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Abstract— In recent studies, Independent Component Analysis
(ICA) has been used for the analysis of multi-channel ECG
recordings. However most of these works have been carried out
from the signal processing perspective. In this work, the single
dipole vector theory of the heart and the ECG dimensionality
are studied from the source separation viewpoint. Based on
this study, the interpretation of the components extracted from
multi-channel ECG and maternal abdominal recordings, and
their relationship with the vectorcardiogram representation of
the cardiac dipole are presented. The results of this study can
be used for the extraction of meaningful clinical indexes, based
on ICA techniques.

I. INTRODUCTION

Statistical decomposition techniques such as the Principal
Component Analysis (PCA) [1], Singular Value Decomposition
(SVD) [2], and Independent Component Analysis (ICA) [3],
[4], [5] have been widely used as promising methods of multi-
channel ECG analysis, and noninvasive fetal ECG extraction.
However, the research in this area has been mainly carried
out from the signal processing point of view, and there are
few works on the physiological interpretations of the extracted
components. Moreover, there are many issues such as the
stability, robustness, and noise-sensitivity of the extracted
components which are left as open problems.

In this paper, it is shown that by a re-study of the origins
of the ECG signals and their relationship with other represen-
tations of the cardiac activity such as the Vectorcardiogram
(VCG), it is possible to relate the shapes of the extracted
components with their physiological counterpart. This study is
hoped to shed light onto the application of source separation
techniques for the extraction of better cardiac indexes.

The rest of the paper is organized as follows. In section II
the physiological bases of the single dipole model of the heart,
and its relationship with the potentials recorded from the body
surface are reviewed. In section III the dimensionality of the
ECG signals are discussed in more details. Based on these
backgrounds, the interpretation of the components extracted
from multi-channel ECG, maternal abdominal recordings, and
some useful clinical indexes will be presented in sections IV
to VI. In the last two sections some numerical results and
concluding remarks are presented.

II. THE VECTORCARDIOGRAM VS. THE
ELECTROCARDIOGRAM

The electrical nervous system of the heart which enables the
contraction of the cardiac muscle is distributed throughout the
heart. The resultant electrical activity of the heart has been
modeled with various methods ranging from single dipole
models to activation maps [6]. Among these methods, the
simplest and yet the most popular is the single dipole model
which is believed to explain 80%–90% of the representation
power of the body surface potentials [7], and the ECG and
VCG are based on it. According to the single dipole model,
the cardiac electrical activity may be represented by a time-
varying rotating vector, the origin of which is assumed to be
at the center of the heart and its end sweeps a quasi-periodic
region in the space. This vector may be mathematically
represented in the Cartesian coordinates, as follows:

d(t) = x(t)̂i + y(t)̂j + z(t)k̂, (1)

where î, ĵ, and k̂ are the unit vectors of the Cartesian
coordinates.

The dipole model is a means of modeling the heart source,
and in order to model the electrical recordings on the body
surface, an additional model is required for the propagation
of the heart potentials in the thorax volume conductor. By
assuming this volume conductor as a passive resistive media
which only attenuates the source field, any ECG signal would
simply be a linear projection of d(t), onto the direction of the
recording electrode axes v = âi + b̂j + ck̂:

ECG(t) =< d(t), v >= a · x(t) + b · y(t) + c · z(t), (2)

A 3-D vector representation of the ECG, namely the Vec-
torcardiogram (VCG), is also possible by using three of such
ECG signals. Basically any three linearly independent set of
ECG electrodes can be used to construct the VCG, but in order
to achieve an orthonormal representation which best resembles
the dipole vector d(t), a set of three orthogonal electrodes
which best correspond to the three body axes are selected.
The normality of the representation is further achieved by
attenuating the different leads with a priori knowledge of
the body volume conductor, to compensate for the non-
homogeneity of the body thorax. The Frank lead system, or the



corrected Frank lead system which have better orthogonality
and normalization, are conventional means of recording the
VCG [8].

