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Abstract

In this paper, we prove various qualitative properties of pulsating travelling fronts in
periodic media, for reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov
type or general monostable nonlinearities. Besides monotonicity, the main part of the
paper is devoted to the exponential behavior of the fronts when they approch their
unstable limiting state. In the general monostable case, the logarithmic equivalent of
the fronts is shown and for noncritical speeds, the decay rate is the same as in the KPP
case. These results also generalize the known results in the homogeneous case or in the
case when the equation is invariant by translation along the direction of propagation.

1 Introduction and main results

Propagation phenomena for reaction-diffusion models in heterogeneous media have been
the purpose of very active research in the past recent years. We refer to [3] and [51] for
surveys on this topic. This paper is the first of a series of two on qualitative properties of
monostable pulsating travelling fronts in periodic media. Some existence results had been
obtained recently, but little has been known about qualitative properties of these fronts when
one of the limiting states is unstable. Here, we prove the monotonicity of the fronts in the
time variable and the exponential decay when they approach their unstable limiting state.
The exponential decay rate can be computed explicitely for KPP or general monostable
nonlinearities. These issues had been left open so far. In the forthcoming paper [22], we
are concerned with uniqueness, stability and estimates of the spreading speeds for KPP or
general monostable pulsating fronts.
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1.1 The periodic framework : main assumptions

We consider reaction-diffusion-advection equations of the type
{
ut −∇ · (A(z)∇u) + q(z) · ∇u = f(z, u), z ∈ Ω,

νA∇u = 0, z ∈ ∂Ω,
(1.1)

in a smooth unbounded domain Ω ⊂ R
N . We denote by ν the outward unit normal on ∂Ω.

Given two vectors ξ and ξ′ in R
N and a N × N matrix B = (Bij)1≤i,j≤N with real entries,

we write
ξBξ′ =

∑

1≤i,j≤N

ξiBijξ
′
j.

Equations of the type (1.1) arise especially in combustion, population dynamics and eco-
logical models (see e.g. [34, 44, 47]). The scalar passive quantity u typically stands for the
temperature or the concentration of a species which diffuses and is transported in a periodic
excitable medium.

The coefficients of (1.1) are not homogeneous in general, as well as the underlying domain
Ω which may not be the whole space R

N . In other words, the heterogeneous character arises
both in the equation and in the underlying domain. As described in the book by Shigesada
and Kawasaki [44], a first step to take into account the heterogeneities is to assume that
the environment varies periodically. Namely, assume that there is an integer d ∈ {1, · · · , N}
and d positive real numbers L1, . . . , Ld such that

{
∃ R ≥ 0, ∀ z = (x, y) ∈ Ω, |y| ≤ R,

∀ k ∈ L1Z × · · · × LdZ × {0}N−d, Ω = Ω + k,
(1.2)

where
x = (x1, · · · , xd), y = (xd+1, · · · , xN), z = (x, y)

and | · | denotes the euclidean norm. The domain Ω is assumed to be of class C2,α for some
α > 0. Let C be the periodicity cell defined by

C = {(x, y) ∈ Ω, x ∈ (0, L1) × · · · × (0, Ld)}.

Domains satisfying (1.2) include the whole space R
N , the whole space with periodic perfo-

rations, infinite cylinders with constant or periodically undulating sections, etc.
The matrix field A(x, y) = (Aij(x, y))1≤i,j≤N is symmetric of class C1,α(Ω), the vector

field q(x, y) = (qi(x, y))1≤i≤N is of class C0,α(Ω) and the nonlinearity (x, y, u) (∈ Ω × R) 7→
f(x, y, u) is continuous, of class C0,α with respect to (x, y) locally uniformly in u ∈ R and
we assume that ∂f

∂u
exists and is continuous in Ω × R. All functions Aij, qi and f(·, ·, u) (for

all u ∈ R) are assumed to be periodic, in the sense that they satisfy

w(x+ k, y) = w(x, y) for all (x, y) ∈ Ω and k ∈ L1Z × · · · × LdZ.

Furthermore, there is α0 > 0 such that
∑

1≤i,j≤N

Aij(x, y)ξiξj ≥ α0|ξ|2 for all (x, y) ∈ Ω and (ξi)1≤i≤N ∈ R
N .
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We are given two periodic functions p± satisfying

p−(x, y) < p+(x, y) for all (x, y) ∈ Ω,

which are classical C2,α(Ω) solutions of the stationary equation

{
−∇ · (A(x, y)∇p±) + q(x, y) · ∇p± = f(x, y, p±) in Ω,

νA(x, y)∇p± = 0 on ∂Ω.

Let us now list additional assumptions which will be used in some of the results below.
Denote

ζ(x, y) =
∂f

∂u
(x, y, p−(x, y)) (1.3)

and assume that ζ is of class C0,α(Ω) and that

µ0 < 0, (1.4)

where µ0 denotes the principal eigenvalue of the linearized operator around p−

ψ 7→ −∇ · (A(x, y)∇ψ) + q(x, y) · ∇ψ − ζ(x, y) ψ

with periodicity conditions in Ω and Neumann boundary condition νA∇ψ = 0 on ∂Ω. The
principal eigenvalue µ0 is characterized by the existence of a positive periodic function ϕ in
Ω such that

{
−∇ · (A(x, y)∇ϕ) + q(x, y) · ∇ϕ− ζ(x, y)ϕ = µ0ϕ in Ω,

νA(x, y)∇ϕ = 0 on ∂Ω.
(1.5)

Assume that there is ρ such that 0 < ρ < minΩ (p+ − p−) and, for any classical bounded
supersolution u of (1.1), that is

{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u ≥ f(x, y, u) in R × Ω,

νA∇u ≥ 0 on R × ∂Ω,

satisfying u < p+ and Ωu = {(t, x, y) ∈ R × Ω, u(t, x, y) > p+(x, y) − ρ} 6= ∅, there exists a
family of functions (ρτ )τ∈[0,1] defined in Ωu and satisfying





τ 7→ ρτ is continuous in C
1+α/2;2+α
t;(x,y)

(
Ωu

)
,

τ 7→ ρτ (t, x, y) is nondecreasing for each (t, x, y) ∈ Ωu,

ρ0 = 0, ρ1 ≥ ρ, inf
Ωu

ρτ > 0 for each τ ∈ (0, 1],

(u+ ρτ )t −∇ · (A∇(u+ ρτ )) + q · ∇(u+ ρτ ) ≥ f(x, y, u+ ρτ ) in Ωu,τ ,

νA∇(u+ ρτ ) ≥ 0 on (R × ∂Ω) ∩ Ωu,τ ,

(1.6)

where Ωu,τ = {(t, x, y) ∈ Ωu, u(t, x, y) + ρτ (t, x, y) < p+(x, y)}.
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Lastly, we assume that there are β > 0 and γ > 0 such that the map

(x, y, s) 7→ ∂f

∂u
(x, y, p−(x, y) + s) is of class C0,β(Ω × [0, γ]). (1.7)

For some of our results, we shall assume that, for all (x, y) ∈ Ω and s ∈ [0, p+(x, y)−p−(x, y)],

f(x, y, p−(x, y) + s) ≤ f(x, y, p−(x, y)) + ζ(x, y) s. (1.8)

Actually, not all assumptions (1.4), (1.6), (1.7) and (1.8) are needed in all the results below.
We will explain in each proposition or theorem what we really need.

Before stating the main results, let us comment here these above conditions on f and p±.
First, condition (1.4) means that the steady state p− is linearly unstable with respect to peri-
odic perturbations. This condition is satisfied in particular if ζ(x, y) = ∂f

∂u
(x, y, p−(x, y)) > 0

for all (x, y) ∈ Ω.
As far as the weak stability condition (1.6) is concerned, it is satisfied in particular if

∃ ρ > 0, ∀ (x, y) ∈ Ω, ∀ 0 ≤ s ≤ s′ ≤ ρ, f(x, y, p+(x, y) − s′) ≥ f(x, y, p+(x, y) − s). (1.9)

Indeed, in this case, even if it means reducing ρ, we can take ρτ = τρ for each τ ∈ [0, 1]. The
stronger property (1.9) holds (and, thus, (1.6)) for instance if ∂f

∂u
(x, y, p+(x, y)) < 0 for all

(x, y) ∈ Ω. More generally, condition (1.6) holds if the stationary state p+ is linearly stable,
in the sense that the principal eigenvalue µ+ of the linearized operator

ψ 7→ −∇ · (A(x, y)∇ψ) + q(x, y) · ∇ψ − ∂f

∂u
(x, y, p+(x, y)) ψ (1.10)

around p+, with periodicity conditions in Ω and Neumann boundary condition νA∇ψ = 0
on ∂Ω, satisfies : µ+ > 0. Indeed, in this case, if ϕ+ denotes the principal eigenfunction of
this operator such that minΩ ϕ

+ = 1 and if ρ ∈ (0,minΩ(p+ − p−)) is chosen so that
∣∣∣∣
∂f

∂u
(x, y, p+(x, y)) − ∂f

∂u
(x, y, p+(x, y) − s)

∣∣∣∣ ≤ µ+ for all (x, y, s) ∈ Ω × [0, ρ],

then we can take
ρτ (t, x, y) = τ ρϕ+(x, y) for each τ ∈ [0, 1].

Condition (1.6) is also fulfilled if, for each (x, y) ∈ Ω, the function

s 7→ f(x, y, p−(x, y) + s) − f(x, y, p−(x, y))

s
is nonincreasing in (0, (p+ − p−)(x, y)). (1.11)

Indeed, in this case, we can take any ρ in (0,minΩ(p+ − p−)) and

ρτ (t, x, y) =
τρ

infΩu
(u− p−)

× (u(t, x, y) − p−(x, y)).

Therefore, one of the advantages of formulation (1.6) is that it includes the two different and
important cases (1.9) and (1.11), which have already been considered in the literature (see
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the comments below after the main theorems). Notice also that property (1.11) (and, thus,
(1.6)) holds for nonlinearities of the type

f(x, y, s) = s(ζ(x, y) − η(x, y)s) with p− = 0, and η(x, y) ≥ 0 in Ω.

Typical cases are when f depends on u only, admits two zeroes p− < p+ ∈ R such that
f ′(p−) > 0 and f is nonincreasing in a left neighborhood of p+. Assumption (1.8) reads in
this case:

f(u) ≤ f ′(p−) × (u− p−) for all u ∈ [p−, p+].

The nonlinearities f(u) = u(1− u) or f(u) = u(1− u)m with m ≥ 1 are archetype examples
with p− = 0 and p+ = 1 which arise in biological models (see Fisher [18], or Kolmogorov,
Petrovsky and Piskunov [28]). In general, the steady states p± truly depend on the position
(x, y) –examples will be cited below after the statement of the main theorems– and condition
(1.8) can be viewed as a generalization of the Fisher-KPP assumption.

