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Chen’s double sieve, Goldbach’s conjecture

and the twin prime problem, 2
J. Wu

Abstract. For every even integer N, denote by Dj2(N) the number of
representations of N as a sum of a prime and an integer having at most two
prime factors. In this paper, we give a new lower bound for Dy 2(N).

§ 1. Introduction
Let £2(n) be the number of all prime factors of the integer n with the convention Q(1) = 0.
For each even integer N > 4, we define

DIN):=[{p<N:Q(N —p) =1},

where and in what follows, the letter p, with or without subscript, denotes a prime number.
The well known Goldbach conjecture can be stated as D(N) > 1 for all even integers N > 4. A

more precise version of this conjecture was proposed by Hardy & Littlewood [10]:

(1.1) D(N) ~20(N) (N — o0),
where

._ p—1 1t _ _COnN
(12) ““}gLﬁle @w) W) = g e

Certainly, the asymptotic formula (1.1) is extremely difficult. One way of approaching the lower

bound problem in (1.1) is to give a non-trivial lower bound for the quantity
Dia(N) = [{p < N : Q(N — p) < 2}

In this direction, Chen [5] proved, by his system of weights and the switching principle, the
following famous theorem: FEvery sufficiently large even integer can be written as sum of a
prime and an integer having at most two prime factors. More precisely he established

(1.3) D1a(N) > 0.67O(N)

for N > Ny. As Halberstam & Richert indicated in [9], it would be interesting to know whether
a more elaborate weighting procedure could be adapted to the purpose of (1.3). This might lead
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to numerical improvements and could be important. Chen’s constant 0.67 has been improved
by many authors. The historical record is as follows:

0.689 by Halberstam & Richert [9],
0.754 by Chen [6],

0.81 by Chen [7],

0.828 by Cai & Lu [4],

0.836 by Wu [13],

0.867 by Cai [2].

The aim of this paper is to propose a better constant.

Theorem. For sufficiently large N, we have
D1 5(N) > 0.899 O(N).

Our improvement comes from a delicate application of Chen’s double sieve ([8], [12], [13]),
which can be described as follows: With standard notation in theory of sieve method, the linear
sieve formulas (see [9], or Lemma 2.2 of [13]) can be stated as

log @
log 2z

log @
log =

(1.4) XV(z)f( ) +error < S(A; P, 2) < XV(z)F( ) + error.

These inequalities are the best possible in the sense that taking
A=8B,:={n<z:Qn)=r(mod2)} (v=12),

the upper and lower bounds in (1.4) are respectively attained by v = 1 and v = 2 (see [9], page
239). Aiming at a better Bombieri-Davenport’s upper bound [1]

D(N) < {8+ o(1)}O(NV),

Chen [8] found improvement for (1.4) for some special sequences A. Roughly speaking, for the
sequence
A={N-p:p< N}

he narrowed down the gap in (1.4) by introducing two functions h(s) and H(s) such that the
functions sf(s)/(2€7) and sF(s)/(2e7) are replaced by sf(s)/(2e7)+h(s) and sF(s)/(2eY)—H(s)
respectively, where v is the Euler constant. The key point is thus to prove h(s) > 0 and
H(s) > 0. Chen’s proof is very long and somewhat difficult to follow, but his innovative idea is
clear (see [11] for example). In [13], we gave a more comprehensive treatment on this method
and name it as Chen’s double sieve. Indeed, our treatment is not only simpler but even more
powerful than Chen’s. Our approach improved Chen’s upper estimate D(N) < 7.83420(N) to
D(N) < 7.82099(N). It is worth to indicate that Chen’s record stood for 26 years before our
work [13].

To prove our Theorem, we first simplify and improve Chen’s weight system (compare (12)
of [7] and Lemma 2.2 below), and then apply Chen’s double sieve, as the classical linear sieve,
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to handle terms such as Yo, T3, T4, T5 and YT (cf. Propositions 4.1, 4.2, 4.3 and 4.4 below).
The idea of using Chen’s double sieve to treat sums of the type

(1.5) Y. S(A3P(N),N")
NP1Lp< N2
(p,N)=1

was first appeared in [12]. However, due to the first condition in (3.1) below, a direct application
of our Chen’s double sieve can only handle the initial part of the sum over small p in (1.5) (i.e.
p < N'/%). On the other hand, very recently Cai [2] used a similar idea to control the sum over
large p in (1.5). Actually his method can be viewed as a simplified version of Chen’s double sieve
(see Proposition 4.4 below and the comments before it). Here we shall combine both versions
and refine them to obtain our result. Apparently from the proof, we shall see that the first
version gives a saving of 0.0211 while the second saves 0.0078. Without Chen’s double sieve
technique, we still obtain 0.870 in place of 0.899, which is slightly better than Cai’s 0.867.

Clearly our method can be used to refine the corresponding constants in the conjugate
problems (2] and [3]). The proofs are very similar and even easier and simpler. Hence we omit
the relevant discussion. Maybe this is a good exercise for senior graduate students in analytic

number theory.

