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RISK WITH RANDOM NORMALIZING FACTORS IN THE WHITE GAUSSIAN NOISE ADDITIVE MODEL

In the context of minimax theory we develop a new approach based on pretesting. The first step of this approach consists in testing some structural assumption imposed on the underlying function.

According to the result we use a relevant estimation procedure that allows to improve significantly the quality of estimation. We apply this general set-up to the estimation of an unknown multidimensionnal signal in the White Gaussian Noise model. The structure we test here is the additivity hypothesis. The mathematical description of this approach leads to the notion of random (depending on datas) rate of estimation. Under some additional assumption our construction leads to adaptive estimator w.r.t. rate of convergence.

1. Introduction 1.1. Minimax approach. This paper is devoted to the estimation of the signal observed in multivariate gaussian white noise model.

(1.1)

dX ε (t) = f (t)dt + εdB(t), ∀t ∈ [0, 1] d ,
where B(•) is the standard Brownian sheet and 0 < ε < 1 is the noise level.

To measure performance of estimators statisticians often use the minimax quadratic risk determined by L 2 -norm on [0, 1] d . For given set Σ subset of L 2 ([0, 1] d ) we define a maximal risk

(1.2) R ε ( f ε , Σ) = sup f ∈Σ E f f ε -f 2 2 ,
and we interesting in the asymptotics (minimax rate of convergence) of the minimax risk

(1.3) ϕ ε (Σ) 2 inf f R ε ( f ε , Σ),
where the inf is taken over all estimators. The main difficulty arises in estimation of a multivariate function is the so called curse of dimensionality : the larger dimension , the worse quality of estimation. In particular the dimension effects on the MRC. For example, if Σ = Σ d (β, L) , where Σ d (β, L) isotropic Holder or Sobolev ball with smoothness parameter β, then [START_REF] Ibragimov | On non parametric estimation of regression Soviet Math[END_REF] (1.4)

ϕ ε (β, d) = ε 2β 2β+d .
As we see, the higher d is, the lower is the minimax rate. Consequently the asymptotical result becomes irrelevant because it is applicable only for unreasonably small noise level ε > 0. This problem arises because isotropic Holder or Sobolev balls are too massive. A way to overcome the curse of dimensionality is to use the poor functional classes for description of the model. Typically, the "poverty" of a functional class can be expressed in terms of restrictions on its metric entropy and there are several possibilities to do that. One can suppose, for instance, that regularity β grows proportionnaly with dimension. In this case the dimension will disappear from the expression of the MRC. However such assumption is quite unrealistic and restrictive and it can lead to unadequate modeling. Another way consists in imposing an additional structure on the signal. In particular, Stone [START_REF] Stone | The dimensionality reduction principle for generalized additive models[END_REF] proposed to use the following structure, called additive, (1.5) f (t) = f 1 (t 1 ) + . . . + f d (t d ),
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when f i ∈ Σ 1 (β, L) where Σ 1 (β, L) is either Holder or Sobolev ball of univariate functions. He showed that the minimax rate of convergence under additivity hypothesis is given by

(1.6) ϕ ε (β) = ϕ ε (β, 1) = ε 2β 2β+1 ,
i.e. the quality of estimation does not depend on the dimension. It also worth mentionning that there exists also a vast literature on estimation of components f i when (1.5) holds. For example, algorithmic methods as 'backfitting' introduced by Breiman and Friedman [START_REF] Breiman | Estimating optimal transformations for multiple regression and correlations (with discussion)[END_REF], or non-iterative method as 'marginal estimation' proposed in [START_REF] Linton | A kernel method of estimating structured nonparametric regression based on marginal integration[END_REF]. Consistency an asymptotic properties were studied over these two approaches see [START_REF] Mammen | The existence and asymptotic properties of a backfitting projection algorithm under weak conditions[END_REF], [START_REF] Severance-Lossin | Estimation of derivatives for additive separable models[END_REF].

Other structures which have been studied in recent litterature are • Single-index model : Let e in R d , assume that f (x) = F (e T x) for univariate F .

• Projection pursuit model : Let e 1 ,. . . ,e d in R d and assume that there are univariate function

f i such that f (x) = d i=1 f i (e T i x)
• Multi-index model : Let e 1 ,. . . ,e m in R d with m < d and assume that f (x) = F (e T 1 x, . . . , e T m x) with m-dimensional F .

The existing results show that the use of structural models usually leads to the improvement of the quality of estimation w.r.t the rate ϕ ε (β, d), Chen [START_REF] Chen | Estimation of a projection-pursuit type regression model[END_REF], Golubev [START_REF] Golubev | Asymptotically minimax estimation of a regression function on an addiive model Problems Inform[END_REF].

Thus, the structural assumption usually improves the accuracy of estimation. However they are very strong and can lead to unadequate model. Indeed, it is quite restrictive to suppose that the underlying function posseses additive or single-index structure in the whole domain of observation. To avoid this problem and in the same time to guarantee the flexibility of the modeling one can use so called adaptive approach.

1.2. Adaptive approach. For the model discussed above, this approach consists in in adapting an estimation procedure to eventual structure of the signal. Therefore, we hope to improve accuracy of estimation as soon as the underlying function belong to Σ 0 a "poor" subset of Σ i.e. ϕ ε (Σ 0 ) ϕ ε (Σ). Thus we seek an estimator f (a) ε , called adapative, such that (1.7) lim sup

ε→0 ϕ ε (Σ) -2 R ε (f (a) ε , Σ) < ∞, (1.8) lim sup ε→0 ϕ ε (Σ 0 ) -2 R ε (f (a) ε , Σ 0 ) < ∞.
The existence as well as non existence of adaptive estimators was extensively studied during last two decades, [START_REF] Barron | Risk bounds for model selction via penalization[END_REF] [7] [START_REF] Donoho | Wavelet shrinkage : Asymptopia[END_REF], [START_REF] Efromovich | Adaptive algorithms for nonparametric filtering Automat[END_REF], [START_REF] Golubev | Quasilinear estimates of a signal in L 2 Problems Inform[END_REF], [START_REF] Hardle | Optimal bandwith selection in nonparametric regression function estimation[END_REF], [START_REF] Hall | Block threslhold rules for curve estimation using kernel and wavelet methods[END_REF], [START_REF] Hall | On the minimax optimality of block thresholding wavelet estimators Statist[END_REF], [START_REF] Lepskii | A problem of adaptive estimation in gaussian white noise Theory Prob[END_REF], [START_REF] Lepskii | Asymptotic minimax adaptive estimation. 1. Upper bounds. Optimally adaptive estimates Theory Prob[END_REF], [START_REF] Lepskii | Asymptotic minimax adaptive estimation. 2. Statistical models without optimal adaptation[END_REF], [START_REF] Lepskii | Local adaptation to inhomogenous smoothness : resolution level[END_REF], [START_REF] Lepskii | Optimal pointwise adaptive methods in non parametric estimation[END_REF], [START_REF] Brown | a contrained risk inequality with applications to nonparametric estimation[END_REF] and [START_REF] Lepskii | Optimal spatial adaptation to inohomogenous smoothness / an approach based on kernel estimates with varaible bandwith selectors[END_REF] among others. In our model, we present an estimator that satisfies to (1.7) and (1.8) when Σ 0 corresponds to the subset of additive functions (1.5) belonging to isotropic Sobolev ball.

Under assumption that an adaptive estimator have been built, one may also wonder what kind of informations the estimation procedure brings to the statistician? Unfortunately even having constructed an estimator satisfying to (1.7) and (1.8), one can say nothing on its accuracy of estimation. Indeed putting (1.9)

ψ ε (f ) = ϕ ε (Σ 0 ), if f ∈ Σ 0 , ϕ ε (Σ), if f ∈ Σ \ Σ 0 , (1.7 
) and (1.8) are equivalent to

(1.10) lim sup ε→0 sup f ∈Σ E f ψ -1 ε (f ) f (a) ε -f 2 2 = C < ∞.
As we see accuracy ψ ε (f ) depends on the estimated function which is unknown. More exactly, it depends on whether f belongs to Σ 0 or not. This information can not be obtained from noisy datas. This impossibility of computing accuracy of an adaptive estimator is an unavoidable payment for the adaptive property. For example, this lack of information keeps the statisitician from deducing adaptive confidence ball for f from its estimation. Assume that Σ = Σ d (β, L) is a d-dimensional isotropic Sobolev ball and Σ 0 is the subset of additive functions i.e. that satisfy to (1.5). Then refering to (1.4) and (1.6) on have that

(1.11) ψ ε (f ) = ε 2β 2β+1 , if f ∈ Σ 0 , ε 2β 2β+d , if f ∈ Σ \ Σ 0 .
Let us suppose that some adpative estimator f * ε w.r.t. the family {Σ, Σ 0 } is built. Using Markov inequality we get for any 0 < ν < 1 and any f ∈ Σ (1.12)

