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Chen's double sieve, Goldbach's conjecture and the twin prime problem, 2

Chen's double sieve, Goldbach's conjecture and the twin prime problem, 2 J. Wu Abstract. For every even integer N , denote by D 1,2 (N ) the number of representations of N as a sum of a prime and an integer having at most two prime factors. In this paper, we give a new lower bound for D 1,2 (N ). § 1. Introduction

Let Ω(n) be the number of all prime factors of the integer n with the convention Ω(1) = 0. For each even integer N 4, we define

D(N ) := |{p N : Ω(N -p) = 1}|,
where and in what follows, the letter p, with or without subscript, denotes a prime number. The well known Goldbach conjecture can be stated as D(N ) 1 for all even integers N 4. A more precise version of this conjecture was proposed by Hardy & Littlewood [START_REF] Hardy | Some problems of 'partitio numerorum' III : On the expression of a number as a sum of primes[END_REF]:

(1.1) D(N ) ∼ 2Θ(N ) (N → ∞),
where (1.2)

C N := p|N, p>2 p -1 p -2 p>2 1 - 1 (p -1) 2 , Θ(N ) := C N N (log N ) 2 .
Certainly, the asymptotic formula (1.1) is extremely difficult. One way of approaching the lower bound problem in (1.1) is to give a non-trivial lower bound for the quantity D 1,2 (N ) := |{p N : Ω(N -p) 2}|.

In this direction, Chen [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF] proved, by his system of weights and the switching principle, the following famous theorem: Every sufficiently large even integer can be written as sum of a prime and an integer having at most two prime factors. More precisely he established (1.3) D 1,2 (N ) 0.67 Θ(N )

for N N 0 . As Halberstam & Richert indicated in [START_REF] Halberstam | Sieve Methods[END_REF], it would be interesting to know whether a more elaborate weighting procedure could be adapted to the purpose of (1.3). This might lead 2000 Mathematics Subject Classification: 11P32, 11N35, 11N05.

to numerical improvements and could be important. Chen's constant 0.67 has been improved by many authors. The historical record is as follows:

0.689 by Halberstam & Richert [START_REF] Halberstam | Sieve Methods[END_REF], 0.754 by Chen [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes (II)[END_REF],

0.81 by Chen [START_REF] Chen | Further improvement on the constant in the proposition '1+2': On the representation of a large even integer as the sum of a prime and the product of at most two primes (II) (in Chinese)[END_REF],

0.828 by Cai & Lu [START_REF] Cai | On Chen's theorem[END_REF], 0.836 by Wu [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF],

0.867 by Cai [START_REF] Cai | On Chen's theorem (II)[END_REF].

The aim of this paper is to propose a better constant.

Theorem. For sufficiently large N , we have D 1,2 (N ) 0.899 Θ(N ).

Our improvement comes from a delicate application of Chen's double sieve ( [START_REF] Chen | On the Goldbach's problem and the sieve methods[END_REF], [START_REF] Wu | Sur la suite des nombres premiers jumeaux[END_REF], [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF]), which can be described as follows: With standard notation in theory of sieve method, the linear sieve formulas (see [START_REF] Halberstam | Sieve Methods[END_REF], or Lemma 2.2 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF]) can be stated as

(1.4) XV (z)f log Q log z + error S(A; P, z) XV (z)F log Q log z + error.
These inequalities are the best possible in the sense that taking

A = B ν := {n x : Ω(n) ≡ ν (mod 2)} (ν = 1, 2),
the upper and lower bounds in (1.4) are respectively attained by ν = 1 and ν = 2 (see [START_REF] Halberstam | Sieve Methods[END_REF], page 239). Aiming at a better Bombieri-Davenport's upper bound [START_REF] Bombieri | Small differences between prime numbers[END_REF] 

D(N ) {8 + o(1)}Θ(N ),
Chen [START_REF] Chen | On the Goldbach's problem and the sieve methods[END_REF] found improvement for (1.4) for some special sequences A. Roughly speaking, for the sequence A = {N -p : p N } he narrowed down the gap in (1.4) by introducing two functions h(s) and H(s) such that the functions sf (s)/(2e γ ) and sF (s)/(2e γ ) are replaced by sf (s)/(2e γ )+h(s) and sF (s)/(2e γ )-H(s) respectively, where γ is the Euler constant. The key point is thus to prove h(s) > 0 and H(s) > 0. Chen's proof is very long and somewhat difficult to follow, but his innovative idea is clear (see [START_REF] Pan | Goldbach Conjecture[END_REF] for example). In [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF], we gave a more comprehensive treatment on this method and name it as Chen's double sieve. Indeed, our treatment is not only simpler but even more powerful than Chen's. Our approach improved Chen's upper estimate D(N ) 7.8342Θ(N ) to D(N ) 7.8209Θ(N ). It is worth to indicate that Chen's record stood for 26 years before our work [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF].

