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Logarithmic vector fields and hyperbolicity

Erwan Rousseau∗

Abstract

Using vector fields on logarithmic jet spaces we obtain some new

positive results for the logarithmic Kobayashi conjecture about the hy-

perbolicity of complements of curves in the complex projective plane.

We are interested here in the cases where logarithmic irregularity is

strictly smaller than the dimension. In this setting, we study the case

of a very generic curve with two components of degrees d1 ≤ d2 and

prove the hyperbolicity of the complement if the degrees satisfy either

d1 ≥ 4, or d1 = 3 and d2 ≥ 5, or d1 = 2 and d2 ≥ 8, or d1 = 1

and d2 ≥ 11. We also prove that the complement of a very generic

curve of degree d at least equal to 14 in the complex projective plane

is hyperbolic, improving slightly, with a new proof, the former bound

obtained by El Goul.

1 Introduction

A complex manifold X is hyperbolic in the sense of S. Kobayashi if the hyper-
bolic pseudodistance defined on X is a distance (see, for example, [15]). In
the case of hypersurfaces in P

n, we have the logarithmic Kobayashi conjecture
[14]:

Conjecture 1 Pn\X (n ≥ 2) is hyperbolic for a generic hypersurface X ⊂
Pn of degree deg X ≥ 2n + 1.

Here we will study the case of complements of curves in P2. Several au-
thors have studied this case, especially when the curve has several irreducible

∗Mathematics Subject Classification (2000): Primary: 32Q45, 14J70; Key words :
Kobayashi hyperbolicity; jet differentials; logarithmic vector fields.
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components. It is well known that the conjecture is the more difficult the
smaller the logarithmic irregularity (equivalently the number of irreducible
components) is. The conjecture is known to be true for logarithmic irregu-
larity equal to 2 or more (equivalently 3 or more irreducible components).
We refer to [9], [10] and [1] for the details and the references for these cases.
In the case of logarithmic irregularity equal to 2, Dethloff and Lu proved in
[8] that every Brody curve in the complement of a normal crossing curve in
P

2 of degree at least 4 consisting of three components is algebraically degen-
erate. See also [17] for more general results on the algebraic degeneracy of
entire curves when the logarithmic irregularity is equal to the dimension of
the manifold.

When the logarithmic irregularity is strictly smaller than the dimension
of the manifold, much less is known. In this paper, we are interested in
the more difficult cases where the logarithmic irregularity is strictly smaller
than 2, i.e the curve is either smooth or has two irreducible components.
For the complement of smooth curves, studying the compact analogue of the
above conjecture, Demailly and El Goul obtained in [6] that complements
of very generic curves in P2 of degree d ≥ 21 are hyperbolic. Later, using
logarithmic jets, El Goul improved that result in [12] obtaining the bound
15. Using different techniques we obtain here

Theorem 2 Let C be a very generic irreducible complex algebraic curve in
P2 of degree d. Then P2\C is hyperbolic and hyperbolically embedded in P2 if
d ≥ 14.

Previously in [20] we obtained some results for the two-components case.
Using the same techniques as in the proof of the previous theorem we improve
them by the following result

Theorem 3 Let C = C1 ∪ C2 be a very generic complex algebraic curve in
P2 having two irreducible components C1 and C2 of degrees d1 ≤ d2. Then
P2\C is hyperbolic and hyperbolically embedded in P2 if the degrees satisfy

either d1 ≥ 4,
or d1 = 3 and d2 ≥ 5,
or d1 = 2 and d2 ≥ 8,
or d1 = 1 and d2 ≥ 11.
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The proofs of these two results are based on techniques introduced by Siu
and Paun (see [25], [19], [23] and [24]).

The first one is a generalization in the logarithmic setting of an approach
initiated by Clemens [4], Ein [11], Voisin [26] and used by Y.-T. Siu [25] and
M. Paun [19] to construct vector fields on the total space of hypersurfaces in
the projective space. Here we construct vector fields on logarithmic spaces.

The second one is based on bundles of logarithmic jet differentials (see
[7]). The idea, in hyperbolicity questions, is that global sections of these
bundles vanishing on ample divisors provide algebraic differential equations
for any entire curve f : C → X\D where D is a normal crossing divisor on
X. Therefore, the main point is to produce enough algebraically independent
global holomorphic logarithmic jet differentials.

2 Logarithmic jet bundles

In this section we recall briefly the basic facts and results of J. Noguchi in
[16] about logarithmic jet bundles. We refer to [7] and [24] for details.

Let X be a complex manifold of dimension n. Denote by JkX the k-jet
bundle over X. Let T ∗

X be the holomorphic cotangent bundle over X. Take
a holomorphic section ω ∈ H0(O, T ∗

X) for some open subset O. For jk(f) ∈
JkX|O , we have f ∗ω = Z(t)dt and a well defined holomorphic mapping

ω̃ : JkX|O → C
k; jk(f) →

(
djZ

dtj
(0)

)

0≤j≤k−1

.