P f f -f * ε ≤ C ν ψ ε (f ) ≥ 1 -ν.
It means that with probability equal to 1 -ν, f belongs to the ball with center f * ε and with radius of order ψ ε (f ). In accordance whether the underlying function is truely additive or not, the radius of this 'artificial' confidence ball would be of the order either ε 2β 2β+1 or ε 2β 2β+d , which both are optimal in minimax sense. We call it artificial because it is not really confidence ball, since its radius depends on the unknown function. One way to avoid this difficulty may consist in replacing ψ ε (f ) in (1.12) by some random variable computed from the datas. To realize this idea, a new definition of minimax risk is required. Lepski in [START_REF] Lepskii | How to improve the accuracy of estimaton[END_REF] proposes to measure accuracy of an estimator f ε using

(1.13) R (r) ε ( f ε , Σ, ρ ε ) = sup f ∈Σ E f ρ -1 ε f ε -f 2 2
, where ρ ε is some random variable obtained from datas. This kind of risk is called risk with random normalizing factor (RNF). The issue of this approach is a couple

(ρ ε , f ε ) such that R (r) ε ( f ε , Σ, ρ ε ) is bounded by some constant C. Then for any 0 < ν < 1 and any f ∈ Σ (1.14) P f f -f ε ≤ C ν ρ ε ≥ 1 -ν.
Thus, contrary to (1.12), (1.14) provides a 'real' confidence ball for the observed signal. Since its radius now is computable. However this new aproach requires to be able to compare different couples ( ρ ε , f ε ). Indeed, the randomness of considered normalizing factors removes the natural order used in minimax theory. We present the exact definitions concerning RNF in the next section.

This approach has been already applied to the models where eventual structure can improve the accuracy of estimation. First, let us mention [START_REF] Lepskii | How to improve the accuracy of estimaton[END_REF] where the parametric and regualrity hypothesis were considered in context of estimation of univariate function. Next two papers [START_REF] Lepskii | Random rates in anisotropic regression[END_REF] and [START_REF] Yode | Estimation de la densité de probabilité multidimensionnel[END_REF] deal with estimation of multivariate functions. For WGN model the estimation procedure based on testing of dimensionality hypothesis ∃ i 1 < . . . < i s in {1, . . . , d} : f (x) = F (x i1 , . . . , x is ) was proposed in [START_REF] Lepskii | Random rates in anisotropic regression[END_REF]. In [START_REF] Yode | Estimation de la densité de probabilité multidimensionnel[END_REF], the estimator of the density f (x), x ∈ R d which is based on testing of independance hypothesis f (x) = d i=1 f i (x i ) was solved. Both papers propose the construction of optimal RNF in the sense of Lepski and present adaptive estimator w.r.t. the tested structure.

We will apply this approach in the case where Σ is isotropic ellipsoid with polynomial decreasing axes and Σ 0 ⊂ Σ consists in additive functions. For this problem, the construction of optimal RNF and efficient estimator is based on the hypothesis testing of additive structure. We would like to stress that under additional assumptions the corresponding estimation procedure has adaptive properties. More precisely, having required that the first type error probability of the test tends to zero fast enough, we arrive to an adaptive estimator (1.10).

The paper is organized as follows. In section 2 we discuss in detail the minimax risk with RNF. The section 3 is devoted to the construction of RNF and the estimator which are based on testing the additivity hypothesis as well as the presentation of main results. In section 4, we discuss the way how to adapt the results obtained in the framework of WGN to the regression model with deterministic design. The proofs are postponed to the last part of the paper.

Risk with random normalizing factor

Let us denote by E ε the set of bounded RNF ρ ε i.e. random variables measurable w.r.t. X ε (•) and taking two values {ϕ ε (Σ), b ε }, 0 < b ε < ϕ ε (Σ). By A ε we denote the set of all possible estimators.

For any ρ ε ∈ E ε and f ε (•) ∈ A ε we defined the risk

(2.1) R (r) ε ( f ε , Σ, ρ ε ) = sup f ∈Σ E ε f ρ -1 ε f ε -f 2 2 .
The reason to introduce the risk (2.1) consists in the following. We understand the 'improvement' of accuracy as the fulfillment of the event {ρ ε = b ε }. As we will see the fact whether this event holds or not depends on the acceptance or rejection of the hypothesis

H 0 : f (•) ∈ Σ 0 .
Clearly we would like that {ρ ε = b ε } holds with prescribed probability at least if f belongs to Σ 0 .To realize this idea we proceed as follows.

First let us note that sup f ∈Σ0 P f ({ρ ε = b ε }) can be viewed as the first type error for the test of H 0 . This leads to the definition of the set of 'reasonable' RNF's.

Definition 2.1. For a given 0 < α ε < 1 , (2.2) Ω = Ω(α) = ρ ε ∈ E ε : lim sup ε-→0 α -1 ε sup f ∈Σ0 P ε f {ρ ε = ϕ ε (Σ)} ≤ 1 .
Thus, the consideration of ρ ε ∈ Ω(α) guarantees the 'improvement' w.r.t. to ϕ ε (Σ) if f ∈ Σ 0 with probabbility larger than 1 -α ε . In this context, it seems that α ε should be chosen tending to zero as fast as possible. Actually it is not true because the value b ε and α ε are related : the faster α ε tends to zero, the 'closer' b ε to ϕ ε (Σ). Let also note that the introduction of the set Ω allows us to propose a criterion of optimality [START_REF] Lepskii | How to improve the accuracy of estimaton[END_REF] for the risk of type (2.1).

Definition 2.2. A RNF (ρ * ε ) ε = {ϕ ε (Σ), b * ε }
∈ Ω is called α-optimal w.r.t. the family {Σ, Σ 0 } when : (1) There exists an estimator f * ε such that

lim sup ε R (r) ε (f * ε , Σ, ρ * ε ) ≤ C. (2) If there exist ρ ε = {ϕ ε (Σ), b ε } ∈ Ω such that lim ε bε b * ε = 0, then lim inf ε inf fε R (r) ε (f ε , Σ, ρ ε ) = ∞.
Thus for a given α ε , we compare RNF's from Ω(α) thanks to their second term b ε . Indeed this term can be viewed as an improvement w.r.t. to minimax rate of convergence on Σ. On the other hand, under rather vast assumptions b ε ≥ ϕ ε (Σ 0 ) [START_REF] Lepskii | How to improve the accuracy of estimaton[END_REF]. Clearly the closer b ε to ϕ ε (Σ 0 ) the best improvement is. Definition 2.3. Let (ρ * ε ) ε be an α-optimal w.r.t. {Σ, Σ 0 }. Then any estimator satisfying to (2.3) is called α-adaptive.

Due to definition 2.2 and 2.3, the issue of this approach consists in finding a couple (ρ * ε , f * ε ) such that the risk (2.1) is controled.

Remark 2.1. By definition of RNF ρ ε ≤ ϕ ε (Σ) for all ε ∈ (0, 1), therefore any α-adaptive estimator is also minimax on the Σ. Remark 2.2. Typically an -estimators is contruscted on the following way

(2.3) f * ε = f (0) ε (•), if H 0 is accepted, f ε (•), if not, where f ε , f (0) 
ε are minimax estimators on the sets Σ and Σ 0 . In this case, α ε can be viewed as an upper bound for the first type error of the test of H 0 .

Remark 2.3. Lepski proved in [START_REF] Lepskii | How to improve the accuracy of estimaton[END_REF] 

that if α ε = O ϕ ε (Σ 0 ) 2 then f * ε satisfies to (2.
3) is also adaptive in the sense that (1.10) holds.

Remark 2.4. We present the definition of α-optimal RNF and α-adaptive estimator only in the case of a single hypothesis. Let us mention that this definition is extended [START_REF] Lepskii | Random rates in anisotropic regression[END_REF] to arbitrary many hypothesis which allows, in particular to adapt simultaneously to different structures.

Model, construction and main result

3.1. Model. Let statistical experiment be generated by the observation X ε which is the sample of the stochastic process X ε (•) satisfying on the d-cube [0, 1] d the stochastic differential equation

(3.1) dX ε (t) = f (t).dt + εdB(t). ∀t ∈ [0, 1] d ,
where B(•) is standard Wiener processs and ε is the level of the noise. Though, we would prefer to look to this model under an equivalent notation. Let (φ k , k ∈ N) be an orthonormal basis of L 2 ([0, 1]) such that

(3.2) [0,1] φ k (t).dt = δ 0,k ,
where δ is the Kronecker symbol. For instance one can use φ 0 = 1 and for k = 0, 

(3.3) φ 2k (t) = √ 2 cos(2πkt), φ 2k+1 (t) = √ 2 sin(2πkt
θ k = θ k (f ) = [0,1] d f (t)φ k (t)dt.
Thus, we consider that new observations are (θ k (f )) k∈N d and then (3.1) is equivalent to :

(3.6) y k = θ k + ε ζ k , ∀k ∈ N d , when y k = [0,1] d φ k (t)dX ε (t) and ζ k = [0,1] d φ k (t)dB(t).
Owing to the orthormality of the basis φ k , ζ k are i.i.d. standard gaussian variables. Moreover because of the equivalence between (3.1) and (3.6), we identify in the following the observed function f and its expansion θ = (θ k ) k∈N d .