To prove our Theorem, we first simplify and improve Chen's weight system (compare (12) of [START_REF] Chen | Further improvement on the constant in the proposition '1+2': On the representation of a large even integer as the sum of a prime and the product of at most two primes (II) (in Chinese)[END_REF] and Lemma 2.2 below), and then apply Chen's double sieve, as the classical linear sieve, to handle terms such as Υ 2 , Υ 3 , Υ 4 , Υ 5 and Υ 6 (cf. Propositions 4.1, 4.2, 4.3 and 4.4 below). The idea of using Chen's double sieve to treat sums of the type (1.5)

N φ 1 p<N φ 2 (p,N )=1 S(A p ; P(N ), N κ )
was first appeared in [START_REF] Wu | Sur la suite des nombres premiers jumeaux[END_REF]. However, due to the first condition in (3.1) below, a direct application of our Chen's double sieve can only handle the initial part of the sum over small p in (1.5) (i.e. p N 1/4 ). On the other hand, very recently Cai [START_REF] Cai | On Chen's theorem (II)[END_REF] used a similar idea to control the sum over large p in (1.5). Actually his method can be viewed as a simplified version of Chen's double sieve (see Proposition 4.4 below and the comments before it). Here we shall combine both versions and refine them to obtain our result. Apparently from the proof, we shall see that the first version gives a saving of 0.0211 while the second saves 0.0078. Without Chen's double sieve technique, we still obtain 0.870 in place of 0.899, which is slightly better than Cai's 0.867.

Clearly our method can be used to refine the corresponding constants in the conjugate problems ( [START_REF] Cai | On Chen's theorem (II)[END_REF] and [START_REF] Cai | Chen's theorem with small primes (Chinese)[END_REF]). The proofs are very similar and even easier and simpler. Hence we omit the relevant discussion. Maybe this is a good exercise for senior graduate students in analytic number theory. § 2. Chen's system of weights This section is devoted to discuss the weighted sieve of Chen type. Let Lemma 2.1. Let 0 < κ < σ 1 3 . Then we have

(2.1) 2D 1,2 (N ) 2S(A; P(N ), N κ ) -S 1 (κ, σ) -2S 2 (κ, σ) -S 3 (κ, σ) + S 4 (κ, σ) + O(N 1-κ ),
where

S 1 (κ, σ) := N κ p<N σ (p,N )=1 S(A p ; P(N ), N κ ), S 2 (κ, σ) := N σ p1<p2<(N/p1) 1/2 (p1p2,N )=1 S(A p1p2 ; P(N p 1 ), p 2 ), S 3 (κ, σ) := N κ p1<N σ p2<(N/p1) 1/2 (p1p2,N )=1 S(A p1p2 ; P(N p 1 ), p 2 ), S 4 (κ, σ) := N κ p1<p2<p3<N σ (p1p2p3,N )=1 S(A p1p2p3 ; P(N p 1 ), p 2 ).
The inequality (2.1) first appeared in [START_REF] Chen | Further improvement on the constant in the proposition '1+2': On the representation of a large even integer as the sum of a prime and the product of at most two primes (II) (in Chinese)[END_REF] (page 479, [START_REF] Pan | Goldbach Conjecture[END_REF]) with (κ, σ) = ( [START_REF] Cai | On Chen's theorem[END_REF] gave a proof with an extra assumption 3σ + κ > 1. In [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF], we proved (2.1) under the hypothesis 0 < κ < σ < 1 3 . Clearly the proof there is also valid for σ = 1 3 . Very recently Cai [START_REF] Cai | On Chen's theorem (II)[END_REF] gave another proof for Lemma 2.1.

As in [START_REF] Chen | Further improvement on the constant in the proposition '1+2': On the representation of a large even integer as the sum of a prime and the product of at most two primes (II) (in Chinese)[END_REF], we shall apply (2.1) with two different pairs of parameters (κ, σ) to take advantage of S 4 (κ, σ). Our weighted sieve is simpler and more poweful than those of Chen ([7], [START_REF] Wu | Sur la suite des nombres premiers jumeaux[END_REF]) and Cai ([2], Lemma 6). Lemma 2.2. Let κ 2 > κ 1 1/18 such that 3κ 1 + κ 2 < 1/2 and 3κ 1 -κ 2 < 1/6. Then we have

(2.2) 4D 1,2 (N ) 3Υ 1 + Υ 2 -Υ 3 -Υ 4 + Υ 5 + Υ 6 -2Υ 7 -Υ 8 -Υ 9 -Υ 10 -Υ 11 + O(N 1-κ1 ),
where

Υ i := S(A; P(N ), N κi ) (i = 1, 2), Υ 3 := N κ 1 p<N 1/3 (p,N )=1 S(A p ; P(N ), N κ1 ), Υ 4 := N κ 1 p<N 1/2-3κ 1 (p,N )=1 S(A p ; P(N ), N κ1 ), Υ 5 := N κ 1 p1<p2<N κ 2 (p1p2,N )=1 S(A p1p2 ; P(N ), N κ1 ), Υ 6 := N κ 1 p1<N κ 2 p2<N 1/2-3κ 1 (p1p2,N )=1 S(A p1p2 ; P(N ), N κ1 ), Υ 7 := N 1/2-3κ 1 p1<p2<(N/p1) 1/2 (p1p2,N )=1 S(A p1p2 ; P(N p 1 ), p 2 ), Υ 8 := N κ 1 p1<N 1/3 p2<(N/p1) 1/2 (p1p2,N )=1 S(A p1p2 ; P(N p 1 ), p 2 ), Υ 9 := N κ 2 p1<N 1/2-3κ 1 p2<(N/p1) 1/2 (p1p2,N )=1 S A p1p2 ; P(N p 1 ), (N/p 1 p 2 ) 1/2 , Υ 10 := N κ 1 p1<p2<p3<p4<N κ 2 (p1p2p3p4,N )=1 S(A p1p2p3p4 ; P(N ), p 2 ), Υ 11 := N κ 1 p1<p2<p3<N κ 2 p4<N 1/2-2κ 1 /p3 (p1p2p3p4,N )=1 S(A p1p2p3p4 ; P(N ), p 2 ).
Proof. By noticing that our hypothesis implies