§ 2. Chen’s system of weights

This section is devoted to discuss the weighted sieve of Chen type. Let
A={N-p:p< N} and P(N):={p:(p,N) =1}.
The sieve function is defined as
S(A;P(N), 2) == [{a € A: (a, P(2)) = 1}],

where P(2) == [[,<. pepv)P-

Lemma 2.1. Let 0 < kK <o < Then we have

1
3

(2.1) 2D 9(N) = 2S(A; P(N),N®) — Si(k,0) — 2S2(k,0) — S3(k,0) + Sa(k,0) + O(N'™%),

where
Sy (k,0) = Z S(A,; P(N),N*),
N"<p<N°
(p,N)=1
SQ(HaO—) = Z Z S(Aplpz;P(Npl)aPQ)a
NLp1<p2<(N/p1)'/?
(p1p2,N)=1

53("{‘)0-) = Z Z S(Ap1p2;7)(Npl)ap2)a
N"<p1<N7<pa<(N/p1)"/?
(p1p2,N)=1

S4(I€,O’) = Z Z Z S(AP1P2P3;P(NP1)7PQ)'

N"Lp1<p2<p3<N7
(p1p2p3,N)=1

The inequality (2.1) first appeared in [7] (page 479, (11)) with (k,0) = (35, 335): (53 547)

without proof. Cai & [Lu] [4] gave a proof with an extra assumption 30 + x > 1. In [13], we
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proved (2.1) under the hypothesis 0 < k < 0 < % Clearly the proof there is also valid for o = %
Very recently Cai [2] gave another proof for Lemma 2.1.

As in [7], we shall apply (2.1) with two different pairs of parameters (k, o) to take advantage
of S4(k, o). Our weighted sieve is simpler and more poweful than those of Chen ([7], (12)) and

Cai ([2], Lemma 6).

Lemma 2.2. Let k3 > k1 > 1/18 such that 3k1 + k2 < 1/2 and 3k; — k2 < 1/6. Then we have
(2.2) 4D15(N) 231+ Ty — T3 =Ty + V54 Y6 —2Y7 — Ls — Lo — L1g — T11 + O(N' ™),

where

Y= S(AP(N),N™) (i=1,2),

TB = Z S(Ap,P(N),NK1)7
N®1Lp<NY/3
(p,N)=1
T4 = Z S(Ap’ P(N), Nﬁl)7
N1 <p<N1/2—3m1
(p,N)=1
T5 = Z Z S(APIPZ;’P(N)’an)’
N"1<p1<pa<N"2
(p1p2,N)=1
to 22 S(Apips; P(N), N*),
N®1py < N2 py < N/27351
(p1p2,N)=1
Tr = Z Z S(Apypa; P(ND1),p2),

NY/27351 <y <po < (N/p1)*/2
(p1p2,N)=1

T8 = Z Z S(Ap1p2;P(Np1)ap2)7
N™1L<pr <N 3<pa<(N/p1)t/?
(p1p2,N)=1

Ty = >3 S (Aps i P(N D), (N/p1p2)'2),
N2 <p1<N1/273n1 <p2<(N/p1)1/2
(p1p2,N)=1

Tio:= Z Z Z Z S(Ap1p2p3p4;7)(N)7p2)a

N1 Lp1<p2<p3<pa<N"™2
(P1p2p3pa,N)=1

Z Z Z Z S(AP1P2P3P4;P(N)7PQ)-

N*1<p1 <pa<p3<N"2<pa<N/27251 /p,
(p1p2p3pa,N)=1

Tll .

Proof. By noticing that our hypothesis implies k2 < 1/2 — 3k1 < 1/3, we can apply (2.1) with
(k,0) = (k2,1/2 — 3K1) to obtain

(2.3) 2D1 9(N) = 2Ty — Sy(k2,1/2 — 3k1) — 2¥7 — S3(ka,1/2 — 3k1) + O(N'F2),

where the term Sy(k2,1/2 — 3k1) is dropped by non-negativity.
Buchstab’s identity, when applied three times, gives the equality

To=T) — Z S(Ap; P(N), N™) + 15 — Z Z Z S(Apipaps; P(N), 1)
NF1Lp< NR2 N™1Lp1<p2<ps<N"2
(p,N)=1 (p1p2ps3,N)=1
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Similarly, a twice application of Buchstab’s identity yields

Sl(H2,1/2—3/€1): Z S(Ap;,P(N)’an)_TG

N"2 <p< N/2-3r1
(p,N)=1

T Z Z Z S('Aplpzps;P(N)apl)-

N 1Lp1 <pa<N®2pg<N/273%1
(p1p2p3,N)=1

By Buchstab’s identity, we can prove

S3(k2,1/2 = 3K1) < To + Z Z Z S(Apypaps; P(Np1),p3)-

N"2<pr <NV 27351 Lpoy <ps < (N/purpa) /2
(p1p2p3,N)=1

Inserting them into (2.3), we find that
(2.4) 2D12(N) > Y1+ Yo =Ty +Ts+ Y —2T7 — Yo — Ay + O(N'F2),

where

Ay = Z Z Z S(APIP2PS;P(N)5P1)