We focuse on an isotropic Sobolev ellipsoid define with two parameters β > 0 and L > 0 by :

(3.7) Σ = Σ(β, L) =    f ∈ L 2 : k∈N d θ 2 k   1 + d j=1 k 2β j   < L    ,
and we define the subset of additive function

(3.8) Σ 0 = f ∈ Σ : ∃f i ∈ F(R d , R) : ∀t = (t i ) ∈ [0, 1] d , f (t) = d i=1 f i (t i ) .
Remark 3.1. These class of functions can be linked with usual isotropic Sobolev class defined as

Σ(β, L) =    f : [0, 1] d → R : f 2 + d i=1 ∂ β ∂x β i f 2 ≤ L 2    ,
as soon as we assume that f is 1-periodic.

3.2.

Construction. Let first discuss briefly the pre-testing step and the deduced estimation procedure.

Based on Lepski's method, we use minimax projection estimators on Σ and Σ 0 to compute an efficient estimator of d(f, Σ 0 ) = inf g∈Σ0 f -g . Then, accuracy of this estimation would impose us a threshold beyond we reject additive structure for f . That is so called decison rule. According to whether our test rejects or accepts the hypothesis of additive structure, we select either minimax projection estimator on Σ or else on Σ 0 to estimate the underlying function. Remark that efficiency of the method is deeply related to the accuracy of estimation of d(f, Σ 0 ). Now we give notations necessary to our construction. Set the subsets of N d :

Γ ε = k ∈ N d : k j < N ε ∀j = 1 . . . d where N ε = ε -2/(2β+d) , ∆ ε = k ∈ N d : k j < N 0,ε ∀j = 1 . . . d where N 0,ε = 2 ε 2 ln(1/α ε ) -2/(4β+d)
.

For a given k ∈ N d , set (3.9) 
G k = {i : k i = 0},
then let us define the following multiindex sets

I ε = ∆ ε ∩ k ∈ N d : |G k | ≤ 1 , Λ ε = ∆ ε \I ε .
Construction of the test is based on the nullity of a large part of Fourier coefficients as soon as additive structure (1.5) holds. According to the orthogonality of the projection basis and condition (3.2), one have

(3.10) [ f ∈ Σ 0 ] ⇐⇒ [ |G k | > 1 ⇒ θ k (f ) = 0 ] .
Let us recall that the minimax rate of convergence on Σ is ε 2β 2β+d , and Fourier expansion of an asymptotically minimax estimator is :

(3.11) θ ε,k = y k , if k ∈ Γ ε , 0, if not.
According to (3.10), one can easily check that the estimator which coeficients are

(3.12) θ 0 ε,k = y k , if k ∈ I ε , 0, if not,
attains the minimax rate of convergence (1.6) on Σ 0 .

General adaptation procedure inspired by Lepski's method, leads us to look to the difference in L 2 norm between minimax estimators of f on Σ and on Σ 0 to detect addivity of the signal. The lower is this value, the higher the probability of a true additive structure for f is . Indeed

k∈N d θ 0 ε,k -θ ε,k 2 = k∈Λε y 2 k ≈ k∈Λε θ 2 k ≈ f -p Σ0 (f ) 2 = d 2 (f, Σ 0 ).
Such biased estimator can be modified to fit to f -p Σ0 (f ) 2 in a better way i.e. with a lower bias. Consequently we interest in estimating k∈Λε θ k (f ) 2 with the statistic

T ε = k∈Λε y 2 k -ε 2 .
Then our decision rule is based on the acceptance of hypothesis H 0 when T ε is sufficiently small and rejecting as soon as T ε is larger than a determined threshold. Thus let us introduce the event

(3.13) A ε = T ε ≤ λa 2 ε
, when λ is a well-chosen constant that does not depend on the model and the threshold is

(3.14) a ε = (ε 2 ln(1/α ε )) 2β/(4β+d) .
Let us postpone to the proof the explicit definition of constant λ. Finally we define the estimator θ * ε and the RNF ρ * ε as follows

(3.15) ρ * ε = a ε , on A ε , ϕ ε (Σ), if not, and (3.16) θ * ε = θ 0 ε , on A ε , θ ε , if not, 3.3.
Results. First of all, according to definition 2.2, any α-optimal RNF must adapt to additive structure with prescribed probability error. Indeed error made in rejecting additive structure when it holds need to be controled by α ε . Such assumption requires a sharp estimation of d(f, Σ 0 ). The following lemma proves that under additivity, T ε is a relevant estimator of d 2 (f, Σ 0 ) and consequently that A ε is a suitable decision rule w.r.t. to definition of Ω.

Lemma 3.1. The RNF (ρ * ε ) ε belongs to Ω(α). Next we requires that α ε does not vanish too fast. Indeed let remark that the 'improvement' rate a ε is slown down by a term -ln(α ε ). The following condition imposes that this term remains negligible w.r.t. any power of ε i.e. that α ε does not decrease exponentially fast to zero.

Condition 1. The sequence (α ε ) ε satisfies to ∃ a > 0 : ∀n ≥ 1, 1 > α ε > ε a .
According to the previous discussion on the optimal choice of α ε , one can insure that such condition is not restrictive at all. Under condition above, we manage to state optimality of our procedure w.r.t. to definition 2.2. Theorem 3.1. Assume that α ε satisfies to condition 1, then the RNF (ρ * ε ) ε is α-optimal w.r.t. the family {Σ, Σ 0 } and θ * ε is α-adaptive. Using link between α-adaptation and adaptation underlined above, one deduces that under condition on α, estimator (3.16) is also adaptive in the common sense for the familly {Σ, Σ 0 }.

Corollary 3.1. Let α ε = O ε 4β 2β+d
as ε → 0, then θ * ε is adaptive estimator i.e. satisfies to (1.10) with ψ ε (f ) define in (1.11).

Let us comment these results. First, this procedure not only provides adaptive estimator (corollary 3.1) but also guarantees more precise coverage of the underlying function w.r.t. minimax accuracy, under acceptation of additive structure. This approach can be viewed as a trade-off between adaptation and minimax theories. First we have seen that under non restricitive conditions, α-adaptive estimator keeps theoretical adaptative properties. Moreover the optimal RNF ρ * ε does not depend on the unknown f yet it largely improves minimax accuracy ϕ ε (Σ) as soon as A ε holds. However there exists an unavoidable payment for computation of accuracy. Indeed, let notice that the best accuracy attained by the optimal RNF (3.15) is rather rougher than minimax rate on Σ 0 (1.6), even when additive structure is accepted.

Moreover one may briefly discuss influence of the choice of α ε . As we see the lower is α ε , the poorer α-adaptive accuracy is. For instance, if α ε tends to zero then the term ln(1/α ε ) asymptoticaly damages the accuracy a ε . Moreover if statistician need to have an 'exponential' control of the first type error of the test i.e. impose α ε = e -ε -a then the accuracy of any α-optimal RNF is largely reduced (depending on constant a > 0). Though corollary 3.1 requires that α ε vanishes fast enough in order to deduce adaptive estimator. In conclusion, statistician may choose α ε one compared to what he first demand to the procedure : adaptive theoretical properties or the best improvement for the available accuracy of estimation.

Connection with the regression model

4.1. Introduction. The use of WGN model enables us to avoid superfluous technicalities not directly related to considered problem. However this model is rather unadapted to realistic statistical applications. One may wonder whether construction of an optimal RNF w.r.t. additive structure works in the same way for more realistic models or not. Below we discuss how to adapt our estimation procedure to the regression model.

First, let us consider the unidimensional regression model (4.1)

Y i = f (x i ) + ε i , i = 1, . . . , n,
with ε i are Gaussian zero-mean noise variables and f ∈ L 2 (µ) when µ is a measure absolutely continuous w.r.t. Lebesgue measure, noted λ, on R. In the following, we denote w(•) = ∂µ ∂λ (•). In this section we will consider the regression model where the design (x i ) 1≤i≤n can be chosen by statistician. We propose the special choice (depending on µ) of the design points that allows us to link (4.1) to WGN model. First we introduce required numerical tools for the univariate case. Then we apply this set-up to obtain optimal RNF in the derived d-dimensional model.

Actually. the method basicaly aims to select design point such as equivalent of (3.6) holds. So, let us decompose f with (φ k ) k∈N , some arbitrary orthonormal basis of L 2 (µ) :

(4.2) f (•) = k∈N θ k (f )φ k (•).
Then still using projection method, we fit to f estimating part of sum of square of Fourier coefficients θ k (f ) = f, φ k . As usual, standard linear methods perform and for well chosen weighted positive coefficients

(λ i ), (4.3) 
n i=1 λ i f (x i )φ k (x i ) ≈ θ k (f ).
We derive from such deterministic approximation the following family of weighted linear estimators (4.4)

θ k = n i=1 λ i Y i φ k (x i ) = θ k (f ) + b k (f ) + η k , where b k (f ) = n i=1 λ i f (x i )φ k (x i ) -θ k (f ) and η k = n i=1 λ i ε i φ k (x i ).
Our approach expects to give sufficient conditions on design points (x i ) I as well as on projection basis (φ k ) k in order to related statistical treatment of (4.4) to these of (3.6).