κ 2 < 1/2 -3κ 1 1/3, we can apply (2.1) with (κ, σ) = (κ 2 , 1/2 -3κ 1 ) to obtain (2.3) 2D 1,2 (N ) 2Υ 2 -S 1 (κ 2 , 1/2 -3κ 1 ) -2Υ 7 -S 3 (κ 2 , 1/2 -3κ 1 ) + O(N 1-κ2 ),
where the term S 4 (κ 2 , 1/2 -3κ 1 ) is dropped by non-negativity. Buchstab's identity, when applied three times, gives the equality

Υ 2 = Υ 1 - N κ 1 p<N κ 2 (p,N )=1 S(A p ; P(N ), N κ1 ) + Υ 5 - N κ 1 p1<p2<p3<N κ 2 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 1 ).
Similarly, a twice application of Buchstab's identity yields

S 1 (κ 2 , 1/2 -3κ 1 ) = N κ 2 p<N 1/2-3κ 1 (p,N )=1 S(A p ; P(N ), N κ1 ) -Υ 6 + N κ 1 p1<p2<N κ 2 p3<N 1/2-3κ 1 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 1 ).
By Buchstab's identity, we can prove

S 3 (κ 2 , 1/2 -3κ 1 ) Υ 9 + N κ 2 p1<N 1/2-3κ 1 p2<p3<(N/p1p2) 1/2 (p1p2p3,N )=1 S(A p1p2p3 ; P(N p 1 ), p 3 ).
Inserting them into (2.3), we find that

(2.4) 2D 1,2 (N ) Υ 1 + Υ 2 -Υ 4 + Υ 5 + Υ 6 -2Υ 7 -Υ 9 -∆ 1 + O(N 1-κ2 ),
where

∆ 1 := N κ 1 p1<p2<p3<N κ 2 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 1 ) + N κ 1 p1<p2<N κ 2 p3<N 1/2-3κ 1 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 1 ) + N κ 2 p1<N 1/2-3κ 1 p2<p3<(N/p1p2) 1/2 (p1p2p3,N )=1
S(A p1p2p3 ; P(N p 1 ), p 3 ).

The inequality (2.1) with (κ, σ) = (κ 1 , 1/3) gives

(2.5) 2D 1,2 (N ) 2Υ 1 -Υ 3 -Υ 8 + S 4 (κ 1 , 1/3) + O(N 1-κ1 ),
where we have used the fact that S 2 (κ 1 , 1/3) = 0.

Adding (2.4) to (2.5) yields

(2.6) 4D 1,2 (N ) 3Υ 1 + Υ 2 -Υ 3 -Υ 4 + Υ 5 + Υ 6 -2Υ 7 -Υ 8 -Υ 9 + ∆ 2 + O(N 1-κ1 ),
where

∆ 2 := N κ 1 p1<p2<p3<N 1/3 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 2 ) -∆ 1 .
Clearly all the summation ranges in the three triple sums of ∆ 1 are distinct and the first two are covered in the range of the triple sum in ∆ 2 (since our hypothesis on κ 1 and κ 2 implies max{κ 2 , 1/2 -3κ 1 } 1/3). On the other hand, we easily see that the range of summation in the third triple sum of ∆ 1 is equivalent to N κ2 p 1 < N 1/2-3κ1 p 2 (N/p 1 ) 1/3 and p 2 < p 3 < (N/p 1 p 2 ) 1/2 . From this we deduce that (N/p 1 p 2 ) 1/2 N (1/2+3κ1-κ2)/2 N 1/3 , since 3κ 1 -κ 2 < 1/6. Thus this range is also contained in the triple sum of ∆ 2 . Therefore we have

∆ 2 - N κ 1 p1<p2<p3<N κ 2 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 1 ) -S(A p1p2p3 ; P(N ), p 2 ) - N κ 1 p1<p2<N κ 2 p3<N 1/2-2κ 1 /p2 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 1 ) -S(A p1p2p3 ; P(N ), p 2 ) + N κ 2 p1<N 1/2-3κ 1 p2<p3<(N/p1p2) 1/2 (p1p2p3,N )=1 S(A p1p2p3 ; P(N ), p 2 ) -S(A p1p2p3 ; P(N ), p 3 ) -Υ 10 -Υ 11 + O(N 1-κ1 ).
Combining with (2.6), we obtain the required result.