N™1<p1 <p2<p3<N"2
(p1p2p3,N)=1

+ Z Z Z S(Aplp2p3;P(N)’p1)

NS <p1<pa<N"2Lps<N1/273%1
(p1p2p3,N)=1

T Z Z Z S(Ampzps;P(Npl),pg)-

N"2<pr <NV 27381 Cpo <p3 <(N/prp2) /2
(p1p2p3,N)=1

The inequality (2.1) with (k,0) = (k1,1/3) gives
(2.5) 2D15(N) > 2Y1 — Y3 — Ys + Sq(k1,1/3) + O(N' "),

where we have used the fact that Sa(k1,1/3) = 0.
Adding (2.4) to (2.5) yields

(2.6) 4Dy 2(N)=3T1+ Yo — T3 = Y4+ Ts+ T —2T7 — Ts— Yo+ Ay + O(N'TF),

where

Ay = Z Z Z S(Apipaps; P(N), p2) — A1

N™1<py<pa<ps<N'/3
(p1p2ps,N)=1
Clearly all the summation ranges in the three triple sums of A; are distinct and the first
two are covered in the range of the triple sum in Ay (since our hypothesis on k1 and ko implies
max{r2,1/2 — 3k1} < 1/3). On the other hand, we easily see that the range of summation
in the third triple sum of A; is equivalent to N*2 < p; < NY273%1 < py < (N/py)'/? and
p2 < p3 < (N/pip2)*/?. From this we deduce that (N/pipo)t/? < N1/2H3ri—r2)/2 < N1/3
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since 3k1 — ko < 1/6. Thus this range is also contained in the triple sum of Ay. Therefore we
have

AQ = - Z Z Z {S(Aplpzps;P(N)apl) - S(Aplpzps;P(N)aPQ)}

N"LLp1<pa<p3<N"™2
(p1p2ps3,N)=1

- Z Z Z {S(AP1P2P3;P(N)’p1)_S(Aplpzps;P(N)aPQ)}

NP <pa<N"2Lpy <N/27251 /py
(p1p2p3,N)=1

+ Z Z Z {S(AMP%DS;P(N)’I)?) 7S(.Aplp2p3;'P(N>,p3>}

N"2<pr <NV 27381 Lpo <p3 < (N/prpa)*/?
(p1p2p3,N)=1

> —Ti9— Y11+ O(N'™"),

Combining with (2.6), we obtain the required result. O

Remark 1. Apparently from the proof, we have choosen (k,0) = (k1,1/2 —3k1), (k2,1/3)
in the application of Lemma 2.1. Tt is possible to optimize the choice of o. But this augments
the number of terms of (2.2) and the numeric improvement for Theorem is quite small.

§ 3. Chen’s double sieve

In this section, we recall Chen’s double sieve described in [13] and give numeric lower bounds
for H(s) and h(s) for later use.

For any large even integer IV, we write
A={N-p:p<N}, PN):={p:(p,N)=1}
Let 8 > 0 be a sufficiently small number *) and k € Z. Put
Q:=NY2"  4.=Q/d, L:=logN, Wy=N""".

Denote by my,z) the characteristic function of the set P(N)N[Y,Z). For k € Z* and N > 2,
let (V) be the set of all arithmetical functions o which can be written as the form

T = Tva/ava) ¥ X TV /A V)

where A is a real number with 1 + £7% < A < 1 +2£7%, i is an integer with 0 < i < k, and
Vi,...,V; are real numbers satisfying

V12 < Qa
Vl‘/22 < Qa

We adopt the convention that o is the characteristic function of the set {1} if i = 0.

() In numerical computation, we can formally take § = 0.
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Let F and f be defined by

F(s) =2e"/s, f(s)=0 (0<s<2),

(3.2)
(sF(s)) = f(s = 1), (sf(s)) =F(s—1) (s>2),

where v is Euler’s constant. Moreover we take

(3.3) A(s) :=sF(s)/2€7, a(s) :=sf(s)/2€”,

and introduce the notation

(3.4) ®(N,o,s) := ZO’ S(Ag; P dN),gll/S),
d
o o(d)Can
(3.5) O(N, o) := 4li(N) g @) ogd

where ¢(d) is the Euler function.
For k € Z*, No > 2 and s € [1,10], we define Hy n,(s) and hg n,(s) to be the supremum
of h > —oo such that for all N > Ny and o € Ui (), the inequalities

(N, 0,5) <{A(s) — h} O(N,0),
®(N,o0,s) = {a(s) + h} O(N, o)

hold true respectively. Obviously Hy n,(s) and hg n,(s) are decreasing in Ny, as well as de-
creasing in k by Lemma 3.1. Hence their limits at infinity exist (in the extended real line), and

we write
Hy(s) := lim Hg ny(S), hi(s) == lm hg N, (s),
No—o0 No—o0
H(s):= khm Hi(s), h(s) := khm hi(s).