The quasi-periodic VCG shape basically consists of three
loops which correspond to the P-, QRS-, and the T-waves
of the ECG. These loops intersect with each other in the
isoelectric point of heart where the heart is electrically at
rest. The QRS-loop is the most dominant loop and the P-loop
is more or less in the same plane but with a much smaller
radius. The angles, sizes, and curvature of each of these loops
are known to convey physiological information which is not
easily seen in the multi-channel ECG representation.

The ECG recorded from the body surface is contaminated
with different noises such as muscle artifacts, electrode/body
movements, and baseline wanders [9]. The baseline wander
is mainly due to the impedance changes of the body volume
conductor during respiration, and it causes a translation of the
isoelectric point of the cardiac signals in multi-dimensional
VCG space, together with rotation and scaling of the VCG
loop.

III. DIMENSIONALITY OF THE ECG

The study of dimensionality of multivariate data is a well-
known and yet challenging issue in statistical data analysis,
and there are several statistical and geometrical approaches
developed for the dimension estimation and reduction for
multivariate data. Perhaps the most popular statistical tool for
dimension estimation and reduction is the Principal Compo-
nent Analysis (PCA) and some of its nonlinear variants [10].

The main limitation of dimension estimation is that all
practical data recordings contain measurement noise, and the
higher order dimensions are very likely to correspond to the
noise components, rather than the signal. Thus the discrimina-
tion of the signal and noise dimensions is not straightforward.
For ECG signals, based on the single dipole model of the
heart, Dower et al have developed a transformation for finding
the standard 12-lead ECGs from the Frank electrodes [11].
The Dower transform is simply a 12×3 linear transformation
between the standard 12-lead ECGs and the Frank leads,
which can be found from the Minimum Mean Square Error
(MMSE) estimate of a transformation matrix between the two
electrode sets. Apparently the transformation is influenced
by the standard locations of the recording leads and the
attenuations of the body volume conductor, respecting to each
electrode [12].

The Dower transform and its inverse [13], are evident results
of the single dipole model of the heart with a linear propaga-
tion model of the body volume conductor, suggesting that the
heart has only three geometrically independent dimensions,
and any ECG signal recorded from the body surface would
be a linear combination of the same three sources. However
since the single dipole model of the heart is not a perfect
representation of the cardiac activity, cardiologists usually use
more than three ECG electrodes (between 6 to 12) to study
the cardiac activity [8]. The problem of ECG dimensionality
is generally a subjective issue, but our later presented results

show that between 4 to 6 statistically uncorrelated dimensions
are required to represent typical ECG signals. This result is
with accordance with the conventional measurements made
by cardiologists, but in contrast with some previous works
on statistical ECG decomposition which only consider 3
dimensions [3].

IV. INTERPRETATION OF INDEPENDENT COMPONENTS
EXTRACTED FROM THE ECG

The simplest form of the Independent Component Analysis
(ICA) problem consists of the estimation of independent
sources si(t)(i = 1, ...N ), from their blind linear mixtures:

x(t) = A · s(t) (3)

where x(t) = [x1(t), ..., xn(t)]T , s(t) = [s1(t), ..., sn(t)]T ,
and A is the mixing matrix. Reviewing the general steps of
typical ICA algorithms, the mean of the data vector x(t) is
removed, the data is decorrelated and whitened. The whitened
data is further rotated by an orthogonal transformation, in
order to achieve the independent components (ICs) [14].

Mathematically the ICA problem of (3) almost always
gives a solution for the most independent sources. However
when applying the ICA to multivariate ECG recordings, the
interpretation of the extracted sources and the extraction of
meaningful clinical measures from these components need a
closer study of the ECG and the VCG.

Following the explanations of previous sections, it should be
first of all noted that the formulation in (3) should not be mis-
taken with (2). In fact, unlike the independent decomposition
of (3), the three geometrically orthogonal components of the
ECG are not statistically independent. This suggests that the
ICs extracted from multi-channel ECGs are not necessarily
limited to three components and may correspond to other
meaningful components.