Remark 1. Apparently from the proof, we have choosen (κ, σ) = (κ 1 , 1/2 -3κ 1 ), (κ 2 , 1/3) in the application of Lemma 2.1. It is possible to optimize the choice of σ. But this augments the number of terms of (2.2) and the numeric improvement for Theorem is quite small. § 3. Chen's double sieve

In this section, we recall Chen's double sieve described in [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF] and give numeric lower bounds for H(s) and h(s) for later use.

For any large even integer N , we write

A := {N -p : p N }, P(N ) := {p : (p, N ) = 1}.
Let δ > 0 be a sufficiently small number ( * ) and k ∈ Z. Put

Q := N 1/2-δ , d := Q/d, L := log N, W k := N δ 1+k .
Denote by π [Y,Z) the characteristic function of the set P(N ) ∩ [Y, Z). For k ∈ Z + and N 2, let U k (N ) be the set of all arithmetical functions σ which can be written as the form

σ = π [V1/∆,V1) * • • • * π [Vi/∆,Vi) ,
where ∆ is a real number with 1 + L -4

∆ < 1 + 2L -4 , i is an integer with 0 i k, and V 1 , . . . , V i are real numbers satisfying

(3.1)              V 2 1 Q, V 1 V 2 2 Q, • • • • • • • • • • • • • V 1 • • • V i-1 V 2 i Q, V 1 V 2 • • • V i W k .
We adopt the convention that σ is the characteristic function of the set {1} if i = 0. ( * ) In numerical computation, we can formally take δ = 0.

Let F and f be defined by

(3.2) F (s) = 2e γ /s, f (s) = 0 (0 < s 2), (sF (s)) ′ = f (s -1), (sf (s)) ′ = F (s -1) (s > 2),
where γ is Euler's constant. Moreover we take The next lemma collects the concerned properties of these functions (see [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF], Lemma 3.2, Propositions 1 & 2 and Corollary 1).

Lemma 3.1. (i) For k ∈ Z + , N N 0 , s ∈ [1, 10] and σ ∈ U k (N ), we have Φ(N, σ, s) {A(s) -H k,N0 (s)}Θ(N, σ), (3.6) Φ(N, σ, s) {a(s) + h k,N0 (s)}Θ(N, σ). (3.7) (ii) For k ∈ Z + and s ∈ [1, 10],
we have H k (s) 0 and h k (s) 0. (iii) For 2 s s ′ 10, we have

(3.8) h(s) h(s ′ ) + s ′ -1 s-1 H(t) t dt and H(s) H(s ′ ) + s ′ -1 s-1 h(t) t dt.
(iv) The function H(s) is decreasing on [START_REF] Bombieri | Small differences between prime numbers[END_REF][START_REF] Hardy | Some problems of 'partitio numerorum' III : On the expression of a number as a sum of primes[END_REF]. The function h(s) is increasing on [START_REF] Bombieri | Small differences between prime numbers[END_REF][START_REF] Cai | On Chen's theorem (II)[END_REF] and is decreasing on [START_REF] Cai | On Chen's theorem (II)[END_REF][START_REF] Hardy | Some problems of 'partitio numerorum' III : On the expression of a number as a sum of primes[END_REF].

We cannot give explicit expressions for H(s) and h(s). But it is tractable to obtain numeric lower bounds for these two functions. Let (3.9)

s i := 2 + 0.1 × i (i 0).
By ([13], § 7), we have the numeric lower bounds of H(s i ) for 2 i 10. Next we shall consider the case of 11 i 29 and the lower bounds of h(s i ) for 0 i 29. These will be used in the proof of Theorem. From (6.2) of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF] and the decreasing property of H(s), we deduce

(3.10) H(s j ) 2 i 10 c i,j H(s i ),
for 11 j 29, where

c 2,j := s2 1 σ 0 (t) t log 4 s j -1 + 1 [sj -2,3] (t) t log t + 1 s j -1 dt, c i,j := si si-1 σ 0 (t) t log 4 s j -1 + 1 [sj -2,3] (t) t log t + 1 s j -1 dt (3 i 10).
From the first inequality of (3.8) and the fact that h(s) 0, we also derive h(s j ) In this section, we apply Chen's double sieve to estimate the terms Υ 3 , Υ 4 , Υ 5 and Υ 6 in (2.2). Propositions 4.1, 4.2, 4.3 and 4.4 below are results in general context. These estimates are better than those obtained by the classical linear sieve, since H(s) > 0 and h(s) > 0.