The next lemma collects the concerned properties of these functions (see [13], Lemma 3.2,

Propositions 1 & 2 and Corollary 1).
Lemma 3.1. (i) For k € Z*,N > Ny, s € [1,10] and o € U3 (N), we have

(3.6) ®(N,o,s) < {A(s) — Hp.n, () }O(N, o),

(3.7) ®(N,0,s) = {a(s) + hi,n, (s)}O(N, o).
(ii) For k € Zt and s € [1,10], we have Hi(s) > 0 and hy(s) > 0.
(iii) For 2 < s < s’ < 10, we have

s'—1
dt  and H(s)>H(s’)+/ @dt.

-1

-1

(3.8) h(s) > h(s') + /

(iv) The function H(s) is decreasing on [1,10]. The function h(s) is increasing on [1,2] and
is decreasing on [2,10].
We cannot give explicit expressions for H(s) and h(s). But it is tractable to obtain numeric

lower bounds for these two functions. Let

(3.9) si:=2401xi (i>0).
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By ([13], § 7), we have the numeric lower bounds of H(s;) for 2 < i < 10. Next we shall consider
the case of 11 < i < 29 and the lower bounds of h(s;) for 0 < ¢ < 29. These will be used in the
proof of Theorem.

Let 1(4,4)(t) be the characteristic function of the interval [a,b] and

b
di 3,t+2,t+1
olabe) = [ log(— ), oolt) = M
a t 1 t 1 0.(375,4)

From (6.2) of [13] and the decreasing property of H(s), we deduce

(3.10) H(sj) > > cijH(si),

2<i<10

for 11 < j < 29, where

52 (oo (t) 4 1ps, _2.5(t) t+1
= 1 = 1 dt
CQJ /1 { t 8 (Sj -1 + t 8 Sj —1 ’

i (oo(t) 4 11, —2.3(t) t+1 :
= 1 J 1 dt (3 <i<10).
Cnd /{ t Og(sj1 * t s -1 B<i )

From the first inequality of (3.8) and the fact that h(s) > 0, we also derive

(3.11) h(s;) > i @dt

s;—1

> H(s2)log (M) + Z H(Si)log( il )

S5 — 1 ‘ X Si—1
max{3,7—9}<i<29

for 0 < j < 29.
Using the numeric lower bounds of H(s;) for 2 < ¢ < 10 given in ([13], § 7), (3.10) and
(3.11), we get via a numerical computation the following results.

10 | 3.0 | 0.0072943 | 20 | 4.0 | 0.0010835
11| 3.1 | 0.0061642 | 21 | 4.1 | 0.0008451
2.2 1 0.0223939 | 12 | 3.2 | 0.0052233 | 22 | 4.2 | 0.0006482
2.3 | 0.0217196 | 13 | 3.3 | 0.0044073 | 23 | 4.3 | 0.0004882
2.4 | 0.0202876 | 14 | 3.4 | 0.0036995 | 24 | 4.4 | 0.0003602
2.5 | 0.0181433 | 15 | 3.5 | 0.0030860 | 25 | 4.5 | 0.0002592
2.6 | 0.0158644 | 16 | 3.6 | 0.0025551 | 26 | 4.6 | 0.0001803
2.7 1 0.0129923 | 17 | 3.7 | 0.0020972 | 27 | 4.7 | 0.0001187
2.8 | 0.0100686 | 18 | 3.8 | 0.0017038 | 28 | 4.8 | 0.0000702
2.9 | 0.0078162 | 19 | 3.9 | 0.0013680 |29 | 4.9 | 0.0000313

O |0 [N | |O | =W (N

Table 1. Numeric lower bounds for H(s;)
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0| 2.0 0.0232385 | 10 | 3.0 | 0.0077162 | 20 | 4.0 | 0.0010120
1] 21| 0.0211041 | 11 | 3.1 | 0.0066236 | 21 | 4.1 | 0.0008099
2.2 | 0.0191556 | 12| 3.2 | 0.0055818 | 22 | 4.2 | 0.0006440
2.3 |1 0.0173631 | 13 | 3.3 | 0.0046164 | 23 | 4.3 | 0.0005084
2.4 | 0.0157035 | 14 | 3.4 | 0.0037529 | 24 | 4.4 | 0.0003980
2.5 | 0.0141585 | 15| 3.5 | 0.0030123 | 25 | 4.5 | 0.0003085
2.6 | 0.0127132 | 16 | 3.6 | 0.0023901 | 26 | 4.6 | 0.0002365
2.7 1 0.0113556 | 17| 3.7 | 0.0018997 | 27 | 4.7 | 0.0001791
2.8 | 0.0100756 | 18 | 3.8 | 0.0015336 | 28 | 4.8 | 0.0001336
2.9 | 0.0088648 | 19 | 3.9 | 0.0012593 | 29 | 4.9 | 0.0000981

O© |0 | N[ || =W | N

Table 2. Numeric lower bounds for h(s;)

Remark 2. It is possible to get better numeric lower bounds for H(s;) and h(s;) by
applying (3.8) repeatedly. But the improvement will be small.