Regarding the explanations of section II, it is evident that
the multivariate ECG recordings are the samples of a quasi-
periodic loop in the multi-dimensional space, and by applying
ICA we are trying to find the directions conveying the most
information in this space. Intuitively these directions can be
thought to have some correspondence with the VCG-loops
and planes, since the multi-dimensional space spanned by the
heart dipole vector is rather sparse and follows a rather quasi-
periodic loop in the space.

Before giving an interpretation for the extracted ICs, the
isoelectric point of the heart needs to be further discussed.
The ECG and VCG signals are not symmetric around their
mean values, and the isoelectric point of the heart slightly
differs from the mean values of the data. Meanwhile, an
implicit assumption of common ICA algorithms is that the
input signals are symmetric around their mean values since
the mean of the data is initially removed, and the sign of
the ICs are not determinable [14]. This means that when
applying conventional ICA algorithms to signals such as the
ECG (without considering the data asymmetry), the extracted
ICs do not correspond to the intuitively expected directions in
the VCG space.



As an illustration, the distribution plot of an asymmetric
dataset is depicted in Fig. 1-a. The columns of the mixing
matrix, extracted by the JADE ICA algorithm ([14]) have
also been depicted. As seen in this figure, due to the data
asymmetry, ICA does not give the directions of the two lobes
of the distribution. Similarly, for the problem of ECG signals
we are more interested in the directions in which the data has
the most variations from the isoelectric point, rather than the
true ICs.

A rather simple, but effective, method to solve this problem
is to remove the baseline wander of the ECG (which is
identical to making the isoelectric point stationary in the multi-
dimensional VCG space), and then virtually make the data
zero-mean with respect to the isoelectric point, by augmenting
the data samples with their minus values:

xn×2T ← [xn×T , −xn×T ] (4)

By this way, we are adding the image of the current dataset to
the distribution space, and making the density function of the
samples symmetric. This causes the dataset and the processing
time twice as long, but has the benefit that the ICs are found
with respect to the isoelectric point of the VCG 1. The result of
applying this idea to the data of Fig. 1-a, and the new columns
of the mixing matrix extracted by the JADE algorithm are
shown in Fig. 1-b. This simple idea may also be useful in
other applications, to exploit the local behaviors of complex
multivariate distributions around any point other than the true
data mean value.

We can now state that for a typical VCG loop having small
inter-beat variations, by making the data symmetric around the
isoelectric point, it is reasonable to assume that the columns
of the mixing matrix extracted by ICA correspond to the most
representative axes of the VCG loop scatter. These orientations
usually correspond to the directions of the main planes in the
VCG space. In terms of the ECG they also correspond to the
main waves of ECG signals, meaning that the shapes and time
delays between the extracted ICs convey information about the
movements of the cardiac dipole vector as it rotates in space.

From the VCG perspective we can also explain why the
baseline wanders of multi-channel ECG recordings, sometimes

1Evidently the second-half of the extracted sources will also be redundant
in this case.

(a) (b)

Fig. 1. The effect of PDF asymmetry on the extracted ICs. (a) asymmetric
PDF (b) PDF made symmetric using equation (4). The mixing vectors
extracted by ICA are plotted in each case.

show up as independent components. In fact as the VCG
loops are rather planar, the baseline wander components which
drift the VCG loop in directions orthogonal to the QRS-
loop are more probable to be extracted as new independent
components; but the baseline drifts which are in the same
direction as the QRS-loop will not be detected as separate
components and will be seen in the components of the QRS-
loop.