4.2.

Choice of design points and projection basis. Univariate case. The main difficulty arises in the suitable selection of design points (x i ) i=1 , weights (λ i ) i=1 and projection basis (φ k (•)) k∈N . For smooth function, standard numerical methods lead to estimate θ k (f ) with the use of mean of f -values on a regular n-grid. For instance, if f is an odd and infinitely derivable function on [0, 1] and if (φ k ) k is the cosinus basis on [0, 1], one would get a rather sharp approximation of θ k (f ) using

1 n n i=1 f i n φ k i n .
Though such choice provides good estimation of f under the assumption that ε i ≡ 0 in (4.1). Indeed, under noisy observations one may also control the stochastic part of estimation procedure. In a general regression setting, its study involves many technicalities. To avoid such disadvantages, we need to choose design points (x i ) and (λ i ) in order to keep under control in the same time the bias term b k (f ) (efficient integral approximation) and stochastic term η k .

As remarked above, the main singularity of WGN model consists in (3.6) i.e. sequence of Fourier coefficients (θ k (f )) k can be observed with i.i.d. noise sample whatever the projection basis (φ k ) k . In the considered model, according to assumption on ε = (ε i ), vector η = (η k ) k∈N is Gaussian. Thus, in order η to be an i.i.d. sample, it is sufficient to impose that η k are not correlated, that is

(4.5) ∀ k = l, Eη k η l = n i=1 λ i φ k (x i )φ l (x i ) = 0.
According to numerical methods, one can linked condition (4.5) to the orthogonality of the basis (φ k ). Indeed for fixed n ∈ N * and a given positive function w(•), existing formulas, called quadrature formulas, allow to estimate integral of some function f by a weighted sum of a finite number, say n, values of f (n-points method).

(4.6) R f (t)w(t)dt n i=1 τ i f (u i ),
where (u i ) and (τ i ) do not depend on f but are linked with the function w(•). In this context, Gauss proved that there exists n-points method such that (4.6) is exact if f is polynomial function of degree lower than 2n -1. That is (4.7)

∀ P ∈ P 2n-1 , R P (t)w(t)dt = n i=1 λ i P (x i ).
Namely let us define what we call in the following, the n th orthogonal polynomial of L 2 (µ). Using Gramm-Schmidt algorithm, we derive an orthonormal polynomial basis of L 2 (µ), denoted by Φ w , from the canonical basis x k ; k ∈ N of P, set of univariate polynomials. Then, the n th orthogonal polynomial of L 2 (µ) refers to the unique polynomial of Φ w that have degree n.

Hence, (4.7) is satisfied for x (n) w = (x i ; i = 1, . . . , n) as the zeros of the n th orthogonal polynomial of L 2 (µ). This choice is optimal in the sense that there exists no n-points method that is exact on P 2n . Note that it can be proved that x This general result will lead us to project the underlying function f on the orthonormal polynomial basis Remark 4.2. Below, we will see that projection estimation procedure only requires to estimate θ k (f ) for k ≤ N n , where typically N n ≤ n c with 0 < c < 1. Thus, design points (x i ) can be chosen such that at least (4.8) holds for 1 ≤ k = l ≤ n c . However, for other reasons we will observe f using the optimal Gauss grid.

of L 2 (µ), (φ k ) k∈N = Φ w . Thus for 1 ≤ k = l ≤ n -1, condition (4.5) is fullfilled since (4.8) n i=1 λ i φ k (x i )φ l (x i ) = R φ k (t)φ l (t)w(t)dt = φ k , φ l = 0.
Remark 4.3. This procedure can be viewed as follows. First we project the regression function f over the polynomial functions of L 2 (µ) using Lagrange interpolation operator on the observation grid, denoted by J n-1 f . According to what precedes, we observe Fourier coefficient of J n-1 f in the equivalent of the WGN model (3.6). In a last step, we use orthogonal projection of J n-1 f , on the subspace of additive function. Such procedure leads to an additional bias term that arises from the interpolation step. The choice of optimal Gauss design points would provide in some particular case relevant control of this bias term (linked with b k (f )) w.r.t. to the smoothness of function f . In a care of simplicity, we would assume that µ i = µ, then w i (•) = w(•). This technical restriction does not prevent to extend the procedure to a more general framework. Thus, we put

w(t) = d i=1 w(t i ), ∀t = (t 1 , . . . , t d ) ∈ R d .
Denote by • L2(µ) the Hilbert norm on L 2 (µ). Assume that f is observed in the d-dinesional regression model with selected design derived from (4.1). One denotes by Φ

(d) w = (φ (d) k , k ∈ N d ) the total family of L 2 (µ) where (4.9) ∀ k = (k 1 , . . . , k d ) ∈ N d , φ (d) 
k (t) = d i=1 φ ki (t i ), when (φ k ) k∈N = Ψ w is defined above. For any k ∈ N d , set θ k (f ) =< φ (d) k , f >= R d f (t)φ (d) 
k (t)w(t)dt. Then for any f ∈ L 2 (µ), the following expansion holds w.r.t. . L2(µ) ,

f (•) = k∈N d θ k (f )φ (d) k (•).
For a fixed m ∈ N * , and L > 0 we suppose that f belongs to the Sobolev ellipsoid (4.10)

Θ w = Θ w (m, L) =    f ∈ L 2 (µ) : k∈N d θ 2 k 1 + d i=1 k m i ≤ L    . Remark 4.4.
As in WGN model, considering such class of functions will permit to keep under control the bias deviation that corresponds to the projection estimation. This condition ensures that estimating f by its Fourier expansion performs well.

For a given M ∈ N * , we define the d-dimensional Gauss grid of size

M d , Ξ w,M = x i = (x i1 , . . . , x i d ) ∈ R d : ∀j ∈ {1, . . . , d}, x ij ∈ x (M ) w . (4.11)
Put L i ; i ∈ {1, . . . , M } d the set of d-dimensional Lagrange polynomials attached to the grid Ξ M i.e. L i are d-dimensional polynomials such that

∀ i = j ∈ {1, . . . , M } d , L i (x j ) = δ i,j ,
where δ i,j refers to the Kronecker operator on N d . Thus, let us define

∀i ∈ {1, . . . , M } d , λ i = R d L 2 i (t)w(t)dt.
Hence, d-dimensional version of Gauss quadrature formula can be expressed as follows (4.12) ∀P ∈ P 2M -1 (d),

x i ∈Ξ w,M λ i P (x i ) = R d P (t)w(t)dt,
when P N (d) denotes the space of d-dimensional polynomials with degree lower than N i.e. functions P that can be writen as (4.13)

P (x) = k∈N d a k x k1 1 . . . x k d d , with N ≥ max { k ∞ : a k = 0} when k ∞ = max i=1,...,d (k i ).
Remark 4.5. Note that it may happen for some w(•) that exact values of design points (x i ; i = 1 . . . M ) would not be directly available. Nevertheless, once M is fixed, φ M is provided by Gramm-Schmidt algorithm, and then some simple numerical (Newton-Raphson or Laguerre) methods enables to fit to (x i ) and then to (λ i ) with an arbitrary accuracy. According to the high smoothness of basis functions (polynomials), the use of design arbitrary closed to Gauss points will not damage the performance of the method. We will see further that contrary to the Chebychev grid, nodes of Legendre grid on [-1, 1] d can not be exactly computed.

Condition 2. Assume that there exisits c 1 > 0 such that

∀M ∈ N * , ∀i ∈ {1, . . . , M } d , 0 < λ i ≤ c 1 M -d .
Remark 4.6. This condition involves that the weight coefficients are rather "regular". Indeed it states that optimal quadrature formula is obtained for non degenerate weight sequence λ i .

Let denote by J M -1 the Lagrange interpolation operator on Ξ w,M defined by

∀ v ∈ L 2 (µ), J M -1 (v)(•) = i∈{1,...,M } d v(x i )L i (•)
Remark that for any function v ∈ L 2 (µ), J M -1 v belongs to P M -1 (d). We expect that function f can be approached by its interpolator J M -1 (f ) with sufficient accuracy. To measure the quality of interpolation w.r.t. the number of observation points, we define for any m ∈ N * and any c > 0,

(4.14) Υ w (m, c) = v ∈ L 2 (µ) : ∀M ∈ N * , v -J M -1 v L2(µ) ≤ cM -m .
Remark 4.7. We are allowed to control the interpolation error uniformly over Υ w (m, c) . Such class of functions is essential in our procedure. Indeed considering f ∈ Υ w (m, c) would permit to state that observing (θ k (J M -1 f )) instead of (θ k (f )) does not reduce efficiency of estimation procedure. Actually, this condition would guarantee that 'interpolation' bias attached to sequence (b k (f )) k can be neglected. Consequently, it would still be relevant to test additive structure for f estimating k∈N d :|Gk|>1 θ 2 k (J M -1 f ) where G k is defined as in section 3.