1.2 Main results

One of the main features of reaction-diffusion models is that transition waves may develop
and establish a connection between two different steady states. In the periodic framework,
we are concerned with pulsating travelling fronts between p− and p+, which are defined as
follows.

Definition 1.1 Given a unit vector e ∈ R
N whose last N − d components are zero, that

is |e| = 1 and e ∈ R
d × {0}N−d, a pulsating front connecting p− and p+, travelling in the

direction e with (mean) speed c ∈ R
∗, is a time-global classical solution u(t, x, y) of (1.1)

which can be written as

u(t, x, y) = φ(ct− x · e, x, y) for all (t, x, y) ∈ R × Ω, (1.12)

where φ is continuous on R × Ω and satisfies

(x, y) 7→ φ(s, x, y) is periodic in Ω for all s ∈ R (1.13)

and

φ(s, x, y) −→
s→±∞

p±(x, y) uniformly in (x, y) ∈ Ω. (1.14)

With a slight abuse of notation, x ·e denotes x1e1 + · · ·+xded, where e1, . . . , ed are the first d
components of the vector e. We are interested only in fronts such that

p−(x, y) ≤ u(t, x, y) ≤ p+(x, y) for all (t, x, y) ∈ R × Ω. (1.15)

Notice that, because of (1.14) and the strong maximum principle, the inequalities (1.15) are

actually strict for all (t, x, y) ∈ R × Ω.
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The notion of pulsating travelling fronts extends that of usual travelling fronts which are
invariant in the frame moving with speed c in the direction e. We will come back to the
classical results about travelling fronts after the statements of the main theorems. We just
notice here that formula (1.12) can be rewritten as

φ(s, x, y) = u

(
s+ x · e

c
, x, y

)
for all (s, x, y) ∈ R × Ω,

while condition (1.13) means that

∀ k ∈ L1Z × · · · × LdZ, ∀ (t, x, y) ∈ R × Ω, u

(
t− k · e

c
, x, y

)
= u(t, x+ k, y). (1.16)

Notice also that (1.14) is equivalent to

lim
A→+∞

(
sup

±(ct−x·e)≥A, (t,x,y)∈R×Ω

|u(t, x, y) − p±(x, y)|
)

= 0.

We are concerned in this paper with some qualitative properties of the pulsating travelling
fronts connecting p− and p+, such as monotonicity with respect to the variable s = ct−x · e,
bounds for the speeds, behavior of the functions φ when they approach the unstable limiting
state p−. These properties are of essential interest and enable us, in the second part [22], to
derive uniqueness, stability and spreading type results. Under assumptions (1.4) and (1.6),
the pulsating travelling fronts φ(s, x, y), in the sense of Definition 1.1, connect the unstable
state p− to the stable one p+. As known in simpler situations, what really matters and what
makes the analysis difficult is the behavior of the front near its unstable limiting state p−.
In particular, we prove here that φ(s, x, y) decays exponentially to p−(x, y) as s→ −∞.

The exponential behavior of φ(s, x, y) − p−(x, y) can be made explicit in terms of some
linear operators depending on p−, and we need a few more notations. Let ζ(x, y) be defined
as in (1.3). For each λ ∈ R, call k(λ) the principal eigenvalue of the operator

Lλψ := −∇ · (A∇ψ) + 2λeA∇ψ + q · ∇ψ + [λ∇ · (Ae) − λq · e− λ2eAe− ζ]ψ (1.17)

acting on the set

Eλ = {ψ ∈ C2(Ω), ψ is periodic in Ω and νA∇ψ = λ(νAe)ψ on ∂Ω}.

Note in particular that
k(0) = µ0

where µ0 is given in (1.5). Let ψλ denote the unique positive principal eigenfunction of Lλ

such that, say,
‖ψλ‖L∞(C) = 1. (1.18)

Lastly, define

c∗(e) = inf
λ>0

(
−k(λ)

λ

)
. (1.19)
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This quantity turns out to be a real number, and for each c > c∗(e), the number

λc = min{λ > 0, k(λ) + cλ = 0} (1.20)

is well-defined (see Section 2.1). Actually, for each c > c∗(e), the set Fc = {λ ∈
(0,+∞), k(λ) + cλ = 0} is either the singleton {λc}, or it is made of two points {λc, λ

+
c }

with λc < λ+
c , while, for c = c∗(e), the set Fc is either empty or it is a singleton {λ∗} (see

Section 2.1 and the results below in this section).
The following proposition gathers a few basic properties which are satisfied by the pul-

sating fronts, even without the regularity assumption (1.7) or the KPP assumption (1.8).

Proposition 1.2 Let u(t, x, y) = φ(ct − x · e, x, y) be a pulsating front in the sense of

Definition 1.1. Under assumption (1.4), then

c ≥ c∗(e).

Under assumptions (1.4) and (1.6), then φ is increasing in its first variable, and φs(s, x, y) >
0 for all (s, x, y) ∈ R × Ω.

Notice in particular that the monotonicity of φ with respect to s implies that u is in-
creasing in t if c > 0 and decreasing if c < 0. Moreover, ut(t, x, y) > 0 for all (t, x, y) ∈ R×Ω
if c > 0, and ut(t, x, y) < 0 if c < 0.

In the following theorem, we give the exact exponential behavior of the functions φ(s, x, y)
as s→ −∞ with the KPP assumption (1.8).

Theorem 1.3 Let u(t, x, y) = φ(ct − x · e, x, y) be a pulsating front in the sense of Defini-

tion 1.1, and assume that conditions (1.4), (1.7) and (1.8) are satisfied. If c > c∗(e), then

there exists B > 0 such that

φ(s, x, y) − p−(x, y) ∼ Beλcsψλc
(x, y) as s→ −∞ uniformly in (x, y) ∈ Ω. (1.21)

If c = c∗(e), then there is a unique λ∗ > 0 such that k(λ∗) + c∗(e)λ∗ = 0 and there exists

B > 0 such that

φ(s, x, y) − p−(x, y) ∼ B|s|2m+1eλ∗sψλ∗(x, y) as s→ −∞ uniformly in (x, y) ∈ Ω,

where m ∈ N and 2m+ 2 is the multiplicity of λ∗ as a root of k(λ) + c∗(e)λ = 0.

Remark 1.4 In the critical case c = c∗(e), the asymptotic behavior of φ(s, x, y)−p−(x, y) is
not purely exponential, but it is a power of |s| times an exponential, like in the homogeneous
case or in the case when the equation is invariant along the direction of propagation (see the
comments in Section 1.3 below). In these known cases, the multiplicity of λ∗ is equal to 2
(that is m = 0), but the calculation of m is not clear in our general periodic framework.

The next result provides a logarithmic equivalent of φ(s, x, y)−p−(x, y) as s→ −∞ with
or without the KPP assumption (1.8), but with an additional condition in the case c > c∗(e).
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Theorem 1.5 Let u(t, x, y) = φ(ct − x · e, x, y) be a pulsating front in the sense of Defini-

tion 1.1, and assume that condition (1.4) is satisfied.

a) If (1.6) and (1.7) hold and if there exists a pulsating front

u′(t, x, y) = φ′(c′t− x · e, x, y)

in the sense of Definition 1.1 with a speed c′ < c, then c > c∗(e) and

ln(φ(s, x, y) − p−(x, y)) ∼ λcs as s→ −∞ uniformly in (x, y) ∈ Ω. (1.22)

b) If c = c∗(e), then

ln(φ(s, x, y) − p−(x, y)) ∼ λ∗s as s→ −∞ uniformly in (x, y) ∈ Ω, (1.23)

where λ∗ > 0 is still defined as in Theorem 1.3.

The existence of pulsating travelling fronts is known in some cases which are covered by
the general assumptions of the above theorems. For instance, if





p− = 0, p+ = 1, f(x, y, u) > 0 for all (x, y) ∈ Ω and u ∈ (0, 1),

f(x, y, u) is nonincreasing with respect to u in a left neighbourhood of 1,

∇ · q = 0 in Ω, q · ν = 0 on ∂Ω and

∫

C

qi(x, y) dx dy = 0 for 1 ≤ i ≤ d,

(1.24)

if the KPP assumption (1.8) is satisfied and if f is of class C1,β(Ω × [0, 1]), then, given
any unit vector e ∈ R

d × {0}N−d, pulsating travelling fronts exist if and only if c ≥ c∗(e),
where the minimal speed c∗(e), as given in (1.19), is positive, see [5] (actually, this existence
result has been proved under additional smoothness assumptions on the coefficients of (1.1)).
Furthermore, the infimum in (1.19) is reached (see [2, 5]). Notice that conditions (1.9), and
then (1.6), are satisfied with p+ = 1. In this case, condition (1.8) reduces to

f(x, y, u) ≤ ζ(x, y)u for all (x, y) ∈ Ω and u ∈ [0, 1], (1.25)

where ζ(x, y) = ∂f
∂u

(x, y, 0), and (1.24) yields ζ(x, y) > 0 for all (x, y) ∈ Ω, whence (1.4).
However, even under assumptions (1.24) and (1.25), the exact behavior of each front when it
approaches its limiting unstable state (here, 0) was not known, and as it will be seen in [22],
Theorem 1.3 will then provide the complete classification of all these pulsating fronts as well
as several stability results. We refer to [1, 4, 5, 14, 15, 21, 25, 40, 42, 46, 52] for further
existence results or applications of formulas of the type (1.19) about the dependence of the
minimal speeds on the domain or on the advection, reaction, diffusion coefficients.

For nonlinearities f satisfying (1.8) and (1.24), the derivative ζ(x, y) = ∂f
∂u

(x, y, 0) is
positive everywhere, and the principal eigenvalue µ0 given in (1.5) is necessarily negative,
that is (1.4) is fulfilled. However, if ζ is not everywhere positive, µ0 may not be negative in
general. In [7], nonlinearities f = f(x, s) (for x ∈ Ω = R

N) satisfying




f(x, 0) = 0, u 7→ f(x, u)

u
is decreasing in u > 0,

∃ M > 0, ∀ x ∈ R
N , ∀ u ≥M, f(x, u) ≤ 0

(1.26)
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were considered, with no advection (q = 0). Observe that (1.26) yields in particular (1.8)
and (1.11) with p− ≡ 0, whence (1.6). Typical examples of such nonlinearities f(x, u) are

f(x, u) = u(ζ(x) − η(x)u),

where η is a periodic function such that 0 < η1 ≤ η(x) ≤ η2 < +∞ in R
N (see [44] for

biological invasions models). Under the assumptions (1.26), the existence (and uniqueness)
of a positive periodic steady state p+ is equivalent to the condition µ0 < 0, that is (1.4)
(see [6]). With the condition µ0 < 0, the existence of pulsating fronts in any direction e was
proved in [7] for all (and only all) speeds c ≥ c∗(e), where c∗(e) is still given by (1.19) (see also
[26] for partial results in the one-dimensional case). However, the exponential behavior of
these pulsating fronts when they approach 0 was still an open problem, even in dimension 1.
The present paper gives a positive answer to this issue, in a more general setting.