The intrinsic indeterminacy of scales and signs is a well-
known limitation of the ICA problem as defined in (3). By
using ICA, we are estimating the heart sources and the mixing
matrix corresponding to the body volume conductor at the
same time. However due to the non-homogeneity of the body
volume conductor the original heart signals are not attenuated
with the same amount in all directions. This means that ICA
cannot find the true scale of the heart sources without a
priori knowledge about the heart dipole vector. In conventional
vectorcardiography, this problem is already known, and this
was in fact the motivation behind the development of the
corrected Frank lead systems [8]. To solve this ambiguity we
can either consider a normalized canonical representation of
the VCG loop, or otherwise assume an orthonormal mixing
matrix.

V. INDEPENDENT COMPONENTS EXTRACTED FROM
ABDOMINAL RECORDINGS

Multi-dimensional ICA, or Independent Subspace Analysis
(ISA) is an extension of ICA used for the separation of
independent subspaces, rather than independent components
[4]. The privilege of ISA compared with ICA is that it can
separate multiple groups of sources that can be dependent
within each group but independent from the sources of other
groups (like the subspace of the fetal ECG vs. the maternal
ECG subspace). ISA has been approved as a promising tool for
the extraction of fetal cardiac signals from maternal abdominal
recordings. Yet most previous works in this area are based on
the assumption that the maternal heart has only 3 statistically
independent dimensions, while the fetal heart is statistically
2-dimensional. This assumption about the dimensionality of
the fetal ECG may be practically true, due to the weakness of
the fetal ECG components (about 1/30 to 1/5 of the maternal
ECG amplitude), its distance from the abdominal electrodes,
and the changes in the conductivity of the maternal volume
conductor due to the development of the vernix caseosa layer
around the fetus [1]. However, physiologically there is no
reason for the dimensional difference between fetal and adult
hearts, especially in the higher periods of the pregnancy.

In fact, with the discussions of section IV, the effect of
the VCG isoelectric point becomes much more important for
the combination of the fetal and maternal ECGs. As a simple
illustration, an artificial mixture of the maternal and fetal VCG
components is depicted in Fig. 2. Accordingly it is seen that
the mean of the whole data distribution (indicated by a circle),
is rather distanced from the fetal isoelectric point (indicated
by a square). This means that by applying conventional ICA
algorithms that find the ICs with respect to the mean of the



Fig. 2. Illustration of the maternal and fetal VCG mixtures

data, the details of the fetal VCG loop are not extracted as
ICs, especially that the maternal components are much more
dominant in these mixtures. So with the ideas of previous
sections, we should be able to extract better details of the
fetal heart components by finding the ICs with respect to
the isoelectric point of VCG rather than the mean of the
whole data. However, a question which arises at this point
and requires further studies is whether the isoelectric points
of the fetal and maternal VCGs can be assumed to be the same
points in the distribution space of the recordings, and whether
the baseline drifts of the fetal and maternal VCG loops are in
the same directions.

VI. EXTRACTION OF CLINICAL MEASURES

In previous works, different clinical indexes have been
extract from the VCG loops [1], [15]. With the previous
discussions on the interpretation of the ICs extracted from
multi-channel ECG recordings, it is additionally possible to
use the directions and variances of these ICs as measures
of the surface of the main VCG loops and the volume of
the VCG which are interesting for diagnostic applications.
Moreover some other interesting clinical indexes such as the
angle of the VCG loops and the angles between the T-loop
and the QRS-loop are easily extractable from the ICs and their
corresponding mixing matrix. The simultaneous recording of
geometrically orthogonal leads such as the Frank leads also
provide a reference for the study of the angle between the
different loops, so that we can calculate the extracted angles
with respect to the body planes.

VII. RESULTS

A. ECG dimensionality study

Based on the previous discussions, the sensitivity of the
different ECG components with respect to the data dimensions
has been studied. For this, a simple dimension reduction based
on PCA has been carried out on signals from the MIT-BIH
PTB database [16]. This database contains 15 channels of ECG
recordings, containing the standard 12-leads and the 3 Frank
leads. Before applying the dimension reduction, the power of
each channel was normalized, and the SNR of each of the
P-, QRS-, and the T-segments of the ECG was calculated by
comparing the original and the reduced dimension signals. As
seen in Fig. 3, the P waves are the most sensitive portion of the
ECG to dimension reduction, mainly due to their weakness.