4.4.

Notations. Let M n = n 1 d . Without loss of generality we will assume that M n is an integer. We choose to observe the regression function on the grid Ξ Mn . Remark that this choice involves exactly n design points. Then one observes (4.15)

Y i = f (x i ) + ε i , ∀x i ∈ Ξ Mn .
when ε i are i.i.id Gaussian zero-mean noise variables with variance σ > 0. Assume that there exists m ∈ N * , c > 0 and L > 0 such that

(4.16) f ∈ Σ = Σ w (m, L, c) = Θ w (m, L) ∩ Υ w (m, c).
The subset of functions satisfying to structure (1.5) will be denoted by Σ 0 = Σ 0,w (m, L, c).

Remark 4.8. Introduction of Σ w (m, L, c) enables to control in the same time the projection estimation error inherent to stastical nonparametric projection method, but also the quality of interpolation. Both allows to get a reasonable bias deviation in the estimation of f L2(µ) .

Remark 4.9. Below, we treat two particular cases for function w(•), for which one observes that considering Σ defined as in 4.16 is hardly restrictive.

Mathematical description of estimation approach with RNF is derived from WGN model to regression model. By analogy, we measure quality of estimation replacing the risk (1.2) by

R (r) n ( f n , Σ, ρ n ) = sup f ∈Σ E f {ρ -1 n f -f n L2(µ) } 2 ,
where ρ n = {b n , ϕ n (Σ)} is a RNF from E n set of bounded RNF that takes only two values {ϕ n (Σ), b n } with 0 < b n < ϕ n (Σ).

For any k ∈ N d , if λ i,n : i ∈ {1, . . . , M n } d are Gauss weights attached to the grid Ξ Mn , set (4.17)

θ k = x i ∈Ξn λ i,n Y i φ (d) k (x i ).
Then the following decomposition holds :

θ k = θ k (J n-1 f ) + η k = θ k (f ) + b k (f ) + η k , (4.18)
where J n-1 = J Mn-1 is the Lagrange interpolation operator on Ξ Mn and

η k = x i ∈Ξn λ i,n ε i Φ k (x i ), b k (f ) = θ k (J n-1 f ) -θ k (f ) = x i ∈Ξn λ i,n f (x i )Φ k (x i ) - [-1,1] d f (t)Φ k (t)dt.
Here b k (f ) corresponds to the additional bias term induced by the interpolation step. It measures error made confusing θ k (f ) and θ k (J n-1 f ). Note that variable η k is a Gaussian random variable with zero mean and variance σ 2 k = i λ 2 i,n Φ 2 k (x i ). 4.5. Construction and results. Now let us fixe 0 < α n < 1, then we define

Γ n = k ∈ N d : k j < N n ∀j = 1
where

N n = n 1/(2m+d) , ∆ n = k ∈ N d : k j < N 0,n ∀j = 1 where N 0,n = 2 n -1 ln(1/α n ) -2/(4m+d)
.

If for any k ∈ N d , G k is defined as in (3.9), then we set

I n = ∆ n ∩ k ∈ N d : |G k | ≤ 1 , Λ n = ∆ n \I n .
We consider the following estimator :

f n = θ n,k Φ k and f 0 n = θ 0 n,k Φ k when θ n,k = θ k , if k ∈ Γ n , 0, if not. θ 0 ε,k = θ k , if k ∈ I n , 0, if not.
The decision rule of the test corresponds to the occcurence or not of the event

A n = T n ≤ λa 2 n
, when λ only depends on (m, d), and

a n = n -1 ln(1/α n ) 2m/(4m+d) and T n = k∈Λn θ 2 k -σ 2 k .
Finaly, we define the RNF ρ * n and the estimator 

f * n (•) = k∈N d θ * n,k Φ k (•) by ρ * n = a n , on A n , ϕ n = n -m/(2m+d
R (r) n (f * n , Σ, ρ * n ) < C < ∞.
We leave to the reader the complete proof of this theorem. In section 5, we just linked computations in this regression model with what have been already proved in W.G.N. model. Remark 4.10. One conjectures that under assumption of theorem 4.1 and if ϕ n (Σ) = ϕ n , then (ρ * n ) may be α-optimal w.r.t. {Σ, Σ 0 }. Indeed proposition 4.1 proves that ρ * n ∈ Ω(α) and theorem 4.1 gives the upper bound, first condition of RNF optimality definition 2.2. We presume that second condition is satisfied for this specified regression model.

One may wonder if condition f ∈ Σ w (m, L, c) is not to restrictive. Indeed one may insure that such kind of set are not too small. One can not answer this question under general consideration. Though there exist results [START_REF] Bernardi | Aproximations spectrales de problèmesaux limites elliptiques[END_REF] that prove that for particular function w(•), consideration of these class of function is reasonable. Last parts of this section is devoted to the presentation of two specific frameworks. In both case, one can measure interpolation error in accordance with some smoothness parameter. Indeed, with same notations as above put

W w (m, c) =    f ∈ L 2 (µ) : f 2 W m w = |β|≤m [-1,1] d (∂ β f ) 2 (t)w(t)dt < c    .
This class of function is rather closed to ellipsoid Θ w (m, L). In particular, underline that under periodicity assumption they may be equal. We present two choice of w(•) where W w (m, c) ⊂ Υ w (m, c).

Study of Legendre design. Assume that

w(t) = w 1 (t) = 1 [-1,1] d (t), that is w(t) = w 1 (t) = 1 [-1,1] (t).
Thus, the risk (4.17) corresponds to the usual quadratic risk on [-1, 1] d . Orthonormal d-dimensional polynomial basis is given by

∀ k ∈ N d , φ (d) k (t) = L k (t) = d i=1 L ki (t i ),
where L k are unidimensional Legendre polynomials. Denote by {ξ j = cos(ϑ j ); j = 1 . . . M } the M distincts zeros of L M . Then there exists M real numbers ω j , 1 ≤ j ≤ M such that

∀ P ∈ P 2M -1 (d), [-1,1] d P (t)dt = i∈{1,...,M } d d s=1 ω is P (ξ i1 , . . . , ξ i d ).
Moreover, Szego ([31]) gives a good estimation for ϑ j and ω j , since he proves that there exists c, c > 0 such that

(4.20) ∀1 ≤ j ≤ M, M -j + 1 2 π M ≤ ϑ j ≤ (M -j + 1) π M , (4.21) cM -1 1 -ξ 2 j ≤ ω j ≤ c M -1 1 -ξ 2 j .
Let us remark that (4.21) involves condition 2.

Remark 4.11. As underlined above, in this particular case exact values of ξ j and ω j are not available. Nevertheless, numerical algorithms such as Newton, Laguerre or Givens-Householder (see [START_REF] Ciarlet | Introduction à l'analyse numèrique matricielle et à l'optimisation Masson[END_REF]) enable to give with more or less efficiency, approximation of their value with an arbitrary accuracy i.e. that doesn't depend on M [START_REF] Bernardi | Aproximations spectrales de problèmesaux limites elliptiques[END_REF].

Using the optimality of Gauss quadrature formula as well as (4.20), Bernardi and Maday [START_REF] Bernardi | Aproximations spectrales de problèmesaux limites elliptiques[END_REF] proved that there exist an constant c * > 0 that only depends on w 1 (•) such that

(4.22) ∀ v ∈ L 2 (µ), ∀M ∈ N, v -J M -1 (v) L2 ≤ c * M -m v 2 W m w when J M -1 (v)
is the interpolation operator on the d-grid whose node are ξ = (ξ is ) d s=1 : 1 ≤ i s ≤ M . One can deduce from this result that for any c > 0, W w1 (m, c) ⊂ Υ w1 (m, cc * ). Then one can apply theorem 4.1 when Σ = W w1 (m, c) ∩ Θ w1 (m, L).

4.7. Study of Chebychev design. Now let w(t) = w 2 (t) = 1 [-1,1] d (t) d i=1 1 √ 1-t 2 i
be the weight function.

In this context,

∀ k ∈ N d , φ (d) k (t) = T k (t) = d i=1 T ki (t i ),
where T k (ξ) = cos(k arccos(ξ)) are unidimensional Tchebychev polynomials. In this particular case, exact expression of zeros of T M are available :

∀ j = 1 . . . M, ξ u j = cos M -j + 1 2 π M .
Denote by

J u M -1 the operator on the d-dimensional grid ξ = (ξ u is ) d s=1 : 1 ≤ i s ≤ M .
As well as ξ u j , weight coefficients can be exactly computed : ∀ j = 1, ω u j = π N . Thus condition 2 is fulfilled. Similarly, it is proved in [START_REF] Bernardi | Aproximations spectrales de problèmesaux limites elliptiques[END_REF] that there exists c * * = c * * (w 2 ) > 0 such that for any c > 0, W w2 (m, c) ⊂ Υ w2 (m, cc * * ). Then equivalent results can be stated with Σ = W w2 (m, c) ∩ Θ w2 (m, L). Remark 4.12. One can extend these results to any measure µ with compact support in R d . For example, if

w(t) = 1 [-a,a] d (t) or w(t) = 1 [-a,a] d (t) d i=1 1 √ a-t 2 i
, changing t to t = t/a enables to bring back to the considered models. 