Proposition 4.1. Let 0 < φ 1 < φ 2 < 1/4 and κ > 0 such that φ 2 + κ 1/2. Then for N → ∞, we have

N φ 1 p<N φ 2 (p,N )=1 S(A p ; P(N ), N κ ) 8 (1/2-φ1)/κ (1/2-φ2)/κ A(t) -H(t) t(1 -2κt) dt + o(1) Θ(N ).
Proof. We keep use of the previous notation. Denote by S the sum in the proposition. Let α j := N φ1 ∆ j and J be the integer such that α J N φ2 < α J+1 . We write

(4.1) S = 1 j J p π [αj-1,αj) (p)S A p ; P(pN ), p 1/τp + R 1 ,
where τ p := (log p)/(κ log N ) and

(4.2) R 1 := αJ p<N φ 2 S(A p ; P(N ), N κ ) ≪ αJ p<N φ 2 N/p ≪ Θ(N )L -3 .
Introducing

τ j := (log α j )/(κ log N ),
we easily see that π [αj-1,αj ) (p) = 0 ⇒ τ j τ p τ j-1 . Thus we can deduce from (4.1) and (4.2) that (4.3) S

1 j J p π [αj-1,αj ) (p)S A p ; P(pN ), p 1/τj + O Θ(N )L -3 ,
where we have used the following estimates:

1 j J p π [αj-1,αj ) (p) S A p ; P(pN ), p 1/τp -S A p ; P(pN ), p 1/τj 1 j J αj-1 p<αj p 1/τp p ′ <p 1/τ j N/(pp ′ ) ≪ N L -5 1 j J αj-1 p<αj 1/p ≪ Θ(N )L -3 .
Next we treat the inner sum (over p) in (4.3). Clearly for each j ∈ {1, . . . , J}, our hypothesis on φ 1 , φ 2 and κ assures that the function π [αj-1,αj ) ∈ U k (N ) for all k 0, N 0 2 and N N 0 , and τ j 1. Thus we can apply (3.6) of Lemma 3.1 to estimate the sum over p (which is Φ(N, π [αj-1,αj) , τ j )) :

S 1 j J {A(τ j ) -H k,N0 (τ j )}Θ(N, π [αj-1,αj ) ) + O Θ(N )L -3 4li(N ) C N log 1 α0 p<αJ A(τ p ) -H k,N0 (τ p ) (p -2)(1 -log p/ log 1) + O Θ(N )L -3 4li(N ) C N log 1 N φ 1 p<N φ 2 A(τ p ) -H k,N0 (τ p ) (p -2)(1 -log p/ log 1) + O Θ(N )L -3 ,
where we have used the fact that A(s) -H k,N0 (s) is increasing in s. An integration by parts with the prime number theorem shows that

N φ 1 p<N φ 2 A(τ p ) -H k,N0 (τ p ) (p -2)(1 -log p/ log 1) = (1/2-φ1)/κ (1/2-φ2)/κ A(t) -H k,N0 (t) t(1 -2κt) dt + O δ,k (ε). Hence S 8 (1/2-φ1)/κ (1/2-φ2)/κ A(t) -H k,N0 (t) t(1 -2κt) dt + O δ,k (ε) Θ(N )
for N N 0 . From this, we infer that lim sup

N →∞ S Θ(N ) 8 (1/2-φ1)/κ (1/2-φ2)/κ A(t) -H k,N0 (t) t(1 -2κt) dt + O δ,k (ε), which implies, by taking N → ∞, k → ∞ and ε → 0, lim sup N →∞ S Θ(N ) 8 (1/2-φ1)/κ (1/2-φ2)/κ A(t) -H(t) t(1 -2κt) dt.
Clearly this is equivalent to the required inequality.

In a similar fashion we can prove the following results.

Proposition 4.2. Let 0 < φ 1 < φ 2 < 1/6 and κ > 0 such that 2φ 2 + κ 1/2. Then for N → ∞, we have

N φ 1 p1<p2<N φ 2 (p1p2,N )=1 S(A p1p2 ; P(N ), N κ ) 8 φ2 φ1 (1/2-2t)/κ (1/2-φ2-t)/κ a(u) + h(u) t(1 -2t -2κu) dt du + o(1) Θ(N ). Proposition 4.3. Let 0 < φ 1 < φ 2 φ 3 < φ 4 < 1/4 and κ > 0 such that 2φ 2 + φ 4 < 1/2 and φ 2 + φ 4 + κ 1/2.
Then for N → ∞, we have

N φ 1 p1<N φ 2 N φ 3 p1<N φ 4 (p1p2,N )=1 S(A p1p2 ; P(N ), N κ ) 8 φ2 φ1 (1/2-φ3-t)/κ (1/2-φ4-t)/κ a(u) + h(u) tu(1 -2t -2κu) dt du + o(1) Θ(N ).
Finally we estimate the sum of the type in (1.5) with φ 1 1/4. In this case, we cannot directly apply our delicate Chen's double sieve because of the first condition of (3.1). As what Cai [START_REF] Cai | On Chen's theorem (II)[END_REF] remarked, it is possible to use a simplified version of Chen's double sieve. This approach will give a result better than using the classic linear sieve but weaker than Proposition 4.1, since, without iteration, Ψ 1 (s) or Ψ 2 (s) are principal contributions of H(s). (See Lemmas 5.1 and 5.2 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF] and compare Proposition 4.4 below and Proposition 4.1.) Proposition 4.4. Let κ > 0, φ > 0 and 2 s 3 s ′ 5 such that 1/4 1/2 -sκ < φ. Then for N → ∞, we have

N 1/2-sκ p<N φ (p,N )=1 S(A p ; P(N ), N κ ) 8 s (1/2-φ)/κ A(t) -Ψ 1 (s) t(1 -2κt) dt + o(1) Θ(N ),
where

Ψ 1 (s) := - s ′ -1 2 log(t -1) t dt + 1 2 1-1/s ′ 1-1/s log(s ′ t -1) t(1 -t) dt -max φ 2 1/s ′ t u v 1/s ω φ -t -u -v u dt du dv tu 2 v
and ω(u) is Buchstab's function. The same result also holds if we replace Ψ 1 (s) by Ψ 2 (s), where the function Ψ 2 (s) is defined as in Lemma 5.2 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF].