Remark 1.6 In [5], assumption (1.24) on the positivity of the function f played a crucial role
in the existence of pulsating fronts. In [7], assumptions (1.4) and (1.26) were essential. Notice
that, in general, the existence of pulsating fronts cannot be guaranteed under assumptions
(1.4), (1.6), (1.7) and (1.8). For instance, even in the homogeneous one-dimensional case
ut − uxx = f(u) with f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, f(s) ≤ f ′(0)s in [0, 1] and
f is of class C1,β in a neighbourhood of 0 (assumptions (1.4), (1.6), (1.7) and (1.8) are
satisfied with p− = 0 and p+ = 1), there exist no fronts u(t, x) = φ(ct − x) such that

φ(−∞) = 0 ≤ φ ≤ φ(+∞) = 1 as soon as
∫ 1

0
f ≤ 0 (since the speed c of any such front

would have to be both positive because of the limit φ(−∞) = 0, and nonpositive because of
the sign of the integral of f).

Theorem 1.3 deals with KPP case (1.8), while Theorem 1.5 is concerned with the “general
monostable case”. This terminology means that the fronts u = φ(ct−x · e, x, y) connect two
stationary states p− and p+, the first one being unstable and the second one being weakly
stable (but it does not mean a priori that there is no other stationary state p between p−

and p+). In the general monostable case, that is Theorem 1.5, it is worth to notice that
the only knowledge of the existence of a pulsating front with a speed c′ smaller than c is
enough to force the exponential decay rate of the pulsating front having speed c. Actually the
existence of a pulsating front with a speed c′ < c is a reasonable assumption. For instance,
under assumptions (1.24) with ∂f

∂u
(x, y, 0) > 0, even without the KPP assumption (1.25),

pulsating fronts u(t, x, y) = φ(ct− x · e, x, y) exist if and only if

c ≥ c∗∗(e),

where the minimal speed c∗∗(e) is such that c∗∗(e) ≥ c∗(e) and c∗(e) is given in (1.19), see
[2, 3]. Thus, for each pulsating front u(t, x, y) = φ(ct − x · e, x, y) with c > c∗∗(e), the
existence of a front with a speed c′ less than c is guaranteed and Theorem 1.5 provides the
logarithmic decay of φ(s, x, y) as s → −∞. The existence of pulsating fronts is also known
(see [43]) for the one-dimensional Allen-Cahn equation ut = uxx + f(u), when f is of the
bistable type between, say, −1 and 1, and the fronts connect an unstable periodic solution
to the stable state 1. Any positive speed is admissible. The results of the present paper
provide the exponential decay of all these fronts.
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Remark 1.7 In our general framework, under the assumptions of Theorem 1.5, formulas
(1.22) and (1.23) are weaker than the exponential behaviors in Theorem 1.3 with the KPP
assumption (1.8). However, we conjecture that, under the assumptions of part a) of Theo-
rem 1.5, formula (1.21) holds. So far, Theorem 1.5 provides at least the exponential decay
rate in the general monostable case, which is the slowest one and the same as in the KPP
case. Actually, it follows from Propositions 3.4 and 4.3 below that, under the assumptions
of part a), we can be a bit more precise than (1.22), in the sense that

lim sup
s→−∞

(
max

(x,y)∈Ω

φ(s, x, y)

eλcs

)
< +∞, and lim inf

s→−∞

(
min

(x,y)∈Ω

φ(s, x, y)

e(λc+η)s

)
= +∞ for each η > 0.

The only case which is not covered by our results is the general monostable case without
the KPP assumption (1.8) and when the speed of the front is minimal and larger than
c∗(e). In this case, the fronts are pushed by their main part, instead of being pulled by their
exponential tail and they are expected to have an exponential decay rate larger than λc (see
the comments in Section 1.3).

1.3 Further comments and extensions

In this section, we relate our qualitative results to some earlier ones, starting from the sim-
plest case of planar fronts in homogeneous media. Then, we state similar results which can
be obtained with the same methods as in the present paper.

Link with some well-known results. For the homogeneous Fisher-KPP equation

ut = ∆u+ f(u) in R
N (1.27)

with f(0) = f(1) = 0 and 0 < f(s) ≤ f ′(0)s in (0, 1), there are planar travelling fronts

0 < u(t, x) = φ(ct− x · e) < 1

between p− = 0 and p+ = 1 if and only if c ≥ 2
√
f ′(0), for each unit vector e. Planar

fronts φ(ct − x · e) propagate with constant speed c in the direction e, their level sets are
parallel hyperplanes and their shape is invariant in their moving frame. Notice that the value
c∗ = c∗(e) = 2

√
f ′(0) is a particular case of formula (1.19). Actually, in this case,

k(λ) = −(λ2 + f ′(0)), ψλ = 1, λc =
c−

√
c2 − 4f ′(0)

2
for each c > c∗,

while λ∗ =
√
f ′(0) and the multiplicity 2m + 2 of λ∗ as a root of k(λ) + 2

√
f ′(0)λ = 0 is

equal to 2 (that is, m = 0). It is immediate to see, with a phase plane analysis, that for
each c ≥ c∗, the function φ has to be increasing and that, if c > 2

√
f ′(0), then φ(s) ∼ Beλcs

as s → −∞ and, if c = 2
√
f ′(0), then φ(s) ∼ B|s|eλ∗s as s → −∞, for some B > 0. These

behaviors can be viewed as particular cases of Theorem 1.3.
If f is simply assumed to be positive in (0, 1), without the KPP assumption f(s) ≤ f ′(0)s,

then the set of speeds of planar fronts is still of the type [c∗∗,+∞), where c∗∗ ≥ 2
√
f ′(0) (this
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is a particular case of the result of [2, 3] which had been recalled above). Actually, if f ′(0) > 0
and c > c∗∗, then φ(s) ∼ Beλcs as s → −∞ for some B > 0, which is stronger than our
formula (1.22) in Theorem 1.5. But, at least, formula (1.22) provides the right logarithmic
equivalent as s → −∞, with the slowest decay rate λc, in the general periodic monostable
framework. Notice that the assumption f ′(0) > 0 corresponds to (1.4). Similarly, if f ′(0) > 0
and c = c∗∗ = 2

√
f ′(0), then φ(s) ∼ (B|s|+B′)eλ∗s as s→ −∞ with either B > 0, or B = 0

and B′ > 0; in this case, formula (1.23) still holds. If c = c∗∗ > 2
√
f ′(0), then φ(s) ∼ Beλ∗∗

+
s

as s → −∞ with B > 0, where λ∗∗+ = (c∗∗ +
√

(c∗∗)2 − 4f ′(0))/2 > λc∗∗ , that is φ decays in
this case with the fastest rate. In the general periodic monostable framework, we conjecture
that the same property holds for the pulsating fronts such that c > c∗(e) and when there is
no front with a speed smaller than c.

Equations of the type

ut − ∆u+ α(y)
∂u

∂x
= f(y, u), (x, y) ∈ Ω = R × ω, ν · ∇u = 0, (x, y) ∈ ∂Ω (1.28)

in straight infinite cylinders with smooth bounded sections ω and with underlying shear
flows q = (α(y), 0, . . . , 0) have also been investigated in the past fifteen years. With KPP or
monostable nonlinearities having two stationary states p−(y) < p+(y) and none between p−

and p+, we refer to [10] for existence results of travelling fronts

u(t, x, y) = φ(ct− x, y)

for all speeds c ≥ c∗∗, and their exponential behavior when φ ≃ p−, as in the homogeneous
case above. Here, for each λ ∈ R, k(λ) is the principal eigenvalue of the operator

ψ = ψ(y) 7→ −∆yψ −
[
λ α(y) + λ2 +

∂f

∂u
(y, p−(y))

]
ψ in ω

with Neumann boundary conditions on ∂ω. Therefore, k(λ) + λ2 is concave, whence the
multiplicity of λ∗ as a root of k(λ∗) + c∗λ∗ = 0 is equal to 2, where c∗ = minλ>0(−k(λ)/λ) =
−k(λ∗)/λ∗ is the minimal speed in the KPP case. Notice also that the equations (1.28)
are invariant along the x-direction, the profiles of fronts φ(ct − x, y) are invariant in their
moving frame and the equation for φ reduces to an elliptic problem. We refer to [10, 32, 41]
for further uniqueness and stability results of the travelling fronts for problem (1.28).

Therefore, the results of the present paper generalize those which were known in the clas-
sical cases (1.27) or (1.28). In the periodic framework, under assumptions (1.24) or (1.26),
they also answer some questions which had been left open so far. The results are stated
here in a more general setting than (1.24) or (1.26). In particular, the nonlinearity f is not
assumed to be nonnegative or to satisfy monotonicity properties. This general setting leads
to additional difficulties and much more technicality.

Behavior around a stable limiting state and other types of nonlinearities.

Theorems 1.3 or 1.5 were concerned with the exponential decay of φ(s, x, y) as s → −∞,
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that is when φ is close to the limiting state p−. The unstability of p−, namely condition
(1.4), makes the analysis difficult.

The behavior of φ as s→ +∞, that is when φ approches its weakly stable state limiting
p+ can also be asked. As a matter of fact, similar results concerning the exponential behavior
of φ(s, x, y) − p+(x, y) when s→ +∞ can be proved, under the additional assumption

µ+ > 0,

where µ+ is the principal eigenvalue of the linearized operator (1.10) around the limiting
state p+. Namely, if µ+ > 0 and if the function (x, y, s) 7→ ∂f

∂u
(x, y, p+(x, y) − s) is assumed

to be of class C0,β+

(Ω × [0, γ+]) for some β+ > 0 and γ+ > 0, then, for any pulsating front
u(t, x) = φ(ct− x · e, x, y) in the sense of Definition 1.1,

φ(s, x, y) − p+(x, y) ∼ −B+ e−λ+s ψ+
λ+(x, y) as s→ +∞, (1.29)

uniformly in Ω, where B+ > 0, λ+ > 0 and ψ+
λ+ is periodic and positive in Ω. Here, λ+ is

the unique positive solution of k+(λ+) = λ+c, where k+(λ) denotes the principal eigenvalue
of the operator

−∇ · (A∇ψ) − 2λeA∇ψ + q · ∇ψ + [−λ∇ · (Ae) + λq · e− λ2eAe− ζ+]ψ

with periodicity in Ω and boundary conditions νA∇ψ+λ(νAe)ψ = 0 on ∂Ω, and ψ+
λ+ denotes

the principal eigenfunction with λ = λ+, with normalization ‖ψ+
λ+‖L∞(C) = 1. The function

ζ+(x, y) denotes ∂f
∂u

(x, y, p+(x, y)). The existence and uniqueness of a positive real number
λ+ satisfying k+(λ+) = λ+c can be shown as in Section 2, the uniqueness uses the concavity
of k+ and the fact that

k+(0) = µ+ > 0.