P θ (ρ * ε = a ε ) ≤ 1.
So if θ ∈ Σ 0 , we have :

P θ (ρ * ε = a ε ) = P θ (A c ε ) = P θ T ε > λa 2 ε , when according to (3.10), T ε = ε 2 k∈Λε ζ 2 k -1
is the centered sum of square of i.i.d. standard gaussian random variables. In this case, large deviations are well known since

∀t > 0, P θ T ε > λa 2 ε ≤ exp -tλa 2 ε E e tε 2 (ζ 2 -1) |Λε| ≤ exp -tλa 2 ε ∞ p=0 t p ε 2p p! E ζ 2 -1 p |Λε| . (5.1) Note µ = 1 2 E ζ 2 -1 2 and let c > 0 an nonegative real such that ∀p ≥ 3, E ζ 2 -1 p ≤ c p p!.
Then if γ is fixed real such as 0 < γ < 1, for any t ≤ γc -1 ε -2 , (5.1) becomes

P θ T ε > λa 2 ε ≤ e -tλa 2 ε 1 + µt 2 ε 4 1 + ∞ p=3 (tε 2 ) p-2 µp! E ζ 2 -1 p |Λε| ≤ e -tλa 2 n 1 + µt 2 ε 4 1 + c 2 µ ∞ p=3 (ctε 2 ) p-2 |Λε| ≤ e -tλa 2 ε 1 + µt 2 ε 4 1 + c 2 C γ µ |Λε| .
Using that ∀y ∈ R, 1 + y ≤ e y , and from |Λ ε | ≤ N d 0,ε , it follows that

P θ T ε > λa 2 ε ≤ exp -tλa 2 ε + µ 1 + c 2 C γ µ t 2 ε 4 N d 0,ε .
Minimum of the right hand side term w.r.t. t > 0, is attained for

t ε ε -4 a 2 ε N d 0,ε ε -2
, so when we set

Q = Q(µ, γ) = 2 d+2 µ 1 + c 2 Cγ µ
and λ ≥ √ Q the previous inequality becomes :

P θ (ρ * ε = a ε ) ≤ exp - λ 2 Q ln (1/α ε ) = α λ 2 Q ε ≤ α ε .
5.2. Proof of theorem 3.1.

Upper bound.

For any θ ∈ Σ, let us decompose the error in the estimation of a function f ∈ Σ according to the outcome of the test. Set :

R (1) ε (θ) = E θ a -2 ε θ 0 ε -θ 2 1 Aε , R (2) ε (θ) = E θ ϕ ε (Σ) -2 θ ε -θ 2 1 A c ε .
Minimax risk with RNF on Σ is given by

R (r) ε (θ * ε , ρ * ε ) = sup θ∈Σ E θ (ρ * ε ) -2 θ * -θ 2 ≤ sup θ∈Σ R (1) ε (θ) + sup θ∈Σ R (2) ε (θ). (5.2)
Obviously, choice of θ ε as a minimax estimator on Σ allows to control the second term as :

R (2) ε (θ) ≤ ϕ ε (Σ) -2 E θ θ ε -θ 2 ≤ ϕ ε (Σ) -2 E θ    ε 2 k∈Γε ζ 2 k + k ∈Γε θ 2 k    ≤ ϕ ε (Σ) -2   ε 2 N d ε + k ∈Γε θ 2 k   ≤ ϕ ε (Σ) -2 ε 2 N d ε + L N 2β ε .
Then the choice of parameters of our procedure induces that

(5.3) lim sup ε→0 sup θ∈Σ R (2) ε (θ) ≤ 1 + L.
Now we will interest in the term connected with the acceptance of the hypothesis of additivity.

R (1) ε (θ) = a -2 ε E θ      ε 2 k∈Iε ζ 2 k + k / ∈Iε θ 2 k   1 Aε    = a -2 ε E θ ε 2 k∈Iε ζ 2 k + H ε (θ) + K ε (θ) 1 Aε where K ε (θ) = k ∈∆ε θ 2 k and H ε (θ) = k∈Λε θ 2 k .
Since θ belongs to Σ, we get the upper bound for the bias

K ε (θ) ≤ L 2 a 2 ε . Moreover as |I ε | = d(N 0,ε -1), that yields (5.4) R (1) ε (θ) ≤ a -2 ε L 2 a 2 ε + dε 2 N 0,ε + H ε (θ) P θ (A ε ).
The event A ε depends on the statistic T ε that could be expended in the following way

T ε = H ε (θ) + η ε (θ) + ε 2 S(Λ ε ), when η ε (θ) = 2ε k∈Λε θ k ζ k
is a random variable with a centered gaussian law N (0, 4ε 2 H ε (θ)); and when we defined for A ⊂ N d , the sum

S(A) = k∈A (ζ 2 k -1).
To bound the risk (5.4) uniformly over Σ, we will decompose Σ w.r.t. value of deviation H ε (θ). Namely for δ > 0, set Θ ε,δ the subspace of Σ defined by :

Θ ε,δ = θ ∈ Σ : H ε (θ) ≤ 1 + δ 1 -δ λ 2 a 2 ε .
Thus let decompose this risk as follows :

sup θ∈Σ R (1) ε (θ) ≤ R (1,1) ε + R (1,2) ε , (5.5) when R (1,1) ε = sup θ∈Θ ε,δ R (1) ε (θ), and 
R (1,2) ε = sup θ∈Σ-Θ ε,δ R (1) ε (θ).
Using (5.4) and since a -2 ε ε 2 N 0,ε → 0 as ε → 0, we get

(5.6) lim sup ε→0 R (1,1) ε ≤ L 2 + 1 + δ 1 -δ λ 2 .
Concerning the second term R

(1,2) ε

, we need to remark that for θ ∈ Σ-Θ ε,δ , Chebychev exponential inequality ensures that

P θ (|η ε (θ)| ≥ δH ε (θ)) ≤ 2 exp - δ 2 ε -2 H ε (θ) 2 .
Then there exists a constant γ > 0 independent from λ and θ ∈ Σ such that

P θ {|η ε (θ)| ≥ δH ε (θ)} ≤ exp{-ε -2γ }.
It follows that ∀θ ∈ Σ -Θ ε,δ , (5.7)

P θ (A ε ) = P θ (T ε ≤ λ 2 a 2 ε ) ≤ exp{-ε -2γ }(1 + o(1)) + P θ H ε (1 -δ) + ε 2 S(Λ ε ) ≤ λ 2 a 2 ε .
Both (5.4) and (5.7) yield

(5.8) R (1,2) ε ≤ L 2 + sup θ∈Σ-Θ ε,δ F ε (θ) + o(1),
when for any θ ∈ Σ we define

F ε (θ) = a -2 ε H ε (θ)P θ H ε (θ)(1 -δ) + ε 2 S(Λ ε ) ≤ λ 2 a 2 ε . Now let us decompose Σ -Θ ε,δ = x≥1+δ Θ(x) where we define Θ(x) = θ ∈ Σ : H ε (θ)(1 -δ) λ 2 a 2 ε = x .
It leads to consider ϑ ε : x -→ sup θ∈Θ(x) F ε (θ). Still using exponential Chebychev inequality one have

ϑ ε (x) = sup θ∈Θ(x) F ε (θ) ≤ λ 2 x 1 -δ P θ S(Λ ε ) ≤ -(x -1)λ 2 a 2 ε ε -2 ≤ λ 2 x 1 -δ exp - ε -4 (x -1) 2 λ 4 a 4 ε Λ ε ≤ λ 2 x 1 -δ exp -(x -1) 2 ln 1 α ε .
As α ε → 0 when ε → 0, suppose that ε is small enough and α ε < 1 2 . That provides the upper bound, [START_REF] Bernardi | Aproximations spectrales de problèmesaux limites elliptiques[END_REF] .

sup θ∈Σ-Θ ε,δ F ε (θ) = sup x≥1+δ ϑ ε (x) ≤ sup x≥1+δ λ 2 x 1 -δ exp -(x -1) 2 ln 1 α ε ≤ sup x≥δ λ 2 (x + 1) 1 -δ exp -x 2 ln 1 α ε ≤ λ 2 2δ(1 -δ) ln(2) exp   - 1 
F ε (θ) ≤ λ 2 2δ(1 -δ) ln
According to (5.10) and (5.8), it provides that

(5.11) lim sup ε→0 R (1,2) ε ≤ L 2 + inf 1>δ>0 λ 2 2δ(1 -δ) ln(2) = L 2 + 2λ 2 ln(2) .
The results comes from (5.5), (5.6) and (5.11).