Fig. 3. Sensitivity of different ECG components to dimension reduction
using PCA

According to these results, for an SNR value of 20dB, which is
visually significant in the ECG plots, at least 5 dimensions are
required; except for the P-wave which requires 9 dimensions
for the same SNR. Note that the sensitivity of the different
channels to dimension reduction were not the same, and the
results of Fig. 3 are an average of all the channels.

Another approach to estimate the data dimensions was the
localized PCA. For this, the baseline wander of the data was
removed and the isoelectric point of the dataset was found,
and the data distribution was made symmetric according to
(4). Then all the points which were within the distance of
r from the isoelectric point were selected and given to the
PCA algorithm, and the number of dimensions required for
the representation of different percentages of the whole signal
energy were calculated from the eigenvalues of the data
covariance matrix. The result of this study can be seen in Fig.
4, where the required dimensions are plotted vs. the percentage
of the total required energy (Ps) for different values of the
radius r. Ps can also be translated to the SNR achieved by
keeping a certain number of dimensions for the samples within
the distance of r. Considering the typical shape of the VCG,
for small values of r the eigenvalues are mainly due to noise,
as they correspond to the fluctuations around the isoelectric
point. While as r increases, the true VCG components such
as the P-, T-, and QRS-loops are considered in the eigenvalue
calculations of the PCA. Considering the fact that the P-, and
T-loops have smaller radius than the QRS-loop, it is evident
that when r is increased beyond the maximum radius of the
P-loop (r ≈ 0.5 in Fig. 4), the further added information are
only due to the T-, and the QRS-loops. The same statement is
true for when r exceeds the maximum of the T-loop radius,
where any information beyond the T-loop limit (r ≈ 2.5 in
Fig. 4) will only correspond to the QRS-loop.

Another interesting result is achieved by studying the effect
of a pre-processing dimension reduction stage using PCA on
the robustness of the extracted ICs, in presence of Gaussian
noise. For this study additive white Gaussian noise has been
added to the signals after baseline wander removal and sym-
metrization of the data distribution. Next a PCA dimension
reduction stage has been carried out, and the ICs have been
extracted from the reduced dimension data. Knowing that
the columns of the mixing matrix correspond to the axes of
the mixing directions, the angles between these columns (or
equivalently their inner product) calculated before and after



Fig. 4. Number of dimensions required for preserving a specific percentage
of the signal energy, by applying a local PCA to the points within a radius
of r with respect to the isoelectric point of the VCG

Fig. 5. Stability of the extracted independent components

adding noise, can be assumed as a measure of the robustness
of each component (and the demixing matrix) with respect to
noise. In Fig. 5, the average of the explained inner product
is depicted vs. the noise standard deviation and the number
of dimensions kept by PCA2. Accordingly, the first three
dimensions are very robust to noise over the whole noise range
of study, the 4th and 5th dimensions are sensitive to high values
of noise, and as we increase the dimensions beyond 5 the
extracted ICs become very sensitive to noise. Apparently the
results approve that high dimensional ICs are more sensitive
to noise and a well selected PCA dimension reduction stage
tends to make the extracted ICs more robust to noise.

Following the discussions on the dimensionality of ECG
signals, it is now evident that up to 5 robust ICs can be
extracted from a typical ECG, which correspond to the main
directions of the VCG loop, and convey physiologically mean-
ingful information about the shape of these signals. In Fig. 6-a
typical components which have been extracted from a typical
ECG signal after performing the baseline wander removal can
be seen. The VCG generated from the Frank lead electrodes,
and the columns of the mixing matrix corresponding to the IC
of Fig. 6-a are depicted in Fig. 6-b. As seen in this figure, the
extracted components have time delays with respect to each
other which correspond to the local peaks of the VCG-loop.