§ 4. Application of Chen’s double sieve

In this section, we apply Chen’s double sieve to estimate the terms T3, T4, T5 and Tg in
(2.2). Propositions 4.1, 4.2, 4.3 and 4.4 below are results in general context. These estimates

are better than those obtained by the classical linear sieve, since H(s) > 0 and h(s) > 0.

Proposition 4.1. Let 0 < ¢1 < ¢ < 1/4 and k > 0 such that ¢3+k < 1/2. Then for N — oo,
we have

(/260015 A(8) — H (¢

S S(AP(N),NT) < {8/ At — H(1)

NP1<p< NP2 (1/2-¢o)/n L1 —251)
(p,N)=1

dt—i—o(l)}@(N).

Proof. We keep use of the previous notation. Denote by S the sum in the proposition. Let
o = N%1AJ and J be the integer such that ay < N?2 < ajy1. We write

(4.1) S= 3> Moy 1.0 @S (A P(ON),p"/7) + Ry,

1<G<T P

where 7, := (logp)/(xlog N) and

(4.2) Ri:= >  SUAPIN),N )< Y Np<ON)L™

ag<p<N?2 a <p<N92

Introducing
7j := (log ;) /(klog N),
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we easily see that 7., , o,)(p) # 0= 7; <7, < 7j—1. Thus we can deduce from (4.1) and (4.2)
that

(4.3) S< Y0 D Tagr.an@)S (A P(N), pV/77) + O(O(N)L™?),

INVAA

where we have used the following estimates:

D Doy 1) (P){S (A PON), p/7%) = S(Ay; P(pN), p'/ ) }

1<sd p

<Y T S N

ISIST aj—1Sp< pl/ 7o Lyt <pt/ i
LK NLTP § § 1/p
1T aj—1<p<ay

< O(N)L3.

Next we treat the inner sum (over p) in (4.3). Clearly for each j € {1,..., J}, our hypothesis
on ¢, ¢z and k assures that the function 7o, | o,) € Ux(N) for all k >0, No > 2 and N > Ny,
and 7; > 1. Thus we can apply (3.6) of Lemma 3.1 to estimate the sum over p (which is

(I)(N7 W[aj,l,aj) ) Tj)) :

S< Y {A() = Heny (1)}O(N, o, a)) + O(O(N)LTF)

1T
. Cn A(p) — Hie,v (7p) -3

< ALi(N) 2 o O(O(N)L
Migl, 2 G-B—togn/iosD) T COMET)
. ay ON A(7p) = Hino (7p) -3

< 4li(N —0 +O(O(N)L™?),
Mo 1 ng%mz (p—2)(1 —logp/log1) ( )

where we have used the fact that A(s) — Hy n,(s) is increasing in s. An integration by parts

with the prime number theorem shows that

A(1p) — Hy, Ny () (H/2=00/5 A(t) — Hy, n, (2)
2 -2 logp/los]) /< dt+ Osie).

N1 <p< N42 1/2— o)/ t(1 — 2kt)

Hence

(/2260 A(t) — Hyy ()
S<8{/ AW = Frvold) 4, 1 0y E}GN
(1/2-g2)/s t(1—2k1) k(e) pO(N)

for N > Ny. From this, we infer that

dt + Og,k(&‘),

lim sup

S 8/(1/2¢1)/K A(t) — Hi,n, (1)

1/2—¢2)/k t(l — 2I€t)

which implies, by taking N — oo, k — oo and ¢ — 0,

(/2-60)/% A(p) — H (¢
lim sup i < 8/ M de.
@(N) (1/2—¢2)/k t(l - 2fit)

N —o0

Clearly this is equivalent to the required inequality. ([
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In a similar fashion we can prove the following results.

Proposition 4.2. Let 0 < ¢1 < ¢2 < 1/6 and £ > 0 such that 2¢3 + k < 1/2. Then for
N — oo, we have

Z Z S(Aplpz;,P(N)vN’i)

NP1 <p1 <p2<N¢2
(p1p2,N)=

P2 (1/2-2t)/k
{ / / Mdtdu+o(1)}@(N).
1 (1/2—¢pa—t) /K 1 —22‘}-2:‘{/&)

Proposition 4.3. Let 0 < ¢1 < ¢2 < ¢p3 < ¢4 < 1/4 and k > 0 such that 2¢2 + ¢4 < 1/2 and
¢2 + ¢4+ < 1/2. Then for N — oo, we have

>, S S(Apypai P(N), NY)

N®1 §p1<N¢2 N®3 §p1<N¢4
(p1p2,N)=1

(s /¢ // s Mdtduﬂm}e(m

(1/2—ps—t)/k tu(l — 2t — 2Ku)

Finally we estimate the sum of the type in (1.5) with ¢; > 1/4. In this case, we cannot
directly apply our delicate Chen’s double sieve because of the first condition of (3.1). As what
Cai [2] remarked, it is possible to use a simplified version of Chen’s double sieve. This approach
will give a result better than using the classic linear sieve but weaker than Proposition 4.1, since,
without iteration, ¥4 (s) or Wa(s) are principal contributions of H(s). (See Lemmas 5.1 and 5.2
of [13] and compare Proposition 4.4 below and Proposition 4.1.)