Proof. For simplicity, we denote the sum by S. Since N κ p 1/s for p N 1/2-sκ , we can write

S N 1/2-sκ p<N φ (p,N )=1 S A p ; P(N ), p 1/s 1 j J p π [αj-1,αj ) (p)S A p ; P(N ), p 1/s ,
where α j := N 1/2-sκ ∆ j and J is the integer such that α J-1 N φ < α J . Similar to Lemma 4.1 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF], we can prove that there is a constant η > 0 such that (4.4) S

1 j J p π [αj-1,αj ) (p) Ω 1 (p) - 1 2 Ω 2 (p) + 1 2 Ω 3 (p) + O N 1-η ,
where Ω 1 (p) := S A p ; P(pN ), p 1/s ′ ,

Ω 2 (p) := p 1/s ′ p1<p 1/s (p1,N )=1 S A pp1 ; P(pN ), p 1/s ′ , Ω 3 (p) := p 1/s ′ p1<p2<p3<p 1/s (p1p2p3,N )=1 S A pp1p2p3 ; P(pp 1 N ), p 2 .
Similar to (5.1), (5.2) and (5.9) of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF], we can prove, uniformly for N 10 and for 1 j J,

p π [αj-1,αj ) (p)Ω i (p) Ω i (s, s ′ ) + o(1) Θ N, π [αj-1,αj ) (i = 1, 2, 3),
where

Ω 2 (s, s ′ ) := A(s ′ ), Ω i (s, s ′ ) := 1-1/s ′ 1-1/s a(s ′ t) t(1 -t) dt, Ω 3 (s, s ′ ) := 2 max φ 2 1/s ′ t u v 1/s ω φ -t -u -v u dt du dv tu 2 v .
Inserting these into (4.4) and noticing that

A(s ′ ) = 1 + s ′ -1 2 log(t -1) t dt, a(s ′ t) = log(s ′ t -1), we find that S {1 -Ψ 1 (s) + o(1)} 1 j J Θ N, π [αj-1,αj ) + O N 1-η , 8 1 -Ψ 1 (s) φ 1/2-sκ dt t(1 -2t) + o(1) Θ(N ),
which is equivalent to the required result for the case of Ψ 1 (s), since

s (1/2-φ)/κ A(t) t(1 -2κt) dt = s (1/2-φ)/κ dt t(1 -2κt) = φ 1/2-sκ dt t(1 -2t)
.

The case of Ψ 2 (s) can be treated in the same way. The main difference is to use Lemma 4.2 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF] in place of Lemma 4.1 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF]. We omit the details. § 5. Proof of Theorem Take (5. Write N κ = 1 κ ′ with κ ′ := κ/(1/2 -δ). By using (4.2) with σ := 1 {1} (the charateristic function of {1}), it follows that (5.2)

Υ i = Φ(N, 1 {1} , 1/κ ′ i ) a(1/κ ′ i ) + h k,N0 (1/κ ′ i ) Θ N, 1 {1} {F i + o(1)} Θ(N ) with F i := 8a(1/(2κ i )) + 8h(1/(2κ i )) (i = 1, 2). Write G 2 := 8a(1/(2κ i )) + 8h(1/(2κ 2 )).
2 • Upper bounds of Υ 3 and Υ 4

We divide the sum Υ 3 (resp. Υ 4 ) into subsums according to

(a) N κ1 p < N 1/4 , (b) N 1/4 p < N 1/2-s9κ1 , (c) N 1/2-sj κ1 p < N 1/2-sj-1κ1 (9 j 4), (d) N 1/2-s3κ1 p < N 1/3
(resp. N κ1 p < N 1/4 or N 1/4 p < N 1/2-3κ1 ), where s i is defined by (3.9). The contribution of (a) is estimated by Proposition 4.1 and we evaluate (b) (resp. N 1/4 p < N 1/2-3κ1 ) by the classic linear sieve. The remaining subsums are treated by Proposition 4.4. It is worth to point out that the case (b) requires another kind of treatment because Ψ 1 (s 10 ) = 0 (see Table 3 below). Thus we obtain

(5.3) Υ i {F i + o(1)} Θ(N ) (i = 3, 4),
where where

F 3 := 8 1/(2κ1)-1 1/(6κ1) A(t) t(1 -2κ 1 t) dt -G 3 , F 4 := 8 1/(2κ1)-1 3 A(t) t(1 -2κ 1 t) dt -G 4 , and 
G 4 := 8 1/(2κ1)-1 (1/(4κ1) H(t) t(1 -2κ 1 t) dt, G 3 := 8 1/(2κ1)-1 (1/(4κ1) H(t) t(1 -2κ 1 t) dt + 8 s3 1/(6κ1) Ψ 2 (s 3 ) t(1 -2κt) dt + 8 4 i 5 si si-1 Ψ 2 (s i ) t(1 -2κt) dt + 8 6 i 9 si si-1 Ψ 1 (s i ) t(1 -2κt) dt
F 5 := 8 κ2 κ1 (1/2-2t)/κ1 (1/2-κ2-t)/κ1 a(u) dt du tu(1 -2t -2κ 1 u) + G 5
and

