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Abstract

We consider the numerical solution of an unsteady convection-diffusion equation using
high order polynomial approximations both in space and time. General boundary conditions
and initial conditions can be imposed. The method is fully implicit and enjoys exponential
convergence in time and space for analytic solutions. This is confirmed by numerical ex-
periments (in one space dimension) using a spectral element approach in time and a pure
spectral method in space. A fast tensor-product solver has been developed to solve the
coupled system of algebraic equations for the O(Nd) unknown nodal values within a single
space-time spectral element. This solver has a fixed complexity of O(Nd+1) floating point
operations and a memory requirement of O(Nd) floating point numbers. An alternative
solution method, allowing for a parallel implementation and more easily extendable to more
complex problems is sketched out at the end of the paper.

1 Introduction

There have been a number of research efforts in the past with the goal of using high order
approximations both in time and space for the numerical solution of time-dependent partial
differential equations. The first contribution we are aware of was done more than 25 years ago
[7, 8], while the most recent work we have found on this topic is within the last few months [13, 9].
While the use of high order (spectral) approximations in space is currently a well developed field,
the same is not true for the time direction. Encouraging progress has been made over the past
couple of decades [11, 12, 1, 10, 13, 9], however, a significant advance, appropriate for solving
real applications, is still missing.

From a pure approximation point of view, the motivation for using high order approximations
in time is at least as strong as for using such methods in space. Indeed, for many problems the
regularity in time is at least as high as the regularity in space. For parabolic problems, there may
exist singularities at t = 0, however, this situation is simpler to analyze than the various spatial
singularities resulting from the presence of vertices, edges and faces. Furthermore, while the
solution may exhibit sharp boundary layers in space, this may often not be the case in the time
direction. Of course, there may be problems where the regularity of the solution with respect to
time can be expected to be low; nonetheless, the motivation for using high order approximations
in time is quite significant.
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What has prevented the adoption of high order methods in time has fundamentally been
related to computational complexity. In general, such an approach will result in implicit systems
of algebraic equations. If the number of degrees-of-freedom in space is already large, multiply-
ing this number with a large factor in the time direction poses significant challenges in terms
of solver technology. Unless the computational cost for the solvers is close to optimal, i.e., the
cost is approximately proportional with respect to the number of degrees-of-freedom (a condition
partially alleviated when high order approximations are used), the method will not be competi-
tive with a more conventional time-advancing discretization based on low order finite difference
approximations where the solution is advanced one small time step at a time.

There are a number of reasons for revisiting the approach used for the temporal treatment.
First, the computers are now becoming quite powerful with many (thousands of) processors and
with a large aggregate memory. Second, there have recently been several alternative methods
proposed to exploit more parallelism in the time direction [1, 6]. Third, a number of fast solution
algorithms are currently available, and some of these may be exploited with respect to the time
direction [2].

In this paper, we first consider the numerical discretization of the time-dependent convection-
diffusion equation in one space dimension based on high order polynomial approximations in time
and space. For simplicity, we assume a polynomial approximation of degree N in each direction.
We then develop a fast tensor-product solver for the resulting system of algebraic equations; this
solver can be classified as a direct solver. We also present numerical results demonstrating the
convergence properties of the method.

We will discuss the extension to multiple space dimensions and nonlinear problems in a
future paper. The focus of this paper is the use of spectral elements in time, and exploring the
possibilities of exploiting the tensor-product feature between space and time in order to construct
fast solution algorithms.

2 The heat equation

For the sake of simplicity, let us consider first the one-dimensional heat equation

∂u

∂t
= κ

∂2u

∂x2
+ f(x, t) in ωx = (0, L), (1)

subject to the homogeneous boundary conditions

u(x = 0, t) = 0, ∀ t ∈ ωt = [0, T ],

u(x = L, t) = 0, ∀ t ∈ ωt,
(2)

and subject to the initial condition

u(x, t = 0) = s(x). (3)

Here, u(x, t) is the solution (the temperature), κ is the thermal diffusivity, and f(x, t) is a thermal
heat source that depends on space and time. We assume that the thermal diffusivity, κ, is a
constant.