5.2.2.

Lower bound. We will check the optimality of (ρ * ε ) defined in (3.15), considering an arbitrary RNF

ρ ε = {a ε ( ρ), ϕ ε (Σ)} ∈ Ω such that a ε ( ρ) a ε → 0 as ε → 0.
Let us denoted by B ε the event corresponding to the acceptance of additivity w.r.t. ρ ε , then

B ε = { ρ ε = a ε ( ρ)} .
Let

ψ ε = C 2 d+1 4 ε 2 ln(1/α ε ) (2β+d)/(4β+d) , N 1,ε = C -4 d N 0,ε = 2C -4 d ε 2 ln(1/α ε ) -2/(4β+d)
when the constant C is given by

C = L 2 2 2β+(d-1)/2 (d + 1) -d 8β+2d .
For a fixed ε > 0, we define the subset of

N d ∆ 1,ε = k ∈ N d : k j < N 1,ε ∀j = 1 , Put V = {-1, 1} |∆1,ε| , then we consider the family U ε of sequences θ(v), v ∈ V indexed by N d such that ∀k ∈ N d , θ(v) k = ψ ε v k 1 k∈∆1,ε .
In a first time, let's check that U ε is included in Σ. We just need to remark that for any v ∈ V , we have according to the choice of the constant C :

k∈N d θ(v) 2 k 1 + d i=1 k 2β i = ψ 2 ε k∈∆1,ε 1 + d i=1 k 2β i ≤ (d + 1)ψ 2 ε N 2β+d 1,ε = L 2 .
In the following we denote by P 0 the probability measure w.r.t. observations if the true function is

f (•) = 0. If f (•) = k∈N d θ(v) k φ k (•)
, then we note the law of observations by P v . For one given k ∈ ∆ 1,ε let us define the following subsets of V :

V (1) k = {v ∈ V : v k = 1} , V (-1) k = {v ∈ V : v k = -1} , V (0) k 
= v = (v l ) l∈∆1,ε : if l = k, v l ∈ {-1, 1} and v k = 0 .
Thus, for any v ∈ V , we define the sequence v

(k) = v (k) l l∈∆1,ε ∈ V (0) k by : v (k) l = v l , if l = k, 0, if l = k.
We will prove that there exists p 0 > 0 such that for any k ∈ ∆ 1,ε , (5.12)

∀ k ∈ ∆ 1,ε , 1 2 N d 1,ε -1 v∈V (0) k P v (B ε ) ≥ p 0 .
Let θ ε an arbitrary estimator of θ. We aim to give a lower bound for its risk (2.1) normalized by ( ρ ε ) ε , focusing on the specific estimation error on each element of U n .

R ε ( θ ε , ρ ε , Σ) ≥ sup θ∈Σ E θ ρ -2 ε θ ε -θ 2 1 Bε ≥ sup θ(v):v∈V E θ a ε ( ρ) -2 θ ε -θ 2 1 Bε ≥ a ε ( ρ) -2 2 |∆1,ε| v∈V E v θ ε -θ 2 1 Bε ≥ a ε ( ρ) -2 2 |∆1,ε| v∈V k∈∆1,ε E v ( θ ε,k -θ(v) k ) 2 1 Bε ≥ a ε ( ρ) -2 2 |∆1,ε| k∈∆1,ε    v∈V (1) k E v ( θ ε,k -ψ ε ) 2 1 Bε + v∈V (-1) k E v ( θ ε,k + ψ ε ) 2 1 Bε    . (5.13)
Let us note that according to the Girsanov theorem, under P

v (k) ∀v ∈ V (1) k , Z (1) k = dP v dP v (k) = exp ψ ε ε -1 ζ k - ε -2 ψ 2 ε 2 , ∀v ∈ V (-1) k , Z (-1) k = dP v dP v (k) = exp -ψ ε ε -1 ζ k - ε -2 ψ 2 ε 2 when (ζ k ) k is standard Gaussian sample.
As ψ ε ε -1 → 0 when ε → 0, these two random variables tend in probability to 1. Thus, it exists a real δ > 0 independent from index k such that for small enough ε (typically ε ≤ ε 0 ), one have

(5.14) P v (k) Z (1) k < 1 -δ ∪ Z (-1) k < 1 -δ ≤ δ, ∀k ∈ ∆ 1,ε .
In the following we denoted by

D k = Z (1) k ≥ 1 -δ ∩ Z (-1) k ≥ 1 -δ . Then, R ε ( θ ε , ρ ε , Σ) ≥ a ε ( ρ) -2 2 |∆1,ε| k∈∆1,ε v∈V (1) k E v (k) Z (1) 
k ( θ ε,k -ψ ε ) 2 1 Bε + a ε ( ρ) -2 2 |∆1,ε| k∈∆1,ε v∈V (-1) k E v (k) Z (-1) k ( θ ε,k + ψ ε ) 2 1 Bε ≥ a ε ( ρ) -2 2 |∆1,ε| k∈∆1,ε v∈V (0) k E v Z (1) k ( θ ε,k -ψ ε ) 2 + Z (-1) k ( θ ε,k + ψ ε ) 2 1 Bε∩D k . Using (5.14) and that (a -b) 2 + (a + b) 2 ≥ 2b 2 , one get R ε ( θ ε , ρ ε , Σ) ≥ 2(1 -δ)ψ 2 ε a ε ( ρ) -2 2 |∆1,ε| k∈∆1,ε v∈V (0) k P v {B ε ∩ D k } ≥ 2(1 -δ)ψ 2 ε a ε ( ρ) -2 k∈∆1,ε 1 2 |∆1,ε| v∈V (0) k [P v (B ε ) -P v (D c k )] .
According to (5.12) and (5.14), as soon as we select δ sufficiently small, that is for instance δ

< ( p0 2 ∧ 1 2 ) it follows that R ε ( θ ε , ρ ε ) ≥ p 0 2 a ε ( ρ) -2 ψ 2 ε |∆ 1,ε |. From ψ 2 ε |∆ 1,ε | ≥ C -2 a 2
ε and since aε( ρ) aε → 0 as ε → 0, one deduces that

(5.15) lim ε→0 R ε ( θ ε , ρ ε , Σ) = +∞.
We complete the proof by proving (5.12). For a given k

∈ ∆ 1,ε , let us note m ε = |V (0) k | = N d 1,ε -1 and consider J ε = J ε (k) = 1 2 mε v∈V (0) k P v (B ε ), Z ε = Z ε (k) = 1 2 mε v∈V (0) k dP v dP 0 (Y ).
Now let us write probabilities under the measure induced by v = 0, we get J ε = E 0 {Z ε 1 Bε }, thus as 0 ∈ Σ 0 , for any δ > 0, and for n large enough :

α -1 ε P 0 (B c ε ) ≤ 1 + δ.
Then for any c > 0,

J ε ≥ E 0 Z ε 1 Bε + cα -1 ε 1 B c ε -c(1 + δ) ≥ E 0 inf Fε Z ε 1 Fε + cα -1 ε 1 F c ε -c(1 + δ) ≥ E 0 Z ε 1 Zε<cα -1 ε -c(1 + δ) ≥ 1 2 mε v∈V (0) k P v (Z ε < cα -1 ε ) -c(1 + δ) ≥ 1 -c(1 + δ) - 1 2 mε v∈V (0) k P v (Z ε ≥ cα -1 ε ) ≥ 1 -c(1 + δ) - α ε c2 mε v∈V (0) k E v (Z ε ) ≥ 1 -c(1 + δ) -c -1 α ε E 0 (Z 2 ε ). (5.16)
The distribution of Z ε under P 0 is given by Girsanov theorem,

Z ε = 1 2 mε exp - m ε ψ 2 ε 2ε 2 v∈V (0) k exp   ψ ε ε -1 j v j ζ j   .
Then, its second moment is :

Z 2 ε = exp -m ε ψ 2 ε ε -2 2 2mε v 1 ,v 2 ∈V (0) k exp   ψ ε ε -1 j v 1 j + v 2 j ζ j   = exp -m ε ψ 2 ε ε -2 2 2mε v 1 ,v 2 ∈V (0) k exp   2ψ ε ε -1 j v 1 j 1 v 1 j =v 2 j ζ j   = exp -m ε ψ 2 ε ε -2 2 2mε v 1 ∈V (0) k mε p=0 J:|J|=p exp   2ψ ε ε -1 j∈J v 1 j ζ j   .
(5.17) However as (ζ j ) j is supposed to be a family of i.i.d standard Gaussian variables, we get that E e aζ = e a 2 2 . Finally (5.17) becomes :

E 0 (Z 2 ε ) = exp -m ε ψ 2 ε ε -2 2 2mε v 1 ∈V (0) k mε p=0 mε p e 2pψ 2 ε ε -2 = exp -m ε ψ 2 ε ε -2 2 mε 1 + e 2ψ 2 ε ε -2 mε = e ψ 2 ε ε -2 2 + e -ψ 2 ε ε -2 2 mε = ch(ψ 2 ε ε -2 ) mε . (5.18)
It can be underlined that the expectation does not depend on k ∈ ∆ 1,ε . According to the choice of parameter, this term is asymptotically controled by α -1/2 ε . Indeed, using that ∀x ∈ R, ch(x) ≤ e Supposing for instance that α ε ≤ 1/20 and after optimization w.r.t. c > 0, we deduce from (5.16) and (5.19) that

J ε ≥ 1 - 2 2 √ 5 (1 + o(1)).
This ends the proof of theorem 3.1.