G 5 := 8 κ2 κ1 (1/2-2t)/κ1 (1/2-κ2-t)/κ1 h(u) dt du tu(1 -2t -2κ 1 u) .
We divide the double sum Υ 6 into three subsums according to

(a) N κ1 p 1 < N κ2 p 2 < N 1/2-2κ2 , (b) N κ1 p 1 < N 3κ1/2 and N 1/2-2κ2 p 2 < N 1/2-3κ1 , (c) N 3κ1/2 p 1 < N κ2 and N 1/2-2κ2 p 2 < N 1/2-3κ1 .
The first two subsums can be estimated by Proposition 4.3 and the last one by the classic linear sieve. Thus we obtain (5.5)

Υ 6 {F 6 + o(1)} Θ(N ),
where

F 6 := 8 κ2 κ1 (1/2-κ2-t)/κ1 (3κ1-t)/κ1 a(u) dt du tu(1 -2t -2κ 1 u) + G 6
and

G 6 := 8 κ2 κ1 (1/2-κ2-t)/κ1 (2κ2-t)/κ1 h(u) dt du tu(1 -2t -2κ 1 u) + 8 3κ1/2 κ1 (2κ2-t)/κ1 (3κ1-t)/κ1 h(u) dt du tu(1 -2t -2κ 1 u) .
4 • Upper bounds of Υ i for i = 7, 8, 9, 10, 11

Clearly the terms Υ 7 , Υ 8 , Υ 9 , Υ 10 and Υ 11 here are those terms Υ 7 (with σ 1 = 1/2 -3κ 1 ), Υ 9 (with σ 1 = 1/3), Υ 10 (with σ 2 = 1/2 -3κ 1 ), Υ 13 and Υ 14 of (9.4) in [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF]. Thus (10.10), (10.11), (10.12) of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF] give us the estimates [START_REF] Chen | On the Goldbach's problem and the sieve methods[END_REF][START_REF] Halberstam | Sieve Methods[END_REF][START_REF] Hardy | Some problems of 'partitio numerorum' III : On the expression of a number as a sum of primes[END_REF][START_REF] Pan | Goldbach Conjecture[END_REF], where 

(5.6) Υ i {F i + o(1)} Θ(N ) (i = 7,
F 7 := 8 2/(1-6κ1)-1 2 log(t -1) t dt, F 8 := 36 5 1/10 κ1 log(2 -3t) t(1 -t) 2 dt + 8 1/3 1/10 log(2 -3t) t(1 -t) dt, F 9 := 8 1/2-3κ1 κ2 log{(1 + 6κ 1 -2t)/(1 -6κ 1 )} t(1 -t) dt, F 10 := 36 5 1/10 κ1 dt 1 t 1 (1 -t 1 ) κ2 t1 dt 2 t 2 2 κ2 t2 dt 3 t 3 κ2 t3 ω 1 -t 1 -t 2 -t 3 -
dt 3 t 3 1/2-2κ1-t3 κ2 ω 1 -t 1 -t 2 -t 3 -t 4 t 2 dt 4 t 4 , with g 3 3 := log 4κ 1 s 3 1 -2κ 1 s 3 , g i 3 := log s i (1 -2κ 1 s i-1 ) s i-1 (1 -2κ 1 s i ) (4 i 9).
Here we have used Table 1 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF] on the lower bounds for Ψ 2 (s i ) (3 i 5) and Ψ 1 (s i ) (6 i 9): To simplify the computation of F 10 and F 11 , we make use of the fact that ω(t) 0.561522 for t 3.4.

i s i s ′ i κ 1,i κ 2,i κ 3,i Ψ 1 (s i ) Ψ 2 (s i ) 3 
Finally a numerical computation concludes This completes the proof of Theorem.

A

  := {N -p : p N } and P(N ) := {p : (p, N ) = 1}. The sieve function is defined as S(A; P(N ), z) := |{a ∈ A : (a, P (z)) = 1}|, where P (z) := p z, p∈P(N ) p.

(3. 3 )

 3 A(s) := sF (s)/2e γ , a(s) := sf (s)/2e γ , and introduce the notation Φ(N, σ, s) := d σ(d)S(A d ; P(dN ), d 1/s ), (3.4) Θ(N, σ) := 4li(N ) d σ(d)C dN ϕ(d) log d , (3.5) where ϕ(d) is the Euler function.For k ∈ Z + , N 0 2 and s ∈ [1, 10], we define H k,N0 (s) and h k,N0 (s) to be the supremum of h -∞ such that for all N N 0 and σ ∈ U k (N ), the inequalitiesΦ(N, σ, s) {A(s) -h} Θ(N, σ), Φ(N, σ, s) {a(s) + h} Θ(N, σ)hold true respectively. Obviously H k,N0 (s) and h k,N0 (s) are decreasing in N 0 , as well as decreasing in k by Lemma 3.1. Hence their limits at infinity exist (in the extended real line), and we writeH k (s) := lim N0→∞ H k,N0(s), H(s) := lim k→∞ H k (s), h k (s) := lim N0→∞ h k,N0 (s), h(s) := lim k→∞ h k (s).