Furthermore, the multiplicity of λ+ as a root of k+(λ)−λc = 0 is then always equal to 1. The
proof of (1.29) would actually be much easier than those of Theorems 1.3 or 1.5 (and holds
with or without any KPP assumption with respect to p− or p+, and whether c is critical or
not) since λ+ has multiplicity one and since comparison principles in domains of the type
[h,+∞) × Ω in the (s, x, y) variables can be applied, because of the stability assumption
µ+ > 0.

Remember that the condition µ+ > 0 implies the weak stability property (1.6). Now,
when p+ is only assumed to be weakly stable in the sense of (1.6) (this may include the
degenerate case µ+ = 0), then the exponential behavior does not hold in general and φ(s, x, y)
may converge to p+(x, y) as a negative power of s as s→ +∞, or even more slowly, according
to the behavior of f(x, y, u) when u ≃ p+(x, y). Actually, when the exponential behavior
of φ(s, x, y) − p−(x, y) is known, as in Theorem 1.3, the weak stability condition (1.6) is
enough to guarantee the uniqueness of the functions φ up to shifts in s (see the forthcoming
paper [22]), and one does not need to know the exact behavior of φ(s, x, y) − p+(x, y) as
s→ +∞. Similarly, the unstability assumption (1.4) and the weak stability assumption (1.6)
are enough to guarantee the strict monotonicity of φ(s, x, y) with respect to s. However, if
the unstability condition (1.4) is replaced by a degenerate one (for instance, if f = f(u), p− is
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constant, f is positive in (p−, p−+δ] for some δ > 0 and if f ′(p−) = 0), then the monotonicity
of φ with respect to s as well as the behavior of φ(s, x, y)− p−(x, y) as s→ −∞ are unclear.

On the other hand, if both p− and p+ are weakly stable (that is when (1.6) is satisfied and
when the unstability assumption (1.4) of the state p− is replaced by a similar assumption as
(1.6)), then comparisons principles as in Section 2 below can be stated in domains of the type
(−∞, h]×Ω or [h,+∞)×Ω in the (s, x, y) variables, and sliding methods similar to [2] and
[3] imply that the functions φ are increasing in s, unique up to shifts in s, and that the speed
c, if any, is necessarily unique. For instance, for bistable or combustion-type nonlinearities,
the speed c of usual or pulsating travelling fronts is unique and the function φ is then unique
up to shifts. We refer to [2, 3, 8, 10, 11, 12, 16, 17, 23, 24, 31, 33, 36, 41, 45, 48, 49, 50, 51]
for precise definitions and for some existence, uniqueness and further qualitative results with
combustion or bistable nonlinearities, from the homogeneous to the periodic framework.

The case of time-periodic media. Finally, we mention that similar results can be
established for pulsating fronts in time-periodic media with the same type of methods as
in this paper. Some exponential decay results in space-time periodic media could also be
derived (we refer to [35, 37] for existence results and speed estimates), but we concentrate here
for simplicity on time-periodic environments. Namely, consider reaction-diffusion-advection
equations of the type

{
ut −∇ · (A(t, y)∇u) + q(t, y) · ∇u = f(t, y, u) in Ω,

νA∇u = 0 on ∂Ω,
(1.30)

in a smooth unbounded domain Ω = {(x, y) ∈ R
d × ω}, where ω is a C2,α bounded domain

of R
N−d. The uniformly elliptic symmetric matrix field A(t, y) = (Aij(t, y))1≤i,j≤N is of class

C
1,α/2;1,α
t;y (R × ω), the vector field q(t, y) = (qi(t, y))1≤i≤N is of class C

0,α/2;1,α
t;y (R × ω) and

the nonlinearity (t, y, u) (∈ R × ω × R) 7→ f(t, y, u) is continuous, of class C0,α/2;0,α with
respect to (t, y) locally uniformly in u ∈ R and we assume that ∂f

∂u
exists and is continuous in

R×ω×R. All functions Aij, qi and f(·, ·, u) (for all u ∈ R) are assumed to be time-periodic,
in the sense that they satisfy w(t+T, y) = w(t, y) for all (t, y) ∈ R×ω, where T > 0 is fixed.
We are given two time-periodic classical solutions p± of (1.30) satisfying

p−(t, y) < p+(t, y) for all (t, y) ∈ R × ω.

Assume that ζ(t, y) = ∂f
∂u

(t, y, p−(t, y)) is of class C
0,α/2;0,α
t;y (R × ω) and that

µ0 < 0, (1.31)

where µ0 denotes the principal eigenvalue of the linearized operator around p−

ψ(t, y) 7→ ψt −∇ · (A(t, y)∇ψ) + q(t, y) · ∇ψ − ζ(t, y) ψ

with time-periodicity conditions in R × ω and Neumann boundary condition νA∇ψ = 0 on
R × ∂ω (with a slight abuse of notations, ∇ψ denotes (0, . . . , 0,∇yψ) ∈ {0}d × R

N−d). For
some results, we shall assume that there is ρ such that 0 < ρ < minR×ω (p+ − p−) and, for
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any classical bounded supersolution u of (1.30) satisfying u < p+ and Ωu = {u(t, x, y) >
p+(t, y) − ρ} 6= ∅,

there exists a family of functions (ρτ )τ∈[0,1] defined in Ωu and satisfying (1.6) (1.32)

with Ωu,τ = {(t, x, y) ∈ Ωu, u(t, x, y) + ρτ (t, x, y) < p+(t, y)}. We shall also assume that
there are β > 0 and γ > 0 such that the map

(t, y, s) 7→ ∂f

∂u
(t, y, p−(t, y) + s) is of class C0,β(R × ω × [0, γ]), (1.33)

and that, for all (t, y) ∈ R × ω and s ∈ [0, p+(t, y) − p−(t, y)],

f(t, y, p−(t, y) + s) ≤ f(t, y, p−(t, y)) + ζ(t, y) s. (1.34)

Given a unit vector e ∈ R
d × {0}N−d, a pulsating front connecting p− and p+, travelling

in the direction e with mean speed c ∈ R
∗, is a classical solution u(t, x, y) of (1.30) such that





u(t, x, y) = φ(ct− x · e, t, y) for all (t, x, y) ∈ R × R
d × ω,

φ(s, t+ T, y) = φ(s, t, y) for all (s, t, y) ∈ R
2 × ω,

φ(s, t, y) −→
s→±∞

p±(t, y) uniformly in (t, y) ∈ R × ω,

p−(t, y) < φ(s, t, y) < p+(t, y) for all (s, t, y) ∈ R
2 × ω.

(1.35)

We refer to [19, 38, 39] for existence results and speed estimates of pulsating fronts for
equations of the type (1.30) with time-periodic KPP nonlinearities and shear flows.

For each λ ∈ R, still call k(λ) the principal eigenvalue of the operator ψ 7→ ψt − ∇ ·
(A∇ψ) + 2λeA∇ψ + q · ∇ψ + [λ∇ · (Ae) − λq · e − λ2eAe − ζ(t, y)]ψ with time-periodicity
conditions in R × ω and boundary conditions νA∇ψ = λ(νAe)ψ on R × ∂ω, and denote by
ψλ the unique positive principal eigenfunction such that ‖ψλ‖L∞(R×ω) = 1. Define c∗(e) as
in (1.19) and for each c > c∗(e), define λc > 0 as in (1.20). These quantities are well-defined
real numbers.

We list below some qualitative results which can be obtained by adapting the methods of
the present paper. In the sequel, u(t, x, y) = φ(ct− x · e, x, y) denotes a pulsating travelling
front in the sense of (1.35).

• Under assumption (1.31), then c ≥ c∗(e). Under assumptions (1.31) and (1.32), then
φs(s, t, y) > 0 in R

2 × ω, that is −e · ∇u(t, x, y) > 0 in R × Ω.

• Under assumptions (1.31), (1.33) and the KPP assumption (1.34) : if c > c∗(e), then
there exists B > 0 such that

φ(s, t, y) − p−(t, y) ∼ Beλcsψλc
(t, y) as s→ −∞ uniformly in (t, y) ∈ R × ω,

while if c = c∗(e), then there is a unique λ∗ > 0 such that k(λ∗) + c∗(e)λ∗ = 0 and
there exists B > 0 such that

φ(s, t, y) − p−(t, y) ∼ B|s|2m+1eλ∗sψλ∗(t, y) as s→ −∞ uniformly in (t, y) ∈ R × ω,

where m ∈ N and 2m+ 2 is the multiplicity of λ∗ as a root of k(λ) + c∗(e)λ = 0.
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• Under assumptions (1.31), (1.32) and (1.33), if there exists a pulsating front u′(t, x, y) =
φ′(c′t − x · e, t, y) in the sense of (1.35) with a speed c′ < c, then c > c∗(e) and
ln(φ(s, t, y) − p−(t, y)) ∼ λcs as s→ −∞ uniformly in (t, y) ∈ R × ω.

• Under assumption (1.31), if c = c∗(e), then ln(φ(s, t, y) − p−(t, y)) ∼ λ∗s as s → −∞
uniformly in (t, y) ∈ R × ω.

The same results can also be stated when the boundedness in y is replaced by a period-
icity in y, or a mixture of periodicity and boundedness as in (1.2) (in the variable y only).
These results also lead to the uniqueness for a given speed up to shifts in s in the KPP case
(1.34), as well as to stability and spreading speeds estimates, as in [22].

Outline of the paper. The plan of the paper is as follows : in Section 2, we prove
various qualitative properties which are satisfied by the pulsating travelling fronts, including
the monotonicity in time. Sections 3 and 4 are devoted to establishing exponential lower
and upper bounds, which provide in Section 5 the proofs of the main Theorems 1.3 and 1.5
on the exponential behavior when u ≃ p−.