5.3.

Proof of proposition 4.1. Assume that f ∈ Σ 0 , we have :

P f (ρ * = a n ) = P f (A c n ) = P f T n > λa 2
n , when according to (3.10) and (4.18) , To complete the proof, it is sufficient to use similar large deviation that in proof of lemma 3.1 and above remark. Result comes in the same way.

T n = k∈Λn θ 2 k (J n-1 (f )) + k∈Λn η 2 k -σ 2 k = k∈Λn b 2 k (f ) + k∈Λn η 2 k -σ 2 k + 2 k∈Λn η k b k (f ) ≤ k∈N d b 2 k (f ) + k∈Λn η 2 k -σ 2 k + 2 k∈Λn η k b k (f ) ≤ f -J n-1 f 2 L2 + S(Λ n ) + Z Λn (5.
5.4. Proof of theorem 4.1.

R (r) n (f * n , ρ * n ) = sup f ∈Σ E f (ρ * n ) -2 f * n -f 2 ≤ 2 a -2 n sup f ∈Σ f -J n-1 f 2 + sup f ∈Σ E f (ρ * n ) -2 J n-1 f -f * n 2 τ
.

But according to (4.16) one obtains for any f ∈ Σ,

R (r) n (f * n , ρ * n ) ≤ 2 c 2 a -2 n M -2m n + sup f ∈Σ E f (ρ * n ) -2 J n-1 f -f * n 2 ≤ 2 c 2 a -2 n n -2m d + sup f ∈Σ R (1) n (f ) + sup f ∈Σ R (2) n (f ) .
when we put

R (1) n (f ) = E f a -2 n J n-1 f -f (0) n 2 1 An R (2) n (f ) = E f ϕ n (Σ) -2 J n-1 f -f n 2 1 A c n .
Once m > d 4 , then a -2 n n -2m d → 0 as n → ∞. Then for any f ∈ Σ, 

R (1) n (f ) = a -2 n   k ∈In θ 2 k (J n-1 (f ))   P f (A n ) + a -2 n E f 1 An k∈In η 2 k R (1) n (f ) ≤ a -2 n   k ∈In θ 2 k (f ) + k ∈In b 2 k (f ) + 2θ k (f )b k (f )   P f (A n ) + a -2 n k∈In
V(I n ) = k ∈In b 2 k (f ) + 2θ k (f )b k (f ) , V(Λ n ) = k∈Λn b 2 k (f ) + 2θ k (f )b k (f ) .
Let us also define

H n (f ) = H n (f ) + V(I n ), H n (f ) = H n (f ) + V(Λ n ) = H n (f ) + V(Λ n ) -V(I n ).
Therefore, using (5.28) and that for any f ∈ Σ, a -2 n K n (f ) ≤ L 2 we derive from (5.27) that R (1) n (f ) ≤ a -2 n (H n (f ) + K n (f )) 

P f (A n ) + o n (1) ≤ L 2 + a -

w

  ⊂ R and then x i are real numbers. In what follows, the grid x (n)w that fundamentaly depends on the choice w(•), is refered to the Gauss grid.

Remark 4 . 1 .

 41 Note that the construction of this specific observation grid x (n) w as well as the choice of projection basis Φ w heavily depends on function w(•).

4. 3 .

 3 Multidimensional set-up. Let f be a d-dimensional function (d > 1) from L 2 (µ) when µ = d i=1 µ i is a product measure on R d and µ i are absolutely continuous w.r.t. to Lebsegue measure λ with w i (•) = ∂µi ∂λ (•).

5 . Proofs 5 . 1 .

 551 Proof of lemma 3.1. It is sufficient to check that lim sup ε→0 α -1 ε sup θ∈Σ0

2 ε( 1

 21 x 2 one get E 0 (Z 2 ε ) ≤ exp(N d 1,ε ψ 4 ε ε -4 )(1 + o(1)) = α -1/

2 k 2 n 3 ≤ 2 n 3 +

 22323 [START_REF] Lepskii | On problems of adaptive estimation in white gaussian noise Soviet[END_REF] where Z Λn ∼ N 0, 4 k∈Λn σ 2 b 2 k (f ) and when for any A ⊂ N d , we set S(A) = k∈A η 2 k -σ 2 k . Thus, under assumption that (4.16) holds, (5.21)P f (ρ * n = a n ) ≤ P f c 2 n -2m d + S(Λ n ) + Z Λn > λa 2 n . From m > d 4 one get that a -2 n n -2m d → 0 as n → ∞.Moreover usual large deviations of Gaussian distribution lead where µ(λ) > 0. Sincet (η k ) k∈Λn is a Gaussian vector with non correlated coordinates, η k are independant variables. Condition 2 that proves that 0< λ i,n ≤ c 1 n -1 yelds ∀ k ∈ {1, . . . , n -1} d , σ 2 n Φ 2 k (x i )But according to optimality of quadrature formula (4.12), one deduces∀ k ∈ {1, . . . , n -1} d , σ 2Add that with (4.16) for anyf ∈ Σ, (f ) ≤ f -J n-1 f 2 L2 ≤ cn -2m d .So using both (5.23) and (5.24), it follows that k∈Λn σ 2 k b 2 k (f ) a 4 n , and then there exists κ > 0 only depending on m and d such that (5.25) ∀ f ∈ Σ, P f Z Λn > λa e -n κ Then, from (5.21), (5.25) and for large enough n ∈ N, (5.26) P f (ρ * n = a n ) ≤ P f S(Λ n ) > λa e -n κ .

2 nλ 2 a 2 n 2 +- 1 )λ 2 a 2 n 2 +- 1 )λ 2 a 2 n 2 +

 221212 H n (f )P f T n < λa 2 n + o n (1). (5.29) Introduce Θ n,δ = f ∈ Σ : H n (f ) ≤ P f (T n ≤ λ 2 a 2 n ) ≤ P f H n (f )(1 -δ) + S(Λ n ) ≤ exp{-n γ }(1 + o(1)) ≤ P f S(Λ n ) ≤ -(x exp{-n γ }(1 + o(1)). (5.38) It follows from (5.29) and (5.38) that sup f ∈Θ(x)R(1) n (f) ≤ L 2 + xλ 2 2(1 -δ) P f S(Λ n ) ≤ -(x o n(1).(5.39) 

  ).

	Obviously other choices are possible. For a multinindex k = (k 1 , . . . , k d ) ∈ N d ,
	(3.4)	φ k (t) = φ k (t 1 , . . . , t d ) = φ k1 (t 1 ) . . . φ k d	(t d ),
	that define an orthormal basis of L 2 ([0, 1] d ). Then for any f ∈ L 2 ([0, 1] d ), one can use the following L 2 -
	expansion :		
		f =	θ k φ k ,
		k∈N d	
	where		
	(3.5)		

  Note that under condition that ϕ n is the MRC on Σ, then proposition 4.1 is analogue to lemma 3.1.

	Proposition 4.1. The RNF (ρ * n ) n satisfies to	
	(4.19)	lim sup n-→+∞	α -1 n sup f ∈Σ0	P n f {ρ * n = ϕ n } ≤ 1
	Condition 3. The sequence (α n ) n satisfies to	
		∃ a > 0 : ∀n ≥ 1, 1 > α n > n -a .
	Theorem 4.1. Under conditions 2 and 3 and if (4.16) holds with m > d 4 , the estimator f * n is adapted to the RNF ρ * n i.e. there exist C = C(c, m, d, L) > 0 such that
		lim n→∞		
			) , if not,	and f * n =	f 0 n , on A n , f n , if not,
	By analogy with (2.2),			

Now put

R (1,1) 

R (1) n (f ), and R (1,2) 

R (1) n (f ).

First from (5.29), one derive the asymptotic

Assume that f ∈ Θ(x), from (5.29) one have

Let us decompose

is a Gaussian random variable with zero mean and variance

Then for any f ∈ Σ, there exists γ > 0 such that (5.35)

Consequently for any f ∈ Θ(x),

). (5.36) Moreover according to (4.16), the contribution of the interpolation step in bias can be neglected. Indeed, when

In particular for large enough n, one have