2Apparently, the indexes which are closer to 1 have been more robust to
noise.

(a)

(b)

Fig. 6. (a) ICs extracted from multi-channel ECG recordings (Notice the
time delay of the extracted component peaks), (b) The VCG representation
of the Frank leads, together with the columns of the mixing matrix (or the
mixing vectors)

B. Fetal ECG extraction

In order to extract fetal ECG components the DaISy data-
base was used, which is a 10 second recording from 8
channels, containing 5 abdominal recordings and 3 thoracic
recordings from a pregnant woman [17]. The data was pre-
processed by removing the maternal baseline wander and by
detecting the isoelectric point of the VCG. Then the JADE
ICA algorithm was applied to the data. From the 8 extracted
components, 4 clearly corresponded to the maternal heart,
2 with the fetal heart, and 2 with noise. However from the
previous discussions it is clear that since the fetal components
are much weaker than the maternal components, and since
some of the fetal VCG loops can be co-planar with the
maternal VCG planes, a complete extraction of the fetal and
maternal subspaces (as assumed in [4], [3]) is not always
achievable and some fetal ECG components might be found
in the maternal components. To validate this assumption, the
R-peaks of the fetal ECG were detected from the strongest
fetal IC, and using these peaks a synchronous averaging was
performed over all the ICs. The result of this averaging is
plotted in Fig. 7. As it is seen in this figure, the synchronous
averaging approves the existence of 5 to 6 distinct components
in the fetal ECG (with significant time delays), which are not
all extracted as individual components by ICA, as they lay
within the maternal VCG subspaces.



Fig. 7. Synchronous averaging of the extracted ICs, showing multiple
components of the fetal ECG

VIII. CONCLUSIONS

In this paper, the application of ICA for the processing of
ECG signals and issues concerning the dimensionality of these
signals were studied. As it was discussed, the interpretation
of the ICs extracted from multi-channel recordings is closely
related to the VCG representation of these signals. Although
the results of applying ICA to ECG recordings can be very
subjective and database dependent, the following general re-
sults were hereby approved:
• The ICs extracted from multi-channel ECG signals very
well correspond to the components of VCG loops. Moreover
as the single dipole model of the heart and the assumption
of a linear time-invariant body volume conductor model are
not ideal description of the problem, the dimensions above
3 also convey physiologically meaningful information. As
it was shown, by using ICA more than 3 (up to 5 or 6)
robust components are extractable from the ECG which are
time-synchronized with the rotation of the cardiac dipole.
• Baseline wanders of the ECG cause translations of the
VCG loop. So the extraction of baseline wander as an IC
highly depends on the direction of transition caused by the
baseline wander, with respect to the VCG components.
• In order to have robust and stable components which
convey information about the angles between VCG loops,
it is necessary to find the components with respect to the
isoelectric point of these loops.
• The exact detection of the isoelectric point of the VCG,
VCG loop alignment, and baseline wander removal are even
more important for the noninvasive extraction of fetal ECG
components due to the weakness of the fetal components.
• As the fetal and maternal VCG loop components may be-
come co-planar, even effective methods such as independent
subspace decomposition are not guaranteed to extract all the
fetal components. This also explains why there are usually
no more than 1 or 2 ICs corresponding to the fetal heart. To
overcome this problem, the sparsity of the ECG signal and
the temporal information of the fetal and maternal ECGs are
expected to be helpful.

Moreover recently developed filtering methods which use
the temporal dynamics of the ECG signal can be used as
a complement for the removal of the maternal components
from the extracted ICs [18]. In fact, as it was discussed even

the subspaces of the fetal and the maternal ECGs are not
completely distinct. So by using dynamic filters, as proposed
in [18], it should be possible to use a dynamic model that
is time synchronous with the maternal ECG, to remove the
maternal components while preserving the fetal components.
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