  Let 1 [a,b] (t) be the characteristic function of the interval [a, b] and σ(a, b, c) :=

( 1 / 2 - 8 ( 1 / 2 -2κ2)/κ1 2 log κ 2 ( 1 - 1 -κ 2 hlog κ 2 ( 1 -κ 2 ( 1 -log ( 1 -κ 2 du u( 1 - 1 -κ 2 du u( 1 -

 12812221122121121121 2κ1)/κ1 s26 log(1/(2κ 1 ) -1 -u) u(1 -2κ 1 u) dt du tu(1 -2t -2κ 1 u) 2κ 1 -2κ 1 u) κ 1 (1 -2κ 2 -2κ 1 u) h(u) du u(1 -2κ 1 u) 2κ 1 -2κ 1 u)(1 -2κ 2 -2κ 1 u) 4κ 1 2κ 1 -2κ 1 u) κ 1 (1 -2κ 2 -2κ 1 u) du u(1 -2κ 1 u) (1 i 14), 2κ 1 -2κ 1 u) κ 1 (1 -2κ 2 -2κ 1 u) du u(1 -2κ 1 u) + s15 (1/2-2κ2)/κ1 log (1 -2κ 1 -2κ 1 u)(1 -2κ 2 -2κ 1 u) 4κ 1 κ 2 du u(1 -2κ 1 u) , 2κ 1 -2κ 1 u)(1 -2κ 2 -2κ 1 u) 4κ 1 2κ 1 u) (16 i 20), 2κ 1 -2κ 1 u)(1 -2κ 2 -2κ 1 u) 4κ 1 2κ 1 u).

F (κ 1 , κ 2 ) 1 4 3 ×

 13 14.900897 + (9.103015 + 0.005283) -(23.652925 -0.039890) -(19.643510 -0.008860) + (1.654808 + 0.001359) + (3.819092 + 0.060469) -2 × 0.585179 -5.279581 -5.372410 -0.104305 -0.543858 > 0.899.

Table 1 .

 1 Numeric lower bounds for H(s i )

	(3.11)		5 sj -1	H(t) t	dt				
			H(s 2 ) log	s max{2,j-10} s j -1	+	max{3,j-9} i 29	H(s i ) log	s i s i-1
	for 0 j 29.								
	Using the numeric lower bounds of H(s i ) for 2	i	10 given in ([13], § 7), (3.10) and
	(3.11), we get via a numerical computation the following results.
	i	s i	H(s i )	i	s i	H(s i )		i	s i	H(s i )
					10 3.0 0.0072943 20 4.0 0.0010835
					11 3.1 0.0061642 21 4.1 0.0008451
	2 2.2 0.0223939 12 3.2 0.0052233 22 4.2 0.0006482
	3 2.3 0.0217196 13 3.3 0.0044073 23 4.3 0.0004882
	4 2.4 0.0202876 14 3.4 0.0036995 24 4.4 0.0003602
	5 2.5 0.0181433 15 3.5 0.0030860 25 4.5 0.0002592
	6 2.6 0.0158644 16 3.6 0.0025551 26 4.6 0.0001803
	7 2.7 0.0129923 17 3.7 0.0020972 27 4.7 0.0001187
	8 2.8 0.0100686 18 3.8 0.0017038 28 4.8 0.0000702
	9 2.9 0.0078162 19 3.9 0.0013680 29 4.9 0.0000313

Table 2 .

 2 Numeric lower bounds for h(s

i ) Remark 2. It is possible to get better numeric lower bounds for H(s i ) and h(s i ) by applying (3.8) repeatedly. But the improvement will be small. § 4. Application of Chen's double sieve

3 •

 3 Lower bounds of Υ 5 and Υ 6

	Since κ 1 + 2κ 2 = 0.318 . . . < 1/2, Proposition 4.2 yields
	(5.4)	Υ 5 {F 5 + o(1)} Θ(N ),

Table 3 .

 3 Lower bounds for Ψ 1 (s i ) and Ψ 2 (s i )

	2.3 4.50 3.54 2.88 2.43	0.015247971
	4 2.4 4.46 3.57 2.87 2.40	0.013898757
	5 2.5 4.12 3.56 2.91 2.50	0.011776059
	6 2.6 3.58	0.009405211
	7 2.7 3.47	0.006558950
	8 2.8 3.34	0.003536751
	9 2.9 3.19	0.001056651
	10 3.0 3.00	0
	Similarly	
	G 5 = 8	

and ω(t) is the Buchstab function (see Lemma 2.10 of [START_REF] Wu | Chen's double sieve, Goldbach's conjecture and the twin prime problem[END_REF]).

Inserting (5.2)-(5.6) into (2.2), we get the following inequality

where

From (3.2) and (3.3), we deduce easily that

BY using (3.8), we have

In order to estimate G 4 , we use Table 1 and the decreasing property of H(s) to obtain

With a simpler calculation, we get