If ω1, . . . , ωn are holomorphic 1-forms on O such that ω1∧· · ·∧ωn vanishes
nowhere, then we have a biholomorphic map

(ω̃1, . . . , ω̃n) × π : JkX|O →
(
C

k
)n

× O,

which gives the trivialization of JkX|O associated to ω1, . . . , ωn.
Let X be a complex manifold with a normal crossing divisor D. Consider

the log manifold (X, D). Let X = X\D. Denote by T
∗

X = T ∗
X

(log D) the
logarithmic cotangent sheaf.

Let s ∈ H0(O, JkX) be a holomorphic section over an open subset O ⊂ X.
We say that s is a logarithmic k-jet field if the map ω̃ ◦ s|O′ : O′ → Ck is

holomorphic for all ω ∈ H0(O′, T
∗

X) for all open subsets O′ of O. The set of
logarithmic k-jet fields over open subsets of X defines a subsheaf of the sheaf
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JkX, which we denote by JkX. JkX is the sheaf of sections of a holomorphic
fibre bundle over X, denoted again JkX and called the logarithmic k−jet
bundle of (X, D).

A log-morphism F : (X
′
, D′) → (X, D) induces a canonical map

Fk : JkX
′ → JkX.

We can express the local triviality of JkX explicitly in terms of coor-
dinates. Let z1, . . . , zn be coordinates in an open set O ⊂ X in which
D = {z1z2 . . . zl = 0}. Let ω1 = dz1

z1
, . . . ωl = dzl

zl
, ωl+1 = dzl+1, . . . , ωn = dzn.

Then we have a biholomorphic map

(ω̃1, . . . , ω̃n) × π : JkX|O →
(
C

k
)n

× O.

Let s ∈ H0(O, JkX) be given by s(x) = (ξ
(i)
j (x), x) in this trivialization

where the indices i correspond to the orders of derivative. Then the same s
considered as an element of H0(O, JkX) and trivialized by ω1 = dz1, . . . ωn =

dzn is given by s(x) = (ξ̂
(i)
j (x), x) where

ξ̂
(i)
j =

{
zi(ξ

(i)
j + gi(ξ

(1)
j , . . . , ξ

(i−1)
j )) : j ≤ l,

ξ
(i)
j : j ≥ l + 1.

The gi are polynomials in the variables ξ
(1)
j , . . . , ξ

(i−1)
j , obtained by ex-

pressing first the different components ξ
(i)
j of

(
d̃zi

zi

)
◦ s(x) in terms of the

components ξ̂
(i)
j of the components ξ̂

(i)
j of d̃zi ◦ s(x) by using the chain rule,

and then by inverting this system.
In summary, we have a holomorphic coordinate system on JkX|O given by

(ξ
(1)
1 . . . , ξ

(k)
n ; z1, . . . , zn) and one on JkX |O given by (ξ̂

(1)
1 . . . , ξ̂

(k)
n ; z1, . . . , zn).

The previous relation exhibits the sheaf inclusion JkX|O ⊂ JkX |O . We will
use these coordinates for the computations of the next section.

3 Logarithmic vector fields

3.1 The smooth case

In this section we generalize the approach used in [19] (see also [18] and
[24]) to logarithmic jet bundles. Once we have the logarithmic tools of the
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previous section, the explicit construction of the vector fields on logarithmic
jet spaces is very similar to the compact case treated in [19]. Nevertheless,
we provide the details of the computations for the convenience of the reader.

Let X ⊂ P2×PNd be the universal curve of degree d given by the equation

∑

|α|=d

aαZα = 0, where [a] ∈ P
Nd and [Z] ∈ P

2.

We use the notations: for α = (α0, . . . , α2) ∈ N3, |α| =
∑

i αi and if
Z = (Z0, Z1, Z2) are homogeneous coordinates on P2, then Zα =

∏
Z

αj

j . X
is a smooth hypersurface of degree (d, 1) in P2 × PNd .

We consider the log-manifold (P2 × PNd,X ). We denote by J2(P
2 × PNd)

the manifold of the logarithmic 2-jets, and Jv
2 (P2 × PNd) the submanifold

of J2(P
2 × P

Nd) consisting of 2-jets tangent to the fibers of the projection
P2 × PNd → PNd.

We are going to construct meromorphic vector fields on Jv
2 (P2 × PNd).

Let us consider

Y = (a000dZ
d
3 +

∑

|α|=d

aαZα = 0) ⊂ P
3 × U,

where U := (a000d 6= 0) ∩

(
∪

|α|=d,αn+2=0
(aα 6= 0)

)
⊂ PNd+1. We have the

projection π : Y → P2 × PNd and π−1(X ) = (Z3 = 0) := H. Therefore we
obtain a log-morphism π : (Y , H) → (P2×PNd ,X ) which induces a dominant
map

π2 : Jv
2 (Y) → Jv

2 (P2 × P
Nd).