A common approach when discretizing this equation is to discretize space and time separately.
In particular, when applying a spectral discretization, it is common to only consider a spectral
discretization in space; discretization in time is typically done using a multi-stage method or a
multi-step method [4, 5].
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2.1 Weak formulation

We consider here a spectral discretization in both space and time. The discretization will be
based upon a weak space time formulation of the problem: Find u ∈ X such that

∫ T

0

∫ L

0

∂u

∂t
v dx dt = −κ

∫ T

0

∫ L

0

∂u

∂x

∂v

∂x
dx dt +

∫ T

0

∫ L

0

f v dx dt, ∀v ∈ X0. (4)

with

X = H1(ωt, L
2(ωx)) ∩ L2(ωt,H

1
0 (ωx))

and e.g.

X0 = {w ∈ X, w(x, 0) = 0},

together with the initial condition u(x, 0) = s(x) satisfied over ωx.
This is similar to a standard variational procedure, except for the fact that we here integrate

the governing equation over both space and time.
Next, we consider the (space-time) domain

Ω = (0, L) × (0, T ) = ωx × ωt

as an affine mapping of the reference domain

Φ : Ω̂ = (−1, 1) × (−1, 1) −→ Ω.

In the following, we denote a point in the reference domain as (ξ, η), and use the convention that
a “hat” refers to a quantity defined in terms of the reference variables, e.g.,

û = u ◦ Φ.

The weak formulation can then be expressed in the reference variables as: Find û ∈ X̂ such
that

∫

Ω̂

∂û

∂η
v̂ dξ dη + γ1

∫

Ω̂

∂û

∂ξ

∂v̂

∂ξ
dξ dη = γ2

∫

Ω̂

f̂ v̂ dξ dη, ∀v̂ ∈ X̂0, (5)

where

X̂ = {ŵ, ŵ ◦ Φ−1 ∈ X}, X̂0 = {ŵ, ŵ ◦ Φ−1 ∈ X0},

and

γ1 = 2 κ
T

L2
, γ2 =

T

2
.

2.2 A spectral discretization in space and time

We now consider a spectral discretization of the continuous problem (5) in space and time. In
particular, we consider a discretization based on high-order polynomials. We define our discrete
spaces as

X̂N = X̂ ∩ PN (Ω̂), X̂0
N = X̂0 ∩ PN (Ω̂),

3



where PN (Ω̂) is the space of all functions which are polynomials of degree less than or equal to

N in each direction ξ and η. The Galerkin approximation of (5) is : Find ûN ∈ X̂N such that
∫

Ω̂

∂ûN

∂η
v̂N dξ dη + γ1

∫

Ω̂

∂ûN

∂ξ

∂v̂N

∂ξ
dξ dη = γ2

∫

Ω̂

f̂ v̂N dξ dη, ∀v̂N ∈ X̂0
N , (6)

In order to represent an element in the linear space X̂0
N , we choose a tensor-product, La-

grangian interpolant basis through the Gauss-Lobatto Legendre (GLL) points, ξi, i = 0, . . . , N .

Specifically, ∀v̂N ∈ X̂0
N , we write

v̂N (ξ, η) =
N∑

i=0

N∑

j=0

vij ℓi(ξ) ℓj(η), (7)

where vij = v̂N (ξi, ξj) = vN (x(ξi), y(ξj)). The Lagrangian interpolants satisfy the properties

ℓk(ξ) ∈ PN (ω̂), ∀ k ∈ {0, . . . , N},

ℓk(ξl) = δkl, ∀ k, l ∈ {0, . . . , N}2.
(8)

Note that some of the basis coefficients in (7) are explicitly imposed by the boundary condi-
tions and the intial condition. In particular, vi0 = 0 for i = 0, ..., N , v0j = 0 for j = 0, ..., N , and
vNj = 0 for j = 0, ..., N .