Proposition 4.4. Let k > 0, ¢ > 0 and 2 < s < 3 < s <5 such that 1/4 < 1/2 — sk < ¢.
Then for N — oo, we have

> stpn < {s /( A o fe)

N1/2= gy N 1/2—¢)/k t(1 — 2kt)
(p,N)=1

where

s’ —1 1—1/3/ /
log(t —1 1 1 t—1
Uy (s) ;:,/ Mm_/ log(s't 1) ..
2 1-1/s t(l_t)

/// ¢—t—u—ov)\ dtdudv
— max
$>2 tu?v

1/s'<t<u<v<l/s

and w(u) is Buchstab’s function. The same result also holds if we replace U1 (s) by Wa(s), where
the function Uy(s) is defined as in Lemma 5.2 of [13].

Proof. For simplicity, we denote the sum by S. Since N* > p/® for p > N/27% we can write

S < > S(Ay; P(N),p*)
N/2=sngpa N9
(p,N)=1

Z Zﬂ-[%‘—lyaj)( (.Ap,'P( ), 1/5)

1<G<T P
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where o 1= N1/2=s8AJ and J is the integer such that ay_1 < N?® < ay.

Similar to Lemma 4.1 of [13], we can prove that there is a constant 1 > 0 such that

(1.4 < S S ey ) (1)~ 5900) + 50)) + O[T,

1<i<J p

where

Qi (p) := S(Ay; P(pN), pV/*),

Qa(p) == > S(Apy i P(oN), PV,
1/3/<p1<£1/3
(p1,N)=1
Q3(p) == Z Z Z S(APPIPZPS;P(pplN)5p2)'
p'/* <pr1<p2<ps<p'/*

(p1p2p3,N)=1

Similar to (5.1), (5.2) and (5.9) of [13], we can prove, uniformly for N > 10 and for 1 < j < J,

Zﬂ[aj—l#lj)(p) {Q s,8') +o(1 }G(N Tevj— 1%)) (i=1,2,3),
P

where
Q2(£a S/) = A(S/)a

" 1-1/s’ a(s’t)
Qi(s, s’ ::/ dt,
S A )

¢—t—u—v)\ dtdudv
Qg(ss —Qmax /// 5
tu“v

1/s'<t<u<v<l/s

Inserting these into (4.4) and noticing that

s'—1 o
Ay =1+ [ D an) = tog(s'e— 1),
2

t
we find that
S<{l—Ty(s)+0(1)} Z O(N, T, 1.a;)) + O(N'T),
SN/A
¢ dt
< {8(1 —Wy(s)) /1/2—55 =) + 0(1)}@(1\7)7

which is equivalent to the required result for the case of ¥y (s), since

/S A(t) / dt
——dt = e
(1/2-9)/r t(1 — 25t) (1/2—¢)/r (1 — 2kt)

B /¢’ dt
1/2—sk t(l - 2t) .

The case of Ws(s) can be treated in the same way. The main difference is to use Lemma
4.2 of [13] in place of Lemma 4.1 of [13]. We omit the details. d
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§ 5. Proof of Theorem
Take

(5.1) k1 =1/13.27 and Ko = 1/8.24,

which satisfy the hypothesis of Lemma 2.2. Next we estimate all the terms Y; in (2.2).

1° Lower bounds of T1 and Yo

Write N* = 1% with &' := x/(1/2 — §). By using (4.2) with ¢ := 151y (the charateristic
function of {1}), it follows that

T; = (I)(Nv 1{1}7 I/K"/L)

(5.2) > {a(1/}) + ha,no (1/57) YO (N, 11y)
> {Fi 4 o(1)} ()
with
F; :=8a(1/(2k;)) + 8h(1/(2K;)) (i =1,2).
Write

G :=8a(1/(2k;)) + 8h(1/(2k2)).
2° Upper bounds of T3 and Y4

We divide the sum T3 (resp. T4) into subsums according to

(a) N*t < p < N4,

(b) N1/4 gp < N1/2759n1

(C) N1/2=sjr1 < <p< N1/2=sj-1k1 (9 >j> 4)
(

d) N1/2753n1 <p< N1/3

(resp. Nt < p < NY*or NV/4 < p < NY/2-351) where s; is defined by (3.9). The contribution
of (a) is estimated by Proposition 4.1 and we evaluate (b) (resp. N4 < p < N/2-351) by
the classic linear sieve. The remaining subsums are treated by Proposition 4.4. It is worth to
point out that the case (b) requires another kind of treatment because ¥;(s19) = 0 (see Table
3 below). Thus we obtain