Let us consider the set Ω0 := (Z0 6= 0) × (a000d 6= 0) ⊂ P3 × U. We
assume that global coordinates are given on C3 and CNd+1. The equation of
Y becomes

Y0 := (zd
3 +

∑

α

aαzα = 0).

Following [7] as explained above, we can obtain explicitly a trivialization
of J2(Ω0). Let ω1 = dz1, ω

2 = dz2, ω
3 = dz3

z3
. Then we have a biholomorphic

map
J2(Ω0) → C

3 × U × C
3 × C

3,

where the coordinates will be denoted (zi, aα, ξ
(i)
j ).
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Let us write the equations of Jv
2 (Y0) in this trivialization. We have

Jv
2 (Y0) = Jv

2 (Y0) ∩ J2(Ω0). The equations of Jv
2 (Y0) in the trivialization of

J2(Ω0) given by ω̂1 = dz1, ω̂
2 = dz2, ω̂

3 = dz3 can be written in C3 × U ×

C
3 × C

3 with coordinates (zi, aα, ξ̂
(i)
j ) as follows:

zd
3 +

∑

|α|≤d

aαzα = 0,

dzd−1
3 ξ̂

(1)
3 +

2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj

ξ̂
(1)
j = 0,

dzd−1
3 ξ̂

(2)
3 +d(d−1)zd−2

3

(
ξ̂

(1)
3

)2

+
2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj

ξ̂
(2)
j +

2∑

j,k=1

∑

|α|≤d

aα
∂2zα

∂zj∂zk

ξ̂
(1)
j ξ̂

(1)
k = 0.

The relations between the two systems of coordinates can be computed
as explained above and are given by

ξ̂
(i)
j = ξ

(i)
j for j ≤ 2,

ξ̂
(1)
3 = z3ξ

(1)
3 ,

ξ̂
(2)
3 = z3

(
ξ

(2)
3 +

(
ξ

(1)
3

)2
)

.

Therefore, to obtain the equations of Jv
2 (Y0) in the first trivialization, we

just have to substitute the previous relations

zd
3 +

∑

|α|≤d

aαzα = 0, (1)

dzd
3ξ

(1)
3 +

2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj

ξ
(1)
j = 0, (2)

dzd
3ξ

(2)
3 +d2zd

3

(
ξ

(1)
3

)2

+

2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj
ξ

(2)
j +

2∑

j,k=1

∑

|α|≤d

aα
∂2zα

∂zj∂zk
ξ

(1)
j ξ

(1)
k = 0. (3)

Following the method used in [19] and [23] for the compact case, we are
going to prove that TJv

2 (Y)⊗OP4(c)⊗O
P

Nd+1(∗) is generated by its global sec-

tions on Jv
2 (Y)\(Σ∪p−1(H)), where p : Jv

2 (Y) → Y is the natural projection,
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Σ a subvariety that will be defined below, and c ∈ N a constant independant
of d. Consider a vector field

V =
∑

|α|≤d

vα
∂

∂aα
+
∑

j

vj
∂

∂zj
+
∑

j,k

w
(k)
j

∂

∂ξ
(k)
j

,

on C
3 × U × C

3 × C
3. The conditions to be satisfied by V to be tangent to

Jv
2 (Y0) are the following

∑

|α|≤d

vαzα +

2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj
vj + dzd−1

3 v3 = 0, (4)

2∑

j=1

∑

|α|≤d

vα
∂zα

∂zj
ξ

(1)
j +

2∑

j,k=1

∑

|α|≤d

aα
∂2zα

∂zj∂zk
vjξ

(1)
k +

2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj
w

(1)
j

+d2zd−1
3 v3ξ

(1)
3 + dzd

3w
(1)
3 = 0, (5)

∑

|α|≤d

(
2∑

j=1

∂zα

∂zj

ξ
(2)
j +

2∑

j,k=1

∂2zα

∂zj∂zk

ξ
(1)
j ξ

(1)
k )vα

+

2∑

j=1

∑

|α|≤d

aα(

2∑

k=1

∂2zα

∂zj∂zk
ξ

(2)
k +

2∑

k,l=1

∂3zα

∂zj∂zk∂zl
ξ

(1)
k ξ

(1)
l )vj

+
∑

|α|≤d

(

2∑

j,k=1

aα
∂2zα

∂zj∂zk
(w

(1)
j ξ

(1)
k + w

(1)
k ξ

(1)
j ) +

2∑

j=1

aα
∂zα

∂zj
w

(2)
j )

+v3d
2zd−1

3 (ξ
(2)
3 + d

(
ξ

(1)
3

)2

) + 2d2zd
3w

(1)
3 ξ

(1)
3 + dzd

3w
(2)
3 = 0. (6)

We can introduce the first package of vector fields tangent to Jv
2 (Y0). We

denote by δj ∈ N2 the multi-index whose j-component is equal to 1 and the
other are zero.