The discrete solution ûN will be an element of X̂N . Similar to (7), we express the discrete
solution in the reference variables as

ûN (ξ, η) =
N∑

m=0

N∑

n=0

umn ℓm(ξ) ℓn(η). (9)

The following basis coefficients are given by the boundary conditions: u0n = 0 for n = 0, . . . , N ,
and uNn = 0 for n = 0, . . . , N . The initial condition is given by setting um0 = sm = s(x(ξm))
for m = 0, . . . , N . Hence, the initial condition is approximated by the Nth order polynomial
interpolant through the GLL points. Approximating the given heat source f also as a high order
interpolant, the discrete problem can be expressed as: Find ûN ∈ X̂N such that

∫ 1

−1

∫ 1

−1

[
N∑

m=0

N∑

n=0

umn ℓm(ξ) ℓ ′

n(η) ] ℓi(ξ) ℓj(η) dξ dη+

γ1

∫ 1

−1

∫ 1

−1

[
N∑

m=0

N∑

n=0

umn ℓ ′

m(ξ) ℓn(η) ] ℓ ′

i (ξ) ℓj(η) dξ dη =

γ2

∫ 1

−1

∫ 1

−1

[
N∑

m=0

N∑

n=0

fmn ℓm(ξ) ℓn(η) ] ℓi(ξ) ℓj(η) dξ dη ,

∀i ∈ {1, . . . , N − 1}, ∀j ∈ {1, . . . , N}.

(10)

We have here chosen v̂N to be ℓi(ξ) ℓj(η) for all i ∈ {1, . . . , N − 1}, and for all j ∈ {1, . . . , N}.
This will give us enough equations to determine the unknown basis coefficients umn for all
m ∈ {1, . . . , N − 1}, and for all n ∈ {1, . . . , N}.

If we introduce the notation that, ∀v, w ∈ L2(−1, 1),

(v, w) =

∫ 1

−1

v(ξ) w(ξ) dξ, (11)
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we can also write the discrete problem (10) as: Find ûN ∈ X̂N such that

N∑

m=0

N∑

n=0

(ℓi, ℓm) (ℓj , ℓ
′

n) umn + γ1

N∑

m=0

N∑

n=0

(ℓ ′

i , ℓ
′

m) (ℓj , ℓn) umn =

γ2

N∑

m=0

N∑

n=0

(ℓi, ℓm) (ℓj , ℓn) fmn

∀i ∈ {1, . . . , N − 1}, ∀j ∈ {1, . . . , N}.

(12)

The final step in the discretization process is to evaluate (or approximate) the L2 innerprod-
ucts (·, ·) with numerical quadrature. A common and natural choice is to use Gauss-Lobatto
Legendre (GLL) quadrature, e.g.,

(v, w) =

∫ 1

−1

v(ξ) w(ξ) dξ ≈
N∑

α=0

ρα v(ξα)w(ξα) ≡ (v, w)G. (13)

Here, {ρα}
N
α=0 and {ξα}

N
α=0 are the GLL weights and points, respectively, and (·, ·)G represents

the discrete L2 innerproduct. We recall that the GLL quadrature is exact for all integrands in
P2N−1(−1, 1).

We now introduce the one-dimensional mass matrix B̂ with elements

B̂kl = (ℓk, ℓl)G = ρk δkl, (14)

the one-dimensional convection matrix Ĉ with elements

Ĉkl = (ℓk, ℓ ′

l )G = ρk Dkl, (15)

and the one-dimensional stiffness matrix Â with elements

Âkl = (ℓ ′

k, ℓ ′

l )G =
N∑

α=0

ρα Dαk Dαl. (16)

Here, we have introduced the derivative matrix

Dαk ≡ ℓ ′

k(ξα). (17)

We remark that the mass matrix is diagonal, while the discrete innerproducts defining the con-
vection matrix and the stiffness matrix are, in fact, exact.

The discrete problem, including quadrature, can thus be expressed as: Find ûN ∈ X̂N such
that, ∀i ∈ {1, . . . , N − 1}, ∀j ∈ {1, . . . , N},

N−1∑

m=1

N∑

n=1

( B̂im Ĉjn + γ1 Âim B̂jn ) umn =

γ2

N−1∑

m=1

N∑

n=1

B̂im B̂jn fmn −

N−1∑

m=1

δim Ĉj0 sm.

(18)

We remark that the last term on the right hand side represents the imposition of the initial
condition via high order polynomial interpolation, with sm = s(x(ξm)).
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Next, we define

gij = γ2

N−1∑

m=1

N∑

n=1

B̂im B̂jn fmn −
N−1∑

m=1

δim Ĉj0 sm. (19)

∀i ∈ {1, . . . , N − 1}, ∀j ∈ {1, . . . , N}; this expression incorporates all the known data for this
problem, including the initial condition.