(5.3) Ti <{Fi+o(1)}O(N) (i=3,4),

where

1/(2k1)—1 A(t)
Fg;:s/ Y g @,
1/(6r1) t(l — 2:‘€1t)

1/(2r1)—1 A(t)
Fy:=8 — —dt-G
: /3 t(1 — 2k1t) 4’

and

1/(2&1)71 H t
o [ O,
(1/(4k1) t(l — 2:‘<&1t)

1/(2k1)—1 H(t s3 U
G ::8/ _HY) dt+8/ _Walss)
(1/(ara) (L= 261t) 1/(6r1) t(1 = Qfﬂf)

+8Z/ 1_2tdt+82/ 1—2m& gt

4<igh vV Si-t 6<ig9 Y Si—1
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3° Lower bounds of Y5 and Yg
Since k1 4 2k = 0.318... < 1/2, Proposition 4.2 yields

(5.4) Ts5 > {F5 +o(1)} O(N),

where
I = 8/N2 /(1/2%)/’11 alu) dt du + G5
(1/2—ko—t)/k1 tu(l — 2t — 2H1u)

K2 (1/2—-2t)/k1 h dtd
G5 = 8/ / (U) Y

(1/2—ko—t)/K1 tu(l — 2t — 2H1U).

and

We divide the double sum Yg into three subsums according to
(a) N* < p1 < N < py < NY/2722,
(b) N*1 < p; < N3%1/2 and NV/2=2k2  py < N1/2-3k1
(c) N31/2 < py < N*2 and NV/2-22  py < N1/2-31,
The first two subsums can be estimated by Proposition 4.3 and the last one by the classic linear

sieve. Thus we obtain

(5.5) Y6 = {Fs+0(1)} O(N),

where s .y
TreTh a(u)dtdu

Fs:=8 G

o / / 3k1—t) /K1 tu(l — 2t — 2Kk1u) + G

an

GG _ 8/ /(1/21{215)/111 h(u) dt du /31{1/2 /(2/{2 t)/K1 h( )dtdu

ko t)/kal tu(l — 2t — 2/11’& 3K1 t)/kal 1 — 2t — 2H1U)
4° Upper bounds of Y; fori=17,8,9,10,11
Clearly the terms Y7, Ts, Tg, T19 and T1; here are those terms Y7 (with o9 = 1/2 — 3k4),
Ty (with o1 = 1/3), Y19 (with o2 = 1/2 — 3k1), T13 and Y14 of (9.4) in [13]. Thus (10.10),
(10.11), (10.12) of [13] give us the estimates

(5.6) T, <{Fi+o(1)}O(N) (i=71,8,9,10,11),
where
2/(176&1)71 1 t*l
F7 = 8/ % dt,
2
7o 36 /10 16g(2 — 3t) gt + 8/1/3 log(2 — 3t) dt
T 5 ), t1-1? o A=t
o 8/1/23“1 log{(1 4 6r1 — 2t)/(1 — 6k1)} &
YT t(1—1) ’

By @/1/10 dt /“2 %/“2 dtg/ <1t1 t2t3t4>%
5 Ju 1—t1) Jy, 3 /o, ts t2 2
+8/ /”2 tg/m dtg,/ <1t1t2t3t4>%
/10 1 Jyy 5 Ji ts to tg
. 36 /1/10 /m /Kz t /1/2—2m—t3 w(l oty by — s — t4) dty
(1— t1 " N t ta
dty [ dby ("2 dty [P (1t —ty —t3 — 14| diy
//10 tq /1 /2 l3 /m w< ta >K’
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and w(t) is the Buchstab function (see Lemma 2.10 of [13]).
Inserting (5.2)—(5.6) into (2.2), we get the following inequality

D12(N) =2 {F(k1,K2) +0(1)} O(N),

where

F(k1,k2) = 3(BF1 + Fy — F3 — Fy + F5 + Fg — 2F; — Fs — Fy — Fg — F11).

5° Numeric computation
From (3.2) and (3.3), we deduce easily that

0 if0<s<2,
log(s — 1) if 2<s<4,
s—1 t—1
dt I -1
1og(s—1)+/ / %du if 4<s5<6,
3 2

u—1 v—1 o
/ d”/ logw g =1) 1, if 6<s<s,

cﬁ
| o-

\
|

and
1 if 0<s<3,

s~ log(t — 1)
As) = 1+/2 gidt

s—1 s—1 t—1 u—1
log(t — 1) dt d 1 -1)
1+/ og / / u/ log(v — 1) dv if 5<s<T.
2

BY using (3.8), we have

if 3<s<5,

1/(202)=1 (4
Gy > 8(h(822) +/ % dt) > 0.005283.
52271
In order to estimate G4, we use Table 1 and the decreasing property of H(s) to obtain
1/@r)=1 g
Gy=38 / _AY g >8 > giH(s:) > 0.008860
Yy H1 = 26t) 14<i<29
with )
14 R1814
=1 _—
94 ) (1 2%1814),

. Si(l — 2%181'71) .
g =1 —_—F 15 <4< 29).
i =tog (2E22) 15<i <o)

With a simpler calculation, we get

Gs=Gy+8 Y gila(si)) +8 Y ghWi(si)

3<i<5h 6<i<9

> 0.039890
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with

95

%

g3 =

= log (
log (

J. Wu

4[1153
1-— 2%183 ’
51(1 — 2/{151-1))

Si_l(l — 2&181')

N

i<9).