For α1 ≥ 3 :

V 30
α :=

∂

∂aα

− 3z1
∂

∂aα−δ1

+ 3z2
1

∂

∂aα−2δ1

− z3
1

∂

∂aα−3δ1

.
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For α1 ≥ 2, α2 ≥ 1 :

V 21
α : =

∂

∂aα

− 2z1
∂

∂aα−δ1

− z2
∂

∂aα−δ2

+ 2z1z2
∂

∂aα−δ1−δ2

+z2
1

∂

∂aα−2δ1

− z2
1z2

∂

∂aα−2δ1−δ2

.

Similar vector fields are constructed by permuting the z-variables, and
changing the index α as indicated by the permutation. The pole order of the
previous vector fields is equal to 3.

Lemma 4 For any (vi)1≤i≤3 ∈ C3, there exist vα(a), with degree at most 1
in the variables (aγ), such that V :=

∑
α

vα(a) ∂
∂aα

+
∑

1≤j≤2

vj
∂

∂zj
+ v3z3

∂
∂z3

is

tangent to Jv
2 (Y0) at each point.

Proof. First, we substitute equations 1, 2, 3 in equations 4, 5, 6 to get rid
of z3, ξ

(i)
3 (1 ≤ i ≤ 2). Then, we impose the additional conditions of vanishing

for the coefficients of ξ
(1)
j in the second equation (respectively of ξ

(1)
j ξ

(1)
k in

the third equation) for any 1 ≤ j ≤ k ≤ 2. Then the coefficients of ξ
(2)
j are

automatically zero in the third equation. The resulting equations are

∑

|α|≤d

vαzα +
2∑

j=1

∑

|α|≤d

aα
∂zα

∂zj
vj − dv3

∑

|α|≤d

aαzα = 0,

∑

|α|≤d

vα
∂zα

∂zj
+

2∑

k=1

∑

|α|≤d

aα
∂2zα

∂zj∂zk
vk − dv3

∑

|α|≤d

aα
∂zα

∂zj
= 0,

∑

|α|≤d

∂2zα

∂zj∂zk

vα +
2∑

l=1

∑

|α|≤d

aα
∂3zα

∂zj∂zk∂zl

vl − dv3

∑

|α|≤d

aα
∂2zα

∂zj∂zk

= 0.

Now we can observe that if the vα(a) satisfy the first equation, they
automatically satisfy the other ones because the vα are constants with respect
to z. Therefore it is sufficient to find (vα) satisfying the first equation. We
identify the coefficients of zρ = zρ1

1 zρ2

2 :

vρ +

2∑

j=1

aρ+δj
vj(ρj + 1) − dv3aρ = 0.
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Another family of vector fields can be obtained in the following way. Con-

sider a 3×3-matrix A =




A1
1 A2

1 0
A1

2 A2
2 0

A1
3 A2

3 0


 ∈ M3(C) and let Ṽ :=

∑
j,k

w
(k)
j

∂

∂ξ
(k)
j

,

where w(k) := Aξ(k), for k = 1, 2.

Lemma 5 There exist polynomials vα(z, a) :=
∑
|β|≤2

vα
β (a)zβ where each coef-

ficient vα
β has degree at most 1 in the variables (aγ) such that

V :=
∑

α

vα(z, a)
∂

∂aα
+ Ṽ

is tangent to Jv
2 (Y0) at each point.

Proof. First, we substitute equations 1, 2, 3 in equations 4, 5, 6 to get rid
of z3, ξ

(i)
3 (1 ≤ i ≤ 2). We impose the additional conditions of vanishing for

the coefficients of ξ
(1)
j in the second equation (respectively of ξ

(1)
j ξ

(1)
k in the

third equation) for any 1 ≤ j ≤ k ≤ 2. Then the coefficients of ξ
(2)
j are

automatically zero in the third equation. The resulting equations are

∑

|α|≤d

vαzα = 0, (7)

∑

|α|≤d

vα
∂zα

∂zj
+

2∑

k=1

∑

|α|≤d

aα
∂zα

∂zk
Aj

k − dAj
3

∑

|α|≤d

aαzα = 0, (8j)

∑

α

∂2zα

∂zj∂zk

vα+
∑

α,p

aα
∂2zα

∂zj∂zp

Ak
p+
∑

α,p

aα
∂2zα

∂zk∂zp

Aj
p−2dAj

3

∑

α

aα
∂zα

∂zk

= 0. (9jk)

The equations for the unknowns vα
β are obtained by identifying the coef-

ficients of the monomials zρ in the above equations.
The monomials zρ in (7) are zρ1

1 zρ2
2 with

∑
ρi ≤ d.

