m) ⊗ π * 2 K	-t P 2 ).
	with zero set Z and vanishing order t(d -3). Consider the family
		X ⊂ Z a = (P a = 0) ⊂ (P 2 a ) 2 ,
	where	P a ∈ H 0 ((P 2 a ) 2 , O (P 2 a ) 2 (m) ⊗ π * 2 K	-t (P 2 a

Proposition 16 [START_REF] Goul | Logarithmic Jets and Hyperbolicity[END_REF] Let (X, D) be a log surface of log general type with P ic(X) = Z. Suppose that

then there exists a divisor

Therefore since we assume that the projectivized first derivative f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] : C → X 1 is Zariski dense we obtain the following estimate for the vanishing order

Now we consider P as a holomorphic function on J v 2 (P 2 × P N d ) U d and differentiate it with the meromorphic vector fields constructed before. Take

) such a vector field, then the restriction of dP (v) to Z a is a section of the bundle

From the previous proposition, we have

Therefore if f [START_REF] Berteloot | Sur l'hyperbolicité de certains complémentaires[END_REF] : C → X 1 is Zariski dense, we have that the restriction of dP (v) to Z a must vanish. Then there exists a section

As in the compact case, we have the following proposition:

Then the weighted degree m of the algebraic family of sections (P a ) verifies m ≥ 6.