2 Monotonicity and other qualitative estimates

In this section, we establish some useful qualitative properties which are satisfied by the
pulsating travelling fronts solving (1.1). In particular, we prove here the monotonicity results.
Actually, we do not need the KPP assumption (1.8) or the regularity assumption (1.7).
Throughout this section, we are given a unit vector e ∈ R

d × {0}N−d and we denote by

u(t, x, y) = φ(ct− x · e, x, y)

a pulsating travelling front with speed c ∈ R
∗, in the sense of Definition 1.1. We first show

that we can always assume that p− = 0 and p+ = 1 without loss of generality. We then
prove some rough estimates and the monotonicity with respect to the variable ct− x · e.

2.1 Some preliminaries

Notice first that if we write

ũ(t, x, y) =
u(t, x, y) − p−(x, y)

p+(x, y) − p−(x, y)
, φ̃(s, x, y) =

φ(s, x, y) − p−(x, y)

p+(x, y) − p−(x, y)

and




q̃ = q − 2A∇(p+ − p−)

p+ − p−
,

f̃(x, y, v) =
f(x, y, (p+ − p−)v + p−) − f(x, y, p−) + [f(x, y, p−) − f(x, y, p+)] v

p+ − p−
,
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where p± = p±(x, y), then ũ satisfies

{
ũt −∇ · (A(x, y)∇ũ) + q̃(x, y) · ∇ũ = f̃(x, y, ũ) in R × Ω,

νA∇ũ = 0 on R × ∂Ω,
(2.1)

and ũ is a pulsating travelling front in the sense of Definition 1.1, with (q̃, f̃) instead of (q, f),
and

p̃− = 0 and p̃+ = 1

instead of p− and p+ respectively. The constant functions p̃− < p̃+ solve f̃(x, y, p̃±) = 0
in Ω and are then classical periodic solutions of the stationary equation which is associated
to (2.1). Furthermore, the vector field q̃ and the nonlinearity f̃ satisfy the same regularity
assumptions as q and f , and if properties (1.7) and (1.8) hold with f and p±, then they
immediately hold with f̃ and p̃±.

Observe also that

ζ̃(x, y) =
∂f̃

∂v
(x, y, p̃−) =

∂f

∂u
(x, y, p−) +

f(x, y, p−) − f(x, y, p+)

p+ − p−

and if ϕ is a principal eigenvalue of the operator L0 with principal eigenvalue µ0, then the
function ϕ̃ = ϕ/(p+ − p−) is periodic, positive and satisfies

−∇ · (A∇ϕ̃) + q̃ · ∇ϕ̃− ζ̃ϕ̃ = µ0ϕ̃

with Neumann boundary conditions νA∇ϕ̃ = 0 on ∂Ω, which means that µ0 is the principal
eigenvalue of the linearized equation around p̃− = 0. In particular, if condition (1.4) holds
with equation (1.1) and the stationary state p−, then it holds with equation (2.1) and p̃−.

Similarly, if (1.6) holds with ρ ∈ (0,minΩ(p+ − p−)), then if we define

ρ̃ =
ρ

maxΩ(p+ − p−)
∈ (0, 1)

and if v is a bounded classical supersolution of (2.1) such that

v < 1 and Ω̃v = {(t, x, y) ∈ R × Ω, v(t, x, y) > 1 − ρ̃} 6= ∅,

then u := (p+ − p−) v + p− is a classical bounded supersolution of (1.1) such that u < p+

and Ωu ⊃ Ω̃v, whence Ωu 6= ∅. Let (ρτ )τ∈[0,1] be the family of functions associated to u and
satisfying (1.6). Define ρ̃τ = ρτ/(p

+ − p−) for each τ ∈ [0, 1]. It is then straightforward to

check that property (1.6) then holds with ρ̃τ , v, q̃, f̃ , p̃+ = 1 and Ω̃v,τ = Ω̃v ∩ {v + ρ̃τ < 1}
instead of ρτ , u, q, f , p+ and Ωu,τ respectively.

Moreover, for each λ ∈ R, denote ψλ the principal eigenfunction of the operator Lλ with
principal eigenvalue k(λ), boundary conditions νA∇ψλ = λ(νAe)ψλ on ∂Ω and normalization
condition (1.18). Then set

ψ̃λ(x, y) = αλ ×
ψλ(x, y)

p+(x, y) − p−(x, y)
,
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where the constant αλ > 0 is such that ‖ψ̃λ‖L∞(C) = 1. The function ψ̃λ is periodic in (x, y),
positive, and it satisfies

L̃λψ̃λ := −∇· (A∇ψ̃λ)+2λeA∇ψ̃λ + q̃ ·∇ψ̃λ +
[
λ∇ · (Ae) − λq̃ · e− λ2eAe− ζ̃

]
ψ̃λ = k(λ)ψ̃λ

with boundary conditions νA∇ψ̃λ = λ(νAe)ψ̃λ on ∂Ω. In other words, ψ̃λ is the principal
eigenfunction of L̃λ with principal eigenvalue k(λ) and the same normalization condition
(1.18) as ψλ. In particular, the quantities c∗(e), λc and λ∗ introduced in Section 1 are un-
changed when problem (1.1) is replaced by (2.1), and for instance, formula (1.21) is equivalent
to

φ̃(s, x, y) ∼ B̃eλcsψ̃λc
(x, y) as s→ −∞ uniformly in (x, y) ∈ Ω,

where B̃ = B/αλc
> 0.

Lastly, notice that the monotonicity of φ or u with respect to s and t, and the uniqueness
of these functions up to shifts in these variables, are equivalent to the same properties for φ̃
and ũ with respect to s and t.

As a consequence, without loss of generality, we can assume in the sequel that

∀ (x, y) ∈ Ω, p−(x, y) = 0, p+(x, y) = 1

and all statements in Section 1, if they hold with p− = 0 and p+ = 1 can then be rewritten in
the general case with functions p±(x, y). One can then assume that f(x, y, 0) = f(x, y, 1) = 0
in Ω. Assumption (1.8), if it holds, is rewritten as





∀ (x, y) ∈ Ω, ζ(x, y) =
∂f

∂u
(x, y, 0),

∀ (x, y) ∈ Ω, ∀ u ∈ [0, 1], f(x, y, u) ≤ ζ(x, y) u.
(2.2)

We then gather a few properties of the function λ 7→ k(λ), where k(λ) denotes the
principal eigenvalue of the operator Lλ defined in (1.17).

Lemma 2.1 The function k is analytic, concave in R and, under assumption (1.4),

c∗(e) := inf
λ>0

(
−k(λ)

λ

)
∈ R.

Furthermore, for each c > c∗(e), the positive real number

λc = min{λ > 0, k(λ) + cλ = 0}

is well-defined and the set

Fc = {λ ∈ (0,+∞), k(λ) + cλ = 0} (2.3)

is either the singleton {λc}, or it is equal to {λc, λ
+
c } with λc < λ+

c . The set Fc∗(e) is either

empty or it is a singleton {λ∗} and if it is a singleton {λ∗}, then the multiplicity of λ∗ as a

root of k(λ) + cλ = 0 is equal to 2m+ 2 with m ∈ N.
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Proof. The analyticity of k follows from the fact that the coefficients of the operators Lλ

are analytic in λ, and the eigenvalues k(λ) are isolated, see [13, 27]. The concavity of k
follows from the arguments used in Lemma 3.1 of [7]. The fact that the advection q, here,
may not be zero, does not change anything.

Now, for each λ ∈ R, the principal eigenfunction ψλ is positive, periodic and it satisfies

Lλψλ = −∇ · (A∇ψλ) + 2λeA∇ψλ + q · ∇ψλ + [λ∇ · (Ae) − λq · e− λ2eAe− ζ]ψλ = k(λ)ψλ

in Ω with νA∇ψλ = λ(νAe)ψλ on ∂Ω. Divide this equation by ψλ and integrate over C. It
follows that

k(λ)|C| = −
∫

C

∇ψλA∇ψλ

ψ2
λ

+ 2λ

∫

C

eA
∇ψλ

ψλ

+

∫

C

q · ∇ψλ

ψλ

− λ

∫

C

q · e− λ2

∫

C

eAe−
∫

C

ζ

= −
∫

C

(∇ψλ

ψλ

− λe− A−1q

2

)
A

(∇ψλ

ψλ

− λe− A−1q

2

)
+

1

4

∫

C

qA−1q −
∫

C

ζ

≤ 1

4

∫

C

qA−1q −
∫

C

ζ,

where |C| denotes the Lebesgue measure of C. Since −k(0) = −µ0 > 0 from (1.4), one then
concludes that λ 7→ −k(λ)/λ is bounded from below in (0,+∞). The quantity c∗(e) is then
a real number.

Furthermore, for each c > c∗(e), there is λ > 0 such that −k(λ)/λ = c, since λ 7→ −k(λ)/λ
is continuous in (0,+∞) and goes to +∞ as λ→ 0+. Consequently, the positive real number
λc is well-defined. If there are two positive real numbers λ1 and λ2 such that λc < λ1 < λ2

and k(λ1) + cλ1 = k(λ2) + cλ2 = 0, then k(λ) + cλ = 0 for all λ ∈ [λc, λ2] by concavity of k,
and finally k(λ)+cλ = 0 for all λ ∈ R by analyticity of k. This leads to a contradiction, since
k(0) = µ0 < 0 by assumption. Therefore, the set Fc defined in (2.3) is either the singleton
{λc}, or it is equal to {λc, λ

+
c } with λc < λ+

c .
When c = c∗(e), if there is λ∗ > 0 such that k(λ∗)+c∗(e)λ∗ = 0 then, by definition of c∗(e),

there holds k′(λ∗)λ∗ − k(λ∗) = 0, whence k′(λ∗) = −c∗(e). If there is 0 < λ1 6= λ∗ such that
k(λ1)+c

∗(e)λ1 = 0, then, by definition of c∗(e) and by concavity of the function k(λ), one gets
that k(λ) + c∗(e)λ = 0 for all λ ∈ [min(λ∗, λ1),max(λ∗, λ1)], which leads to a contradiction
as above. Hence, the positive real number λ∗, if any, such that k(λ∗)+ c∗(e)λ∗ = 0 is unique.
Again by analyticity of k(λ) and since −k(λ) ≥ c∗(e)λ for all λ > 0, there exists then m ∈ N

such that 2m+ 2 is the multiplicity of λ∗ as a root of k(λ) + c∗(e)λ = 0, in the sense that
{
k(λ∗) + c∗(e)λ∗ = 0, k′(λ∗) + c∗(e) = 0, k(j)(λ∗) = 0 for all 2 ≤ j ≤ 2m+ 1,

k(2m+2)(λ∗) < 0,
(2.4)

where k(j)(λ) denotes the j-th order derivative of k(λ) with respect to λ. That completes
the proof of Lemma 2.1. �

2.2 Lower bound for the speed

We prove here that the speed c of a pulsating front u(t, x, y) = φ(ct − x · e, x, y) is always
bounded from below by the quantity c∗(e). We recall that we can assume

p− = 0 and p+ = 1
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without loss of generality. In particular, the functions u and φ are then positive in R × Ω.
The following proposition provides the proof of the first part of Proposition 1.2.