Once we have computed gij , we can write the algebraic problem as: Find ûN ∈ X̂N such
that, ∀i ∈ {1, . . . , N − 1}, ∀j ∈ {1, . . . , N},

N−1∑

m=1

N∑

n=1

( B̂im Ĉjn + γ1 Âim B̂jn ) umn = gij . (20)

Instead of representing the unknown basis coefficients umn as a multidimensional array (i.e.,
with one, local index for each direction ξ and η, we can, of course, also represent the unknown
basis coefficients as a single, long vector u; the associated local-to-global mapping is done by
using the convention that the first index (i.e., along ξ) “runs faster” than the second index (i.e.,
along η). Note that u = R

(N−1)N .
We can then write the system (20) using tensor-product forms: Find u = R

(N−1)N such that

( Ĉ2 ⊗ B̂1 + γ1 B̂2 ⊗ Â1 ) u = g. (21)

Here, g is the global vector corresponding to the multi-dimensional array gij , Ĉ is the one-

dimensional convection operator defined in (15), Â is the one-dimensional diffusion operator

defined in (16), and B̂ is the one-dimensional mass matrix defined in (14). Note that we use
subscript 1 and 2 to differentiate between the directions ξ and η, respectively. For example,
B̂1 and Â1 are square matrices of size (N − 1) × (N − 1), corresponding to Dirichlet boundary

conditions at the end points ξ = ±1. In contrast, B̂2 and Ĉ2 are square matrices of size N ×N ,
corresponding to Dirichlet boundary conditions at η = −1.

Our objective now is to develop a fast tensor-product solver for (21). To this end, we need
to diagonalize the operators. First, we solve the generalized eigenvalue problem

Â1 Q
1

= B̂1 Q
1
Λ1

associated with direction 1, i.e., ξ (or space). Here, Q
1

is the eigenvector matrix, and Λ1 is a

diagonal matrix containing the eigenvalues. Since Â1 and B̂1 are both symmetric and positive
definite, all the eigenvalues are real and positive, and the eigenvectors are ortogonal with respect
to the mass matrix B̂1. In fact, if we normalize the eigenvectors so that

QT

1
B̂1 Q

1
= I1,

we see that

QT

1
Â1 Q

1
= Λ1.

Hence, we can express Â1 and B̂1 in (21) as

Â1 = Q−T

1
Λ1 Q−1

1
,

B̂1 = Q−T

1
Q−1

1
.

(22)
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Second, we would like to diagonalize the convection operator Ĉ2 with respect to the mass

matrix B̂2, i.e., we consider the eigenvalue problem

Ĉ2 S2 = B̂2 S2 Λ2, (23)

where S is a matrix containing the eigenvectors as columns. Now, since Dirichlet conditions are
only specified at η = −1, the convection operator Ĉ2 is not skew-symmetric and therefore not

normal. Hence, at a fundamental level, we do not know whether we are able to diagonalize Ĉ2.

Even if we can diagonalize Ĉ2, the eigenvectors will certainly not be orthogonal with respect to
the mass matrix, and this fact can cause numerical difficulties. However, as discussed in [3], we

expect to be able to diagonalize Ĉ2 for N ≤ 32 without any significant round-off errors. This
limitation on N should not pose any major constraint since we do not (at least currently) forsee
using a too high value of N in the time direction.

In the following, we therefore assume that we are in this regime, i.e., N ≤ 32. The eigenvalues
and eigenvectors are complex, and we can express Ĉ2 and B̂2 in (21) as

Ĉ2 = B̂2 S2 Λ2 S−1
2 ,

B̂2 = B̂2 S2 S−1
2 .

(24)

Substituting for B̂1, Â1, Ĉ2 and B̂2 in (21) and using the usual rules for tensor products, the
system (21) can be expressed as

( B̂2 S2 ⊗ Q−T

1
)( Λ2 ⊗ I1 + γ1 I2 ⊗ Λ1 )( S−1

2 ⊗ Q−1

1
) u = g. (25)

We thus see that that the solution u can be expressed explicitly as

u = ( S2 ⊗ Q
1

)( Λ2 ⊗ I1 + γ1 I2 ⊗ Λ1 )−1( S−1
2 B̂

−1

2 ⊗ QT

1
) g . (26)