If all the components of ρ are greater than 2, then we obtain the following
system

9



10. The coefficient of zρ in (7) impose the condition

∑

α+β=ρ

vα
β = 0.

11j. The coefficient of the monomial zρ−δj in (8j) impose the condition

∑

α+β=ρ

αjv
α
β = lj(a).

where lj is a linear expression in the a-variables.
12jj. For j = 1, . . . , 2 the coefficient of the monomial zρ−2δj in (9jj) impose

the condition ∑

α+β=ρ

αj(αj − 1)vα
β = ljj(a).

12jk. For 1 ≤ j < k ≤ 2 the coefficient of the monomial zρ−δj−δk in (9jk)
impose the condition ∑

α+β=ρ

αjαkv
α
β = ljk(a).

The determinant of the matrix associated to the system is not zero. In-
deed, for each ρ the matrix whose column Cβ consists of the partial derivatives
of order at most 2 of the monomial zρ−β has the same determinant, at the
point z0 = (1, 1), as our system. Therefore if the determinant is zero, we
would have a non-identically zero polynomial

Q(z) =
∑

β

aβzρ−β ,

such that all its partial derivatives of order less or equal to 2 vanish at z0.
Thus the same is true for

P (z) = zρQ(
1

z1

,
1

z2

) =
∑

β

aβz
β .

But this implies P ≡ 0.
Finally, we conclude by Cramer’s rule. The systems we have to solve are

never over determined. The lemma is proved. �
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Remark 6 We have chosen the matrix A with this form because we are
interested to prove the global generation statement on Jv

2 (Y)\(Σ ∪ p−1(H))
where Σ is the closure of

Σ0 = {(z, a, ξ(1), ξ(2)) ∈ Jv
2 (Y0)/ det

(
ξ

(j)
i

)
1≤i,j≤2

= 0}.

Proposition 7 The vector bundle TJv
2 (Y) ⊗OP3(7) ⊗O

P
Nd+1(∗) is generated

by its global sections on Jv
2 (Y)\(Σ ∪ p−1(H)).

Proof. From the preceding lemmas, we are reduced to consider V =
∑

|α|≤3

vα
∂

∂aα
.

The conditions for V to be tangent to Jv
3 (Y0) are

∑

|α|≤2

vαzα = 0,

2∑

j=1

∑

|α|≤2

vα
∂zα

∂zj
ξ

(1)
j = 0,

∑

|α|≤2

(
2∑

j=1

∂zα

∂zj

ξ
(2)
j +

2∑

j,k=1

∂2zα

∂zj∂zk

ξ
(1)
j ξ

(1)
k )vα = 0.

We have W12 := det(ξ
(i)
j )1≤i,j≤2 6= 0. Then we can solve the previous sys-

tem with v00, v10, v01 as unknowns. By the Cramer rule, each of the previous
quantity is a linear combination of the vα, |α| ≤ 2, α 6= (00), (10), (01) with
coefficients rational functions in z, ξ(1), ξ(2). The denominator is W12 and the
numerator is a polynomial whose monomials have either degree at most 2 in
z, and at most 1 in ξ(1) and ξ(2), or degree 1 in z and three in ξ(1).

ξ(1) has a pole of order 2, ξ(2) has a pole of order 3 therefore the previous
vector field has a pole of order at most 7. �

Corollary 8 The vector bundle TJv
2 (P2×P

Nd) ⊗OP2(7)⊗O
P

Nd (∗) is generated

by its global sections on Jv
2 (P2 × PNd)\(π2(Σ) ∪ p−1

2 (X )), where p2 is the
natural projection Jv

2 (P2 × PNd) → P2 × PNd.

Remark 9 The pole order 7 is the same as in the compact case of [19].

Remark 10 If the second derivative of f : (C, 0) → P
2 × P

Nd\X lies inside
π2(Σ) then the image of f is contained in a line. Therefore, as far as we are
interested in the algebraic degeneracy of f , it is no loss of generality to work
away from Σ.

11



3.2 The two-components case

By the previous method we obtain the same global generation statement,
using the same notations,

Proposition 11 The vector bundle TJv
2 (P2×P

Nd) ⊗ OP2(7) ⊗ O
P

Nd (∗) is gen-

erated by its global sections on Jv
2 (P2 × PNd)\(π2(Σ) ∪ p−1

2 (X )).