5) and \Ill(sl-)

Here we have used Table 1 of [13] on the lower bounds for Us(s;) (3 < ¢ <
(6 <i<9):
1] s s} K1 | Ko | K3 U (s;) Uo(ss)
31231450 3.54 | 2.88 | 2.43 0.015247971
4|24 |4.46 | 3.57 | 2.87 | 2.40 0.013898757
51251412 3.56 | 2.91 | 2.50 0.011776059
6 | 2.6 | 3.58 0.009405211
7127|347 0.006558950
8128|334 0.003536751
91291319 0.001056651
10| 3.0 | 3.00 0
Table 3. Lower bounds for ¥y (s;) and Ua(s;)
Similarly
K2 (1/2—-2t)/k1 h du dt
Gs = 8/ / (u) du
K1 (1/2—&2—15)/51 tu(l — 2t — 2/4,1’&)
(1/271{17&2)//{1 2[4]2 du
=8 h(u)lo
/(1/22,{2)/,{1 () log (1 — 2Ko — 2n1u> u(l — 2Kk1u)
-(1/272#&1)/1{1 1-2 9 d
+ 8/ h(u)log ( e mu) “
(1/2—k1—K2) /K1 2%31 U(l — 2H1U)
=8 Z gsh(s:)
15<i<27
> 0.001359
with ois ) q
15 — ° | Ko u
95 /(1/2_2@)/51 08 1—2k2 — 2k1u ) u(l — 2K51u)’
. Si 2%2 du .
- 1 16 < i < 20),
95 /S'Ll o8 (1 — 2K9 — 2n1u) u(l — 2k1u) ( ! )
g2 = /(1/2_'“_'”)/'€1 log 2ko du
> $20 1— 2k — 2k1u ) u(l — 2K u)
521 log(1/(2 —1-
i og(1/2n) ~1-w) |
(1/2—k1—K2)/kK1 u(l — 2k1u)
% log(1/(2k1) — 1 —
gi ::/ 0g(1/(2r1) Dau  (22<i <),
51 u(l — 2k u)
952)7 _ /(1/22:11)/:11 log(1/(2k1) — 1 — u) da

26

u(l — 2r1u)
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and
(1/2=ra=)/m1 p(y) du dt Sma/2 pCra=t)/me ) dt du
Ge =8
¢ //{1 / 2Kko—t) /K1 tu(l —2t— 2H1U / / 3Kk1—t)/K1 1 —2t- 2'%1”)
g /(1/2 2r2)/k1 log ko(l — 2K1 — 2K1u) h(u)du
5 k1(1 = 2k — 2k1u) J u(l — 2r1u)
. 8/<1/2mn2>/m log ((1 — 2k1 — 2r1u)(1 — 2kg — 2mu)) (h(u) du
(

1/2—2k2)/ K1 4dr1 Ko u(l — 2K1u)

>8 Y ggh(s)

1<i<21

> 0.060469

with

)
=

. si 1—2Kk1—2
- / log ra(L = 261 — 261u) du (1<i<14),
sii1 k1(1 — 2ko — 2K1u) J u(l — 2Kk1u)
15 /(1/2_2’”)/"il . ko(l — 2K1 — 2K1u) du
= o
9o 1 & k1(1 = 2k9 — 2k1u) J u(l — 2Kk1u)

. /515 log ((1 — 2k1 — 2K1u)(1 — 2Ke — 2m1u)) ( du
(

1/2—2k2) /K1 4K1k2 u(l = 2K1u)’

- 5 (1 —2k1 — 2K1u)(1 — 2K9 — 2K11) du )
6= 1 16 < i < 20),
96 /sl 1 o8 < 4K1 Ko u(l — 2k1u) ( ! )

o1 _ /(1/2“1“2)/“1 log (1 —2k1 — 2K1u)(1 — 2Ke — 2K11) du
’ 4K 1K uw(l — 2k1u)’

S$20

To simplify the computation of Fy and Fi1, we make use of the fact that w(t) < 0.561522
for t > 3.4.

Finally a numerical computation concludes

F(k1,k2) = i{?) x 14.900897 + (9.103015 + 0.005283)
— (23.652925 — 0.039890) — (19.643510 — 0.008860)
+ (1.654808 4 0.001359) + (3.819092 + 0.060469)
— 2 x 0.585179 — 5.279581 — 5.372410 — 0.104305 — 0.543858}
> 0.899.

This completes the proof of Theorem. (]
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