At this point, several comments are in order. First, we have demonstrated that it is possible
to develop a fast, direct solver for the problem at hand, at least for a polynomial approximation
N ≤ 32 in the time direction. Second, the expression (26) will not be used directly in its cur-
rent form. Indeed, we will revert back to a multi-dimensional array representation, and perform
the necessary operations using matrix-matrix products. This will give an overall computational
complexity of O(N3). In contrast, if we explicitly form the global matrices, the computational
complexity would be O(N4). In higher space dimensions, the difference between these two ap-
proaches will be much higher. For example, it is possible to extend the methodology presented
here to two and three space dimensions when the domain is tensorized. With three space dimen-
sions and one time dimension, the complexity of the solver will be O(N5) for O(N4) unknowns
(assuming for simplicity that we use the same polynomial degree in each spatial direction as well
as in the time direction for each spectral element in time). Finally, note that the solution we
arrive at represents a fully implicit, high-order polynomial approximation (high order in both
space and time).

3 The unsteady convection-diffusion equation

We now consider the one-dimensional, unsteady convection-diffusion equation

∂u

∂t
+

∂u

∂x
= κ

∂2u

∂x2
+ f(x, t) in ωx = (0, L), (27)
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subject to the same boundary conditions and initial condition as before.
In terms of discretization, we follow an identical approach as for the heat equation. We thus

arrive at the discrete problem: Find ûN ∈ X̂N such that

( Ĉ2 ⊗ B̂1 + β B̂2 ⊗ Ĉ1 + γ1 B̂2 ⊗ Â1 ) u = g. (28)

where Ĉ1 is the usual convection operator in space, B̂2 is the mass matrix associated with the

time direction, and the constant β = T
L

. Note that Ĉ1 is a matrix of size (N − 1) × (N − 1),

while Ĉ2 is a matrix of size N ×N . Furthermore, Ĉ1 is a skew-symmetric matrix (for the given

boundary conditions), while Ĉ2 is not.
In the following, our objective is to develop a fast, tensor product solver for (28); we now

present two alternatives for achieving this.

3.1 Alternative 1

Similar to the unsteady heat equation, we again rely on being able to solve the eigenvalue problem
(23) associated with the time direction. We recall that a fundamental issue here is the fact that

the matrix Ĉ2 is not normal, and that the eigenvalue problem (23) may not have a solution.
However, as discussed in [3], the eigenvalues and eigenvectors can be computed without any
significant round-off errors for N ≤ 32.

For the space direction, we propose to solve the following eigenvalue problem:

(β Ĉ1 + γ1 Â1) S1 = B̂1 S1 Λ1. (29)

This allows us to write

(β Ĉ1 + γ1 Â1) = B̂1 S1 Λ1 S−1
1 ,

B̂1 = B̂1 S1 S−1
1 .

(30)

Using the above information, the system (28) can be then expressed as

( B̂2 S2 ⊗ B̂1 S1 )( Λ2 ⊗ I1 + I2 ⊗ Λ1 )( S−1
2 ⊗ S−1

1 ) u = g. (31)

We thus see that that the solution u can be expressed explicitly as

u = ( S2 ⊗ S1 )( Λ2 ⊗ I1 + I2 ⊗ Λ1 )−1( S−1
2 B̂

−1

2 ⊗ S−1
1 B̂

−1

1 ) g. (32)

For efficiency reasons, a local numbering scheme should be used to represent the right hand side
as well as the solution.

This alternative thus relies on being able to solve the eigenvalue problem (29) in addition to
the eigenvalue problem (23). However, since the discrete convection-diffusion operator in (29) is
not normal either, (29) may not have a solution even if we have not experienced any numerical
difficulty so far; see the numerical experiments reported in the next section.