The proof goes along the same lines considering

X = X 1 ∪ X2 ⊂ P
2 × P

Nd1 × P
Nd2 ,

where Xi (1 ≤ i ≤ 2) is the universal curve of degree di given by the equation
∑

|α|=di

a(i)
α Zα = 0, where [a(i)] ∈ P

Ndi and [Z] ∈ P
2,

and Y = Y1 ∩ Y2 ⊂ P4 × U where

Y1 = (a
(1)
000d10Z

d1
3 +

∑

|α|=d1

a(1)
α Zα = 0) ⊂ P

4 × U,

Y2 = (a
(2)
0000d2

Zd2
4 +

∑

|α|=d2

a(2)
α Zα = 0) ⊂ P

4 × U

where U is the open subset of P
Nd1

+1 × P
Nd2

+1 defined by

U := (a
(1)
000d10 6= 0)∩

(
∪

|α|=d1,α′ ,α5=0
(a(1)

α 6= 0)

)
×(a

(2)
0000d2

6= 0)∩

(
∪

|α|=d2,α′ ,α5=0
(a(2)

α 6= 0)

)
.

Then we apply the previous method to construct meromorphic vector
fields on Jv

2 (P2 × P
Nd1 × P

Nd2 ).

4 Logarithmic jet differentials

In this section we recall the basic facts about logarithmic jet differentials
following G. Dethloff and S.Lu [7]. Let X be a complex manifold with a
normal crossing divisor D.

Let (X, D) be the corresponding complex log-manifold. We start with the
directed manifold (X, TX) where TX = TX(− log D). We define X1 := P(TX),
D1 = π∗(D) and V1 ⊂ TX1 :

V1,(x,[v]) := {ξ ∈ TX1,(x,[v])(− log D1) ; π∗ξ ∈ Cv},

12



where π : X1 → X is the natural projection. If f : (C, 0) → (X\D, x) is a
germ of holomorphic curve then it can be lifted to X1\D1 as f[1].

By induction, we obtain a tower of varieties (Xk, Dk, Vk) with πk : Xk →
X as the natural projection. We have a tautological line bundle OXk

(1) and
we denote uk := c1(OXk

(1)).
Let us consider the direct image πk∗(OXk

(m)). It is a locally free sheaf
denoted Ek,mT

∗

X generated by all polynomial operators in the derivatives
of order 1, 2, ..., k of f , together with the extra function log sj(f) along the
j−th component of D, which are moreover invariant under arbitrary changes
of parametrization: a germ of operator Q ∈ Ek,mT

∗

X is characterized by the
condition that, for every germ of holomorphic curve f : (C, 0) → (X\D, x)
and every germ φ ∈ Gk of k-jet biholomorphisms of (C, 0),

Q(f ◦ φ) = φ′mQ(f) ◦ φ.

The following theorem makes clear the use of jet differentials in the study
of hyperbolicity:

Theorem 12 ([13], [5], [7]). Assume that there exist integers k, m > 0 and
an ample line bundle L on X such that

H0(Xk,OXk
(m) ⊗ π∗

kL
−1) ≃ H0(X, Ek,mT

∗

X ⊗ L−1)

has non zero sections σ1, . . . , σN . Let Z ⊂ Xk be the base locus of these
sections. Then every entire curve f : C → X\D is such that f[k](C) ⊂ Z. In
other words, for every global Gk− invariant polynomial differential operator
P with values in L−1, every entire curve f : C → X\D must satisfy the
algebraic differential equation P (f) = 0.

In the case of logarithmic surfaces (X, D), we have the following filtration
(see [12]) of log-jet differentials of order 2:

Gr•E2,mT
∗

X = ⊕
0≤j≤m/3

Sm−3jT
∗

X ⊗ K
⊗j

X .

A Riemann-Roch calculation based on the above filtration yields

χ(X, E2,mT
∗

X) =
m4

648
(13c2

1 − 9c2) + O(m3),

where c1 and c2 denote the logarithmic Chern classes. This gives by Bogo-
molov’s vanishing theorem [2]:
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Theorem 13 [12] If (X, D) is an algebraic log surface of log general type
and A an ample line bundle over X, then

h0(X, E2,mT
∗

X ⊗O(−A)) ≥
m4

648
(13c2

1 − 9c2) + O(m3).

Corollary 14 [12] Let C ⊂ P2 be a smooth curve of degree d ≥ 11 and A an
ample line bundle. Then h0(X, E2,mT

∗

X ⊗O(−A)) 6= 0 for m large enough.

Corollary 15 [20] Let C = C1 ∪C2 be a normal crossing complex algebraic
curve in P2 having two irreducible smooth components C1 and C2 of degrees
d1 ≤ d2 and A an ample line bundle. Then h0(X, E2,mT

∗

X ⊗O(−A)) 6= 0 for
m large enough if the degrees satisfy

either d1 ≥ 3,
or d1 = 2 and d2 ≥ 5,
or d1 = 1 and d2 ≥ 7.