Proposition 2.2 Under assumption (1.4), the function φ satisfies

0 < λm := lim inf
s→−∞

(
min

(x,y)∈Ω

φs(s, x, y)

φ(s, x, y)

)
≤ lim sup

s→−∞

(
max

(x,y)∈Ω

φs(s, x, y)

φ(s, x, y)

)
=: λM < +∞

and the positive real numbers λm and λM satisfy

k(λm) + cλm = k(λM) + cλM = 0.

Therefore,

c ≥ c∗(e) = inf
λ>0

(
−k(λ)

λ

)
.

Proof. The beginning of the proof follows the main lines of that of Lemma 6.5 in [2] and
Lemma 3.1 in [7], we will outline it for the sake of completeness. The main difference concerns
the proof of the positivity of the quantities λm and λM since weaker assumptions are made
here.

From Schauder interior estimates [30], there exists C1 > 0 such that

∀ (t, x, y) ∈ R×Ω, |ut(t, x, y)|+ |∇u(t, x, y)| ≤ C1× max
t−1≤t′≤t, (x′,y′)∈Ω, |(x′,y′)−(x,y)|≤1

u(t′, x′, y′).

Choose now a vector k ∈ L1Z × · · · × LdZ such that k · e/c < 0. It follows then from
Krylov-Safonov-Harnack-type inequalities (see e.g. [20, 29]) that there exists C2 > 0 such
that

∀ (t, x, y) ∈ R × Ω, max
t−1≤t′≤t, (x′,y′)∈Ω, |(x′,y′)−(x,y)|≤1

u(t′, x′, y′) ≤ C2 × u

(
t− k · e

c
, x− k, y

)
.

Because of (1.16), one gets that

sup
(t,x,y)∈R×Ω

( |ut(t, x, y)|
u(t, x, y)

+
|∇u(t, x, y)|
u(t, x, y)

)
≤ C1C2 < +∞. (2.5)

In particular, since φs(s, x, y) = ut((s+x ·e)/c, x, y)/c, the function φs/φ is globally bounded
in R × Ω and the quantities λm and λM defined in Proposition 2.2 are real numbers.

From (1.13), there exists a sequence (sn, xn, yn) such that (xn, yn) ∈ C, sn → −∞ and

φs(sn, xn, yn)

φ(sn, xn, yn)
→ λm as n→ +∞.

Up to extraction of a subsequence, one has (xn, yn) → (x∞, y∞) ∈ C as n→ +∞. Call

tn =
sn + xn · e

c
and vn(t, x, y) =

u(t+ tn, x, y)

u(tn, xn, yn)
.
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From (2.5), the functions vn are locally bounded. They are positive and satisfy




(vn)t −∇ · (A∇vn) + q · ∇vn − f(x, y, u(t+ tn, x, y))

u(t+ tn, x, y)
× vn = 0 in R × Ω,

νA∇vn = 0 on R × ∂Ω.

Since ctn = sn + xn · e→ −∞, there holds u(t+ tn, x, y) → 0 as n→ +∞, locally uniformly
in (t, x, y). From standard parabolic estimates, the functions vn converge in C1;2

t;(x,y),loc(R×Ω)

(at least), up to extraction of a subsequence, to a classical solution v∞ ≥ 0 of
{

(v∞)t −∇ · (A∇v∞) + q · ∇v∞ − ζ(x, y) v∞ = 0 in R × Ω,

νA∇v∞ = 0 on R × ∂Ω.
(2.6)

Furthermore, v∞(0, x∞, y∞) = 1, whence v∞ is positive everywhere in R×Ω from the strong
maximum principle and Hopf lemma. On the other hand,

(vn)t(t, x, y)

vn(t, x, y)
=
ut(t+ tn, x, y)

u(t+ tn, x, y)
= c× φs(c(t+ tn) − x · e, x, y)

φ(c(t+ tn) − x · e, x, y) for all (t, x, y) ∈ R × Ω

and for all n ∈ N, whence

w(t, x, y) :=
(v∞)t(t, x, y)

v∞(t, x, y)
≥ cλm (resp. ≤ cλm) if c > 0 (resp. if c < 0),

since ctn → −∞. Actually, the function w is trapped between min(cλm, cλM) and
max(cλm, cλM). But w(0, x∞, y∞) = cλm from the definition of the sequence (sn, xn, yn).
The function w is then a classical solution of the linear parabolic equation





wt −∇ · (A∇w) − 2
∇v∞
v∞

A∇w + q · ∇w = 0 in R × Ω,

νA∇w = 0 on R × ∂Ω,

which reaches its minimum or maximum cλm at (0, x∞, y∞) (depending on the sign of c).
From the strong maximum principle and Hopf lemma together with property (1.16) satisfied
by w, it follows that w(t, x, y) = cλm for all (t, x, y) ∈ R × Ω.

In other words, v∞ satisfies (v∞)t = cλmv∞. Because of (2.6) and (1.16), v∞ can then be
written as

v∞(t, x, y) = eλm(ct−x·e) ψ(x, y),

where ψ is positive in Ω, periodic and satisfies

Lλm
ψ = −cλmψ in Ω and νA∇ψ = λm(νAe)ψ on ∂Ω.

Therefore,
−cλm = k(λm).

Similarly, the quantity λM is such that −cλM = k(λM). Since the function λ 7→ k(λ)
is concave and since k(0) = µ0 < 0, it follows that λm and λM are not zero and have the
same sign. But since φ(s, x, y) > 0 for all (s, x, y) ∈ R × Ω and φ(−∞, ·, ·) = 0, λM cannot
be negative. As a conclusion, λm and λM are both positive. That completes the proof of
Proposition 2.2. �
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2.3 Monotonicity in the variable s

We prove here that the function φ such that u(t, x, y) = φ(ct − x · e, x, y) is increasing in
its first variable, which we denote s, under assumptions (1.4) and (1.6). Before going into
the proof, one needs a comparison principle for solutions which are in some sense close to
p+ = 1.

Lemma 2.3 Assume that (1.6) holds and let ρ > 0 be given as in (1.6). Let U and U be

respectively classical supersolution and subsolution of

{
U t −∇ · (A(x, y)∇U) + q(x, y) · ∇U ≥ f(x, y, U) in R × Ω,

νA∇U ≥ 0 on R × ∂Ω,

and {
U t −∇ · (A(x, y)∇U) + q(x, y) · ∇U ≤ f(x, y, U) in R × Ω,

νA∇U ≤ 0 on R × ∂Ω,
(2.7)

such that U < 1 and U < 1 in R × Ω. Assume that U(t, x, y) = Φ(ct − x · e, x, y) and

U(t, x, y) = Φ(ct−x·e, x, y), where Φ and Φ are periodic in (x, y), c 6= 0 and e ∈ R
d×{0}N−d

with |e| = 1. If there exists h ∈ R such that





Φ(s, x, y) > 1 − ρ for all s ≥ h and (x, y) ∈ Ω,

Φ(h, x, y) ≥ Φ(h, x, y) for all (x, y) ∈ Ω,

lim inf
s→+∞

[
min

(x,y)∈Ω
(Φ(s, x, y) − Φ(s, x, y))

]
≥ 0,

(2.8)

then

Φ(s, x, y) ≥ Φ(s, x, y) for all s ≥ h and (x, y) ∈ Ω,

that is U(t, x, y) ≥ U(t, x, y) for all (t, x, y) ∈ R × Ω such that ct− x · e ≥ h.

Proof. Call
Ωh = {(t, x, y) ∈ R × Ω, ct− x · e ≥ h}.

This set is included into the set ΩU = {(t, x, y) ∈ R × Ω, U(t, x, y) > 1 − ρ}. Let (ρτ )τ∈[0,1]

be the family of functions defined in ΩU ⊃ Ωh = Ωh and satisfying (1.6) with U instead of
u. Set

τ ∗ = inf
{
τ ∈ [0, 1], U ≤ U + ρτ in Ωh

}
.

Since ρ1 ≥ ρ, one has U ≤ U + ρ1 in Ωh and thus τ ∗ ∈ [0, 1]. By continuity of the functions
ρτ with respect to τ , one has

U ≤ U + ρτ∗ in Ωh. (2.9)

Assume now that τ ∗ > 0. Then there exist two sequences (τn)n∈N in [0, τ ∗) and
(tn, xn, yn)n∈N in Ωh such that

U(tn, xn, yn) > U(tn, xn, yn) + ρτn
(tn, xn, yn) for all n, and τn → τ ∗ as n→ +∞. (2.10)
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Since lim infn→+∞ ρτn
(tn, xn, yn) ≥ lim infn→+∞ infΩh ρτn

= infΩh ρτ∗ > 0, it follows from
(2.8) that, up to extraction of a subsequence,

sn = ctn − xn · e→ s∗ ∈ (h,+∞), as n→ +∞. (2.11)

Write xn = x′n + x′′n where x′n ∈ L1Z × · · · × LdZ and (x′′n, yn) ∈ C. Up to extraction of
another subsequence, one can assume that (x′′n, yn) → (x∞, y∞) ∈ C.

Call

ρn(t, x, y) = ρτn

(
t+

x′n · e
c

, x+ x′n, y

)
.

These functions ρn are uniformly bounded in C
1+α/2;2+α
t;(x,y) (Ωh) and converge in C1;2

t;(x,y),loc(Ω
h)

(at least), up to extraction of a subsequence, to a function ρ∞. Observe that

U

(
t+

x′n · e
c

, x+ x′n, y

)
= U(t, x, y) and U

(
t+

x′n · e
c

, x+ x′n, y

)
= U(t, x, y) (2.12)

since Φ and Φ are periodic in (x, y). Since Ω, A, q, f and p+ = 1 are periodic in (x, y), it
follows from (1.6) that

{
(U + ρn)t −∇ · (A∇(U + ρn)) + q · ∇(U + ρn) ≥ f(x, y, U + ρn) in Ωn,

νA∇(U + ρn) ≥ 0 on (R × ∂Ω) ∩ Ωn,

where Ωn = Ωh ∩
{
(t, x, y) ∈ R × Ω, U(t, x, y) + ρn(t, x, y) < 1

}
. Hence

{
(U + ρ∞)t −∇ · (A∇(U + ρ∞)) + q · ∇(U + ρ∞) ≥ f(x, y, U + ρ∞) in Ω∞,

νA∇(U + ρ∞) ≥ 0 on (R × ∂Ω) ∩ Ω∞,
(2.13)

where Ω∞ = Ωh ∩
{
(t, x, y) ∈ R × Ω, U(t, x, y) + ρ∞(t, x, y) < 1

}
.