3.2 Alternative 2

This alternative, which we shall develop further in Part III of the series, only relies on diagonal-
izing the first order operator in the time direction. Combining (24) and (28), and using the rules
for tensor-products, we end up with

( B̂2 S2 ⊗ I1 )( Λ2 ⊗ B̂1 + I2 ⊗ (βĈ1 + γ1Â1))( S−1
2 ⊗ I1 ) u = g. (33)
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Introducing the variables

ũ = ( S−1
2 ⊗ I1 ) u, (34)

g̃ = ( S−1
2 B̂

−1

2 ⊗ I1 ) g, (35)

we can express (33) as

( Λ2 ⊗ B̂1 + I2 ⊗ (βĈ1 + γ1Â1)) ũ = g̃. (36)

Reverting back to the local numbering scheme, we can alternatively write (36) as

N−1∑

m=1

[(γ1 Â1 + β Ĉ1)im + λj(B̂1)im] ũmj = g̃ij , i = 1, . . . N − 1, j = 1, . . . , N. (37)

For each value of j, we solve a steady convection-diffusion-type system. Each of these systems
is of dimension N − 1. In the linear case, the N systems we end up with can be solved com-
pletely independently. This is similar to the approach presented in [2], but here involving a
non-symmetric operator instead of a symmetric one. Once the solution ũ has been computed,
we can find u via the transformation (34); in practice, we compute this transformation using a
local numbering scheme; see [2].

4 Numerical results

We consider here the unsteady convection-diffusion equation (27) in ωx = (0, 1) (i.e., L = 1),
with an exact solution

u(x, t) = sin(πt) sin(πx).

We apply the proposed discretization scheme and integrate the discrete equations until a final
time Tfinal = 40 corresponding to 20 full periods in time. The time interval is split up into K
equal subintervals of size T . The tensor-product solver (32) is then used to solve the system of
algebraic equations associated with each space-time spectral element.

We first use a time step (or spectral element size in time) equal to T = 2, corresponding to
one full period in time. The numerical solution corresponding to the last time interval is shown
in Figure 1.

Note that, with this choice of time step (T = 2), the initial condition for each time interval
corresponds to a homogeneous condition. This is by no means necessary. In Figure 2, we again
show the numerical solution corresponding to the last time interval, but now choosing a smaller
time step T = 4/3 (independent of the period of the solution); with this choice it takes K = 30
time steps to arrive at the same final time Tfinal = 40.

Finally, we measure the error in the discrete L2 norm as a function of the polynomial degree
N for a fixed time step T = 2. The error is measured over the last time interval (i.e., the last
space-time spectral element), and the convergence results are reported in Figure 3. As expected,
exponential convergence is achieved. Note that the odd values of N do not give any reduction
in the error; this is due to the fact that the solution is even with respect to both space and time
over each whole period in time.
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5 Conclusions

For a one dimensional example, we have presented a method for solving the linear convection-
diffusion equation using high order polynomial approximations in both time and space. General
boundary conditions and initial conditions can be imposed. The method is fully implicit and
enjoys exponential convergence in time and space for analytic solutions. This is confirmed by
numerical experiments using a spectral element approach in time and a pure spectral method in
space (in one space dimension).

A fast tensor-product solver has been developed to solve the coupled system of algebraic
equations for the O(Nd) unknown nodal values within a single space-time spectral element. For
simplicity, we have here assumed a polynomial approximation of degree N in each direction. This
solver has a fixed complexity of O(Nd+1) floating point operations and a memory requirement
of O(Nd) floating point numbers. The polynomial approximation in the time direction should
be chosen to be less than or equal to 32 in order to avoid any round-off errors.

6 Future work

Future work will focus on solving more complex time-dependent partial differential equations
(multiple space dimensions; linear and nonlinear equations). For example, the proposed methods
could be interesting to use for the approximation of the time-dependent Maxwell equations.

In the case of the unsteady convection-diffusion equations, the extension to multiple space
dimensions will be based on a similar approach as presented in [2] in the context of solving
elliptic problems in partially deformed three-dimensional domains. In particular, we will exploit
the tensor-product representation that always exists between the single time direction and the
(generally deformed) physical domain. This will always allow us to achieve parallelism through
the solution of independent steady convection-diffusion-type problems as in Alternative 2.
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Figure 1: The numerical solution computed at the last time interval, i.e., for 38 ≤ t ≤ 40
(∆T = 2). The polynomial degree in both the spatial and temporal direction is N = 15. The
error in the discrete L2 norm is 2.1 · 10−9.
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Figure 2: The numerical solution computed at the last time interval, i.e., for 38.6666 ≤ t ≤ 40
(T = 4/3). The polynomial degree in both the spatial and temporal direction is N = 15. The
error in the discrete L2 norm is 3.6 · 10−12.
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Figure 3: Convergence results for the convection-diffusion problem. The size of each spectral
element in the time direction is T = 2.
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