5 Proof of theorem 2

Let us consider an entire curve f : C → P2\C for a generic curve in P2 of
degree d ≥ 14. Let us assume that the projectivized first derivative f[1] : C →
X1 is Zariski dense. By the proposition of the previous section we have a
section

σ ∈ H0(P2, E2,mT
∗

P2 ⊗ K
−t

P2 ) ≃ H0((P2)2,O(P2)2(m) ⊗ π∗
2K

−t

P2 ).

with zero set Z and vanishing order t(d − 3). Consider the family

X ⊂ P
2 × P

Nd

of curves of degree d in P2. General semicontinuity arguments concerning the
cohomology groups show the existence of a Zariski open set Ud ⊂ PNd such
that for any a ∈ Ud, there exists an irreducible and reduced divisor

Za = (Pa = 0) ⊂ (P2
a)2,

where
Pa ∈ H0((P2

a)2,O(P2
a)2(m) ⊗ π∗

2K
−t

(P2
a)),

such that the family (Pa)a∈Ud
varies holomorphically. We have the following

numerical criterion due to El Goul

14



Proposition 16 [12] Let (X, D) be a log surface of log general type with
Pic(X) = Z. Suppose that

m(13c2
1 − 9c2) > 12tc2

1,

then there exists a divisor Y1 ⊂ X1 such that im(f[1]) ⊂ Y1.

Therefore since we assume that the projectivized first derivative f[1] :
C → X1 is Zariski dense we obtain the following estimate for the vanishing
order

t ≥
m(13c2

1 − 9c2)

12c2
1

.

Now we consider P as a holomorphic function on Jv
2 (P2 × PNd)Ud

and
differentiate it with the meromorphic vector fields constructed before. Take
v ∈ H0(Jv

2 (P2 × PNd)Ud
, TJv

2 (P2×P
Nd)Ud

⊗OP2(3)) such a vector field, then the

restriction of dP (v) to Za is a section of the bundle

O(P2
a)2(m) ⊗OP2

a
(3 − t(d − 3)) |Za .

From the previous proposition, we have

t(d − 3) ≥
m(13c2

1 − 9c2)

12c2
1

(d − 3) > 3,

if d > 14.
Therefore if f[1] : C → X1 is Zariski dense, we have that the restriction

of dP (v) to Za must vanish. Then there exists a section

ρv ∈ H0(P2
a,OP2

a
(3 + t(d − 3)),

such that
dP (v) = ρvP.

As in the compact case, we have the following proposition:

Proposition 17 Let f : C → P2\C such that f[1] : C → X1 is Zariski dense.
Then the weighted degree m of the algebraic family of sections (Pa) verifies
m ≥ 6.
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Proof. Following [12], we have for m ≤ 5 the exact sequence

0 → SmT
∗

P2 ⊗ K
−t

P2 → E2,mT
∗

P2 ⊗ K
−t

P2

φ
→ Sm−3T

∗

P2 ⊗ K
1−t

P2 → 0,

which gives an injective morphism for any positive t

Φ : H0(P2, E2,mT
∗

P2 ⊗ K
−t

P2 ) → H0(P2, Sm−3T
∗

P2 ⊗ K
1−t

P2 ),

because H0(P2, SmT
∗

P2 ⊗ K
−t

P2 ) = 0 (see [12]).
Let us consider as above the logarithmic manifold (Y , H) with the log-

morphism π : (Y , H) → (P2 × PNd,X ). We can take the pull-back with π of
the algebraic family of sections (Pa) providing logarithmic 2-jet differentials
on Ya. Let us do some local computations on these 2-jet differentials. We
take some affine coordinates on C3 and the equation of Y0 is

Y0 := (zd
3 +

∑

α

aαzα = 0) ⊂ C
3 × U,

with H0 := (z3 = 0).
Now, the proof is similar to the compact case (see [19]) which we recall

for the convenience of the reader.
If we assume that

∑
α

aα
∂zα

∂z1
6= 0 identically on Y0, we can write a logarith-

mic 2-jet differential on the corresponding affine open set with logarithmic
coordinates in the following way

Q(z, a, ξ(1), ξ(2)) = R0(z, a, ξ(1))(ξ
(1)
2 ξ

(2)
3 − ξ

(1)
3 ξ

(2)
2 ) + R1(z, a, ξ(1)),

where R0 and R1 are local symmetric differentials, of degree m − 3 and m.
For a generic point z ∈ Y0, R0 and R1 are not identically zero since the zero
set of the (Pa) is irreducible.

For generic z0 = (z0
1 , z

0
2 , z

0
3) ∈ Y0, R0 and R1 are not identically zero.

By translation we can assume that z0
1 = z0

2 = 0. We can make a linear
transformation on (z1, z2) to diagonalize the quadratic part and the equation
of Y0 becomes

Y0 = (zd
3 +

∑

3≤α≤d

cαzα + c0(z
2
1 + z2

2 + c100z1) = 0).