On the other hand, for any ε > 0, one has ρτ∗ ≤ ρτn
+ ε in Ωh for n large enough, whence

U ≤ U + ρn + ε in Ωh for n large enough, from (2.9) and (2.12). By passing to the limit as
n→ +∞ and then ε→ 0, one gets that

U ≤ U + ρ∞ in Ωh. (2.14)

But (2.10) yields

U

(
tn − x′n · e

c
, xn − x′n, yn

)
> U

(
tn − x′n · e

c
, xn − x′n, yn

)
+ ρn

(
tn − x′n · e

c
, xn − x′n, yn

)

and (tn − (x′n · e)/c, xn − x′n, yn) ∈ Ωh for all n ∈ N, while

xn − x′n = x′′n → x∞ and tn − x′n · e
c

=
sn + x′′n · e

c
→ s∗ + x∞ · e

c
=: t∞

as n→ +∞. Thus, (t∞, x∞, y∞) ∈ Ωh and

U(t∞, x∞, y∞) ≥ U(t∞, x∞, y∞) + ρ∞(t∞, x∞, y∞).
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Therefore,
U(t∞, x∞, y∞) = U(t∞, x∞, y∞) + ρ∞(t∞, x∞, y∞)

from (2.14). In particular,

U(t∞, x∞, y∞) + ρ∞(t∞, x∞, y∞) < 1. (2.15)

Notice also that
ct∞ − x∞ · e = s∗ > h

from (2.11). Together with (2.7) and (2.13), one concludes from the strong parabolic maxi-
mum and Hopf lemma that

U = U + ρ∞ in C, (2.16)

where C is the connected component of Ω∞ ∩ {t ≤ t∞} containing (t∞, x∞, y∞).
Consider first the case when c > 0 and call

t =
h+ x∞ · e

c
.

There holds t < t∞ and the points (t, x∞, y∞) lie in Ωh for all t ∈ [t, t∞]. Because of (2.15),
it follows that

∃ a > 0, ∀ t ∈ [t∞ − a, t∞], U(t, x∞, y∞) + ρ∞(t, x∞, y∞) < 1. (2.17)

Call

t∗ = inf
{
t ∈ [t, t∞], U(t′, x∞, y∞) + ρ∞(t′, x∞, y∞) < 1 for all t′ ∈ [t, t∞]

}
.

From (2.16), one gets that

U(t∗, x∞, y∞) = U(t∗, x∞, y∞) + ρ∞(t∗, x∞, y∞), (2.18)

whence
U(t∗, x∞, y∞) + ρ∞(t∗, x∞, y∞) < 1. (2.19)

Therefore, t∗ = t and

Φ(h, x∞, y∞) = Φ(h, x∞, y∞) + ρ∞(t, x∞, y∞).

But
inf
Ωh

ρn = inf
Ωh

ρτn
→ inf

Ωh
ρτ∗ =: η > 0 as n→ +∞,

whence infΩh ρ∞ ≥ η. Eventually, Φ(h, x∞, y∞) > Φ(h, x∞, y∞), which contradicts the as-
sumption (2.8).

Consider now the case when c < 0. The points (t, x∞, y∞) lie in Ωh for all t ≤ t∞.
Property (2.17) still holds and

t∗ = inf
{
t ∈ (−∞, t∞], U(t′, x∞, y∞) + ρ∞(t′, x∞, y∞) < 1 for all t′ ∈ [t, t∞]

}
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satisfies −∞ ≤ t∗ ≤ t∞ − a < t∞. If t∗ is a real number, then, from (2.16), formulas (2.18)
and (2.19) still hold. Therefore, t∗ = −∞ and

∀ t ≤ t∞, U(t, x∞, y∞) = U(t, x∞, y∞) + ρ∞(t, x∞, y∞).

In particular, Φ(s, x∞, y∞) ≥ Φ(s, x∞, y∞)+η for all s ≥ ct∞−x∞ ·e = s∗, which contradicts
the assumption (2.8) as s→ +∞.

As a conclusion, in both cases c > 0 and c < 0, the assumption τ ∗ > 0 is impossible.
Thus, U ≤ U in Ωh. That completes the proof of Lemma 2.3. �

Remark 2.4 The proof can easily be extended to the case when Φ and Φ are not periodic in

(x, y) anymore, under the additional assumption that, say, U and U is of class C
1+α/2;2+α
t;(x,y) (Ωh).

In this case, one also has to define shifted functions U
n

and Un and to pass to the limit as
n→ +∞ in Ωh for a subsequence, as it was done for ρn.

We are now back to our main purpose, and u(t, x, y) = φ(ct − x · e, x, y) denotes a
pulsating travelling front with speed c ∈ R

∗, in the sense of Definition 1.1. The following
result corresponds to the second part of Proposition 1.2.

Proposition 2.5 Under assumptions (1.4) and (1.6), the function φ(s, x, y) is increasing in

the variable s, and φs(s, x, y) > 0 for all (s, x, y) ∈ R × Ω. In other words, ut(t, x, y) > 0 in

R × Ω if c > 0 and ut(t, x, y) < 0 if c < 0.

Proof. From Proposition 2.2, there exists s ∈ R such that

φs(s, x, y) > 0 for all s ≤ s and for all (x, y) ∈ Ω.

On the other hand, infs≥s (x,y)∈Ω φ(s, x, y) > 0 by continuity of φ and because of (1.13) and
(1.14). Therefore, there exists Σ ∈ R such that −Σ ≤ s and

∀ τ ≥ 0, ∀ s ≤ −Σ, ∀ (x, y) ∈ Ω, φ(s, x, y) ≤ φ(s+ τ, x, y). (2.20)

Because of (1.14), even if it means increasing Σ, one can assume that Σ > 0 and

φ(s, x, y) > 1 − ρ for all s ≥ Σ and (x, y) ∈ Ω, (2.21)

where ρ > 0 is given as in (1.6).
We will now use a sliding method as in [2] (see also [9] for elliptic versions). Take now

any τ ≥ 2Σ. Thus,

φ(s+ τ, x, y) > 1 − ρ for all s ≥ −Σ and (x, y) ∈ Ω,

while φ(−Σ, x, y) ≤ φ(−Σ + τ, x, y) for all (x, y) ∈ Ω, from (2.20). It is immediate to see
that all assumptions of Lemma 2.3 are fulfilled with

U(t, x, y) = u
(
t+

τ

c
, x, y

)
, U = u, Φ(s, x, y) = φ(s+ τ, x, y), Φ = φ and h = −Σ.
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As a consequence,

φ(s, x, y) ≤ φ(s+ τ, x, y) for all s ≥ −Σ and (x, y) ∈ Ω.

Together with (2.20), one gets that φ(s, x, y) ≤ φ(s + τ, x, y) for all τ ≥ 2Σ and for all
(s, x, y) ∈ R × Ω.

Call

τ ∗ = inf
{
τ > 0, φ(s, x, y) ≤ φ(s+ τ ′, x, y) for all τ ′ ≥ τ and for all (s, x, y) ∈ R × Ω

}
.

One has that τ ∗ ∈ [0, 2Σ] and

φ(s, x, y) ≤ φ(s+ τ ∗, x, y) for all (s, x, y) ∈ R × Ω.

Assume that τ ∗ > 0 and define

z(s, x, y) = φ(s+ τ ∗, x, y) − φ(s, x, y).

The function z is continuous in (s, x, y), periodic in (x, y) and nonnegative. In particular,
the minimum of z over [−Σ,Σ] × Ω is reached and is either positive or zero.

Case 1: min(s,x,y)∈[−Σ,Σ]×Ω z(s, x, y) > 0. Since z is actually uniformly continuous in

R × Ω, there exists τ∗ ∈ (0, τ ∗) such that

φ(s, x, y) ≤ φ(s+ τ, x, y) for all τ ∈ [τ∗, τ
∗] (2.22)

and for all (s, x, y) ∈ [−Σ,Σ] × Ω. But inequality (2.22) also holds when (s, x, y) ∈
(−∞,−Σ] × Ω from (2.20). It also holds for all (s, x, y) ∈ [Σ,+∞) × Ω from (2.21) and
Lemma 2.3 applied to U(t, x, y) = u(t+ τ/c, x, y), U = u and h = Σ. Thus,

φ(s, x, y) ≤ φ(s+ τ, x, y) for all (s, x, y) ∈ R × Ω and for all τ ∈ [τ∗, τ
∗],

which contradicts the minimality of τ ∗.
Case 2: min(s,x,y)∈[−Σ,Σ]×Ω z(s, x, y) = 0. Here, the function

v(t, x, y) = u

(
t+

τ ∗

c
, x, y

)
− u(t, x, y)

is nonnegative in R × Ω and it vanishes at a point (t∗, x∗, y∗) such that |ct∗ − x∗ · e| ≤ Σ.
From the strong maximum principle and Hopf lemma, the function v is then identically 0 in
(−∞, t∗] × Ω, and then in R × Ω by uniqueness of the Cauchy problem associated to (1.1).
In particular,

u

(
kτ ∗

c
, x, y

)
= u(0, x, y) for all (x, y) ∈ Ω and for all k ∈ Z.

But, for each (x, y) ∈ Ω,
u(kτ ∗/c, x, y) → p± as k → ±∞
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from (1.14) and since τ ∗ > 0. One has then reached a contradiction, since 0 = p− < p+ = 1
in Ω.

As a conclusion, τ ∗ = 0, whence

u
(
t+

τ

c
, x, y

)
≥ u(t, x, y) for all (t, x, y) ∈ R × Ω and for all τ ≥ 0.

Actually, the inequalities are strict as soon as τ > 0, from the strong maximum principle, as
above. Moreover, the bounded function ut satisfies





(ut)t −∇ · (A(x, y)∇ut) + q(x, y) · ∇ut =
∂f

∂u
(x, y, u) ut in R × Ω,

νA∇ut = 0 on R × ∂Ω.