Notice that the equation of the divisor H0 is still (z3 = 0). In these

coordinates, we consider as above the manifold Jv
2 (Y0) and Ṽ :=

∑
j

ξ
(j)
2

∂

∂ξ
(j)
3

−
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ξ
(j)
3

∂

∂ξ
(j)
2

. According to lemma 5, there exists a global meromorphic vector field

V ∈ H0(Jv
2 (Y), TJv

2 (Y) ⊗OP3(3)) such that V :=
∑
α

vα
∂

∂aα
+ Ṽ .

Moreover, from the proof of the lemma we see that for each index α, |α| ≤
2, we have vα(0, 0) = 0.

Now, using the first package of vector fields and the relation dP (v) = ρvP ,
we obtain that there exists λ ∈ C such that

(
∑

j

ξ
(j)
2

∂

∂ξ
(j)
3

− ξ
(j)
3

∂

∂ξ
(j)
2

)
Q(z0, a0, ξ

(1), ξ(2)) = λQ(z0, a0, ξ
(1), ξ(2)),

for any 2-jet (ξ(1), ξ(2)) of Y0 at z0. We remark that

(
∑

j

ξ
(j)
2

∂

∂ξ
(j)
3

− ξ
(j)
3

∂

∂ξ
(j)
2

)
(ξ

(1)
2 ξ

(2)
3 − ξ

(1)
3 ξ

(2)
2 ) = 0.

If m = 3, then we have λ = 0 since R0 is not 0, so

(
ξ

(1)
2

∂

∂ξ
(1)
3

− ξ
(1)
3

∂

∂ξ
(1)
2

)(
3∑

j=0

R1
j

(
ξ

(1)
2

)j (
ξ

(1)
3

)3−j
)

= 0,

which implies that R1
j = 0 for all j.

If m = 4, then

(
ξ

(1)
2

∂

∂ξ
(1)
3

− ξ
(1)
3

∂

∂ξ
(1)
2

)(
R0

1ξ
(1)
2 + R0

2ξ
(1)
3

)
= λ

(
R0

1ξ
(1)
2 + R0

2ξ
(1)
3

)
,

and
(

ξ
(1)
2

∂

∂ξ
(1)
3

− ξ
(1)
3

∂

∂ξ
(1)
2

)(
4∑

j=0

R1
j

(
ξ

(1)
2

)j (
ξ

(1)
3

)3−j
)

= λ

(
4∑

j=0

R1
j

(
ξ

(1)
2

)j (
ξ

(1)
3

)3−j
)

,

which imposes the two equations

λ2 − 1 = 0,

λ(λ4 + 8λ + 16) = 0.

They do not have common solutions.
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If m = 5 we obtain

λ(λ2 + 4) = 0,

λ2(13 + λ2)2 + 9(5 + λ2) = 0,

with no common solutions. �

So, with f : C → P
2\C such that f[1] : C → X1 is Zariski dense we

have degree at least 6 for the jet differential. But, we have proved that
TJv

2 (P2×P
Nd) ⊗OP2(7)|X2

is globally generated on X2\(π2(Σ)∪π∗
2,0(C)). So, we

can find a vector field v such that dP (v) is a holomorphic jet differential
vanishing on ample divisor and algebraically independent of P provided that

m(13c2
1 − 9c2)

12c2
1

(d − 3) > 7,

which is the case for d ≥ 14 as m ≥ 6. Then we obtain a contradiction to
the fact that f[1] : C → X1 is Zariski dense. Indeed, if f[2] does not lie in the
singular set of (P = 0) then for some t ∈ C, dPf[2](t)(v) 6= 0, which contradicts
theorem 12. Therefore f[2] lies in this singular set and f[1] is algebraically
degenerate. Then we use El Goul’s generalization of McQuillan’s results on
foliations of surfaces to the logarithmic setting in [12] which tells us that
the entire curve f : C → P2\C itself is algebraically degenerate. Finally,
algebraic hyperbolicity of P2\C (see [18] or [3]) implies that f is constant
and P2\C is hyperbolic and hyperbolically embedded in P2.

6 Proof of theorem 3

The proof goes along the same lines showing the algebraic degeneracy of the
curve f : C → P2\C1 ∪ C2 provided that the same numerical condition

m(13c2
1 − 9c2)

12c2
1

(d − 3) > 7,

is satisfied. An easy computation shows that it is the case if either d1 ≥ 4,
or d1 = 3 and d2 ≥ 5, or d1 = 2 and d2 ≥ 8, or d1 = 1 and d2 ≥ 11. The
hyperbolicity is deduced from the algebraic hyperbolicity of P2\C1 ∪C2 (see
[3]).
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[20] Rousseau E., Hyperbolicité du complémentaire d’une courbe : le cas de
deux composantes, CRAS Ser. I 336 (2003), 635–640.

[21] Rousseau E., Etude des jets de Demailly-Semple en dimension 3, Ann.
Inst. Fourier 56 (2006), 397–421.
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