Since ut is either nonnegative or nonpositive in R × Ω and cannot be identically zero, it is
then either positive or negative in R × Ω from the strong parabolic maximum principle and
Hopf lemma. Thus, ut > 0 in R × Ω if c > 0, and ut < 0 in R × Ω if c < 0. The function φ
is always increasing in its first variable and φs(s, x, y) > 0. The proof of Proposition 2.5 is
now complete. �

3 Exponential lower bounds of φ(s, x, y) as s→ −∞
In this section, given a pulsating travelling front

u(t, x, y) = φ(ct− x · e, x, y)
in the sense of Definition 1.1, with p− = 0 and p+ = 1, we shall prove that, under the
various assumptions of Theorems 1.3 and 1.5, the function φ(s, x, y) cannot decay too fast
as s→ −∞. The proofs are based on a key-lemma and several propositions.

Lemma 3.1 Let u(t, x, y) = φ(ct−x ·e, x, y) be a continuous function defined in R×Ω such

that φ(s, x, y) is periodic in (x, y), φ(s, x, y) < 1 in R×Ω, and u is a classical subsolution of

{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u ≤ f(x, y, u) in R × Ω,

νA∇u ≤ 0 on R × ∂Ω.

Let u(t, x, y) = φ(ct−x ·e, x, y) be a continuous function defined in R×Ω such that φ(s, x, y)
is periodic in (x, y), and assume that there is σ ∈ R such that

φ(σ, x, y) < φ(σ, x, y) for all (x, y) ∈ Ω (3.1)

and

φ(σ, x, y) ≤ φ(s, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω. (3.2)

1) If there is σ ≥ σ such that φ(s, x, y) = 1 for all (s, x, y) ∈ [σ,+∞) × Ω, and if u is a

classical supersolution of
{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u ≥ f(x, y, u) in Ω′,

νA∇u ≥ 0 on (R × ∂Ω) ∩ Ω′,
(3.3)
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where

Ω′ = {(t, x, y) ∈ R × Ω, u(t, x, y) < 1},
then

φ(s, x, y) < φ(s, x, y) for all s ≥ σ and (x, y) ∈ Ω. (3.4)

2) Assume that (1.6) holds and let ρ > 0 be given as in (1.6). If φ = φ1 + φ2, where

φ1(s, x, y) and φ2(s, x, y) are continuous in R×Ω and periodic in (x, y), if φ1(s, x, y)
<→ 1 as

s→ +∞, if ui(t, x, y) = φi(ct− x · e, x, y) (i = 1, 2) satisfy

{
(u1)t −∇ · (A(x, y)∇u1) + q · ∇u1 ≥ f(x, y, u1) in R × Ω, νA∇u1 ≥ 0 on R × ∂Ω,

ut −∇ · (A(x, y)∇u) + q · ∇u > f(x, y, u) in Ω′, νA∇u ≥ 0 on (R × ∂Ω) ∩ Ω′,

where

u = u1 + u2 and Ω′ =
{
(t, x, y) ∈ R × Ω, ct− x · e ≤ σ

}

and σ > σ is such that

φ1(s, x, y) > 1 − ρ in [σ,+∞) × Ω and φ(σ, x, y) ≤ φ1(σ, x, y) ≤ φ(σ, x, y) in Ω,

then there exists τ ∗ ∈ [0, σ − σ] such that

φ(s− τ ∗, x, y) ≤ φ(s, x, y) in [σ + τ ∗, σ] × Ω, φ(s− τ ∗, x, y) ≤ φ1(s, x, y) in [σ,+∞) × Ω

and

(τ ∗ > 0) =⇒
(

min
(x,y)∈Ω

[
φ1(σ, x, y) − φ(σ − τ ∗, x, y)

]
= 0

)
.

Proof. Let us first deal with part 1). Since φ(s, x, y) < 1 for all (s, x, y) ∈ R × Ω and since

φ(s, x, y) = 1 for all (s, x, y) ∈ [σ,+∞) × Ω, it follows that

φ(s− τ, x, y) ≤ φ(s, x, y) for all (s, x, y) ∈ [σ + τ,+∞) × Ω and for all τ ≥ σ − σ (≥ 0).

Define

τ ∗ = inf
{
τ > 0, φ(s− τ, x, y) ≤ φ(s, x, y) for all (s, x, y) ∈ [σ + τ,+∞) × Ω

}
.

Thus, τ ∗ ∈ [0, σ − σ] and

φ(s− τ ∗, x, y) ≤ φ(s, x, y) for all (s, x, y) ∈ [σ + τ ∗,+∞) × Ω. (3.5)

Our goal is to prove that τ ∗ = 0, which would yield the conclusion. Assume by contra-
diction that τ ∗ > 0. There exist two sequences (τn)n∈N and (sn, xn, yn)n∈N such that

0 < τn < τ ∗, sn ≥ σ + τn and φ(sn − τn, xn, yn) > φ(sn, xn, yn) for all n ∈ N

and τn → τ ∗ as n→ +∞. For the same reasons as above, the sequence (sn) is bounded and,
up to extraction of a subsequence, sn → s∗ ∈ [σ + τ ∗,+∞) as n → +∞. Since φ and φ are
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periodic in (x, y), one can assume without loss of generality that (xn, yn) ∈ C for each n,
and that (xn, yn) → (x∗, y∗) ∈ C as n → +∞. Therefore, φ(s∗ − τ ∗, x∗, y∗) ≥ φ(s∗, x∗, y∗),
whence

φ(s∗ − τ ∗, x∗, y∗) = φ(s∗, x∗, y∗)

because of (3.5). Because of (3.1) and (3.2), one has

φ(σ, x∗, y∗) < φ(σ, x∗, y∗) ≤ φ(σ + τ ∗, x∗, y∗). (3.6)

Thus, s∗ > σ + τ ∗. Call now

U(t, x, y) = φ(ct− x · e− τ ∗, x, y) in Ωσ+τ∗

= {(t, x, y) ∈ R×Ω, ct− x · e ≥ σ+ τ ∗}. (3.7)

There holds
U ≤ u in Ωσ+τ∗

with equality at the point

(t∗, x∗, y∗) =

(
s∗ + x∗ · e

c
, x∗, y∗

)
such that ct∗ − x∗ · e = s∗ > σ + τ ∗.

But u satisfies (3.3) in Ω′ and U is a subsolution of (1.1), with

u(t∗, x∗, y∗) = U(t∗, x∗, y∗) < 1.

From the strong maximum principle and Hopf lemma, it follows that u = U in the connected
component of Ωσ+τ∗ ∩{u(t, x, y) < 1}∩ {t ≤ t∗} containing (t∗, x∗, y∗). The end of the proof
follows the same lines as that of Lemma 2.3. Namely, if c > 0, one gets that

u(t, x∗, y∗) = U(t, x∗, y∗) for all t ∈
[
σ + τ ∗ + x∗ · e

c
, t∗
]
.

In particular, at t = (σ + τ ∗ + x∗ · e)/c, it follows that

φ(σ + τ ∗, x∗, y∗) = φ(σ, x∗, y∗),

which is impossible from (3.6). Now, if c < 0, then u(t, x∗, y∗) = U(t, x∗, y∗) for all t ≤ t∗,
whence

φ(ct− x∗ · e, x∗, y∗) = φ(ct− x∗ · e− τ ∗, x∗, y∗) < 1 for all t ≤ t∗.

One gets a contradiction as t→ −∞, since φ(s, x∗, y∗) = 1 for all s ≥ σ.
As a conclusion, in both cases c > 0 and c < 0,

τ ∗ = 0.

Hence φ(s, x, y) ≤ φ(s, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω. Furthermore, if there is a point

(s, x, y) ∈ [σ,+∞) × Ω such that φ(s, x, y) = φ(s, x, y), then s > σ from (3.1), and the last
part of the above proof, which does not use the positivity of τ ∗, leads to a contradiction.
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Therefore, (3.4) is proved.

Let us now turn to the proof of part 2). First, for any τ ≥ σ − σ (≥ 0), one has
φ(σ, x, y) ≤ φ1(σ + τ, x, y) in Ω. From the assumptions made in this part 2), one can apply
Lemma 2.3 with

Φ(s, x, y) = φ1(s, x, y), Φ(t, x, y) = φ(s− τ, x, y) and h = σ + τ.

Notice especially that the limit lims→+∞ φ1(s, x, y) = 1 is uniform in (x, y) ∈ Ω from Dini’s
theorem, and then all assertions in (2.8) are satisfied. One concludes that

φ(s− τ, x, y) ≤ φ1(s, x, y) for all (s, x, y) ∈ [σ + τ,+∞) × Ω and τ ≥ σ − σ.

For all (x, y) ∈ Ω, define

φ′(s, x, y) =

{
φ(s, x, y) if σ ≤ s < σ,

φ1(s, x, y) if s ≥ σ.

Call

τ ∗ = inf
{
τ > 0, φ(s− τ, x, y) ≤ φ′(s, x, y) for all (s, x, y) ∈ [σ + τ,+∞) × Ω

}
.

Thus, τ ∗ ∈ [0, σ − σ] and, since φ is continuous and φ′ is right-continuous with respect to s

(remember that φ1 and φ2 are continuous), it follows that

φ(s− τ ∗, x, y) ≤ φ′(s, x, y) for all (s, x, y) ∈ [σ + τ ∗,+∞) × Ω.

In particular,
φ(s− τ ∗, x, y) ≤ φ1(s, x, y) in [σ,+∞) × Ω

and
φ(s− τ ∗, x, y) ≤ φ(s, x, y) in [σ + τ ∗, σ] × Ω.

This last property is true even if σ + τ ∗ = σ, since φ1(σ, x, y) ≤ φ(σ, x, y) in Ω. It only
remains to show that min(x,y)∈Ω

(
φ1(σ, x, y) − φ(σ − τ ∗, x, y)

)
= 0 if τ ∗ > 0.

Assume by contradiction that τ ∗ > 0 and

min
(x,y)∈Ω

(
φ1(σ, x, y) − φ(σ − τ ∗, x, y)

)
> 0. (3.8)

As a consequence, min(x,y)∈Ω

(
φ(σ, x, y) − φ(σ − τ ∗, x, y)

)
> 0. On the other hand, for any

(x, y) ∈ Ω, φ(σ, x, y) < φ(σ, x, y) ≤ φ(σ + τ ∗, x, y) from (3.1) and (3.2). Therefore,

φ(s− τ ∗, x, y) < φ(s, x, y) for all (x, y) ∈ Ω when s = σ + τ ∗ or σ.

Since u(t, x, y) ≥ u(t− τ ∗/c, x, y) for all (t, x, y) ∈ R×Ω such that ct−x · e ∈ [σ+ τ ∗, σ] and
since u is assumed to be a strict supersolution of (1.1) in this region, while u(t− τ ∗/c, x, y)
is a solution, one concludes from the strong maximum principle and Hopf lemma that

u(t, x, y) > u(t− τ ∗/c, x, y) as soon as ct− x · e ∈ (σ + τ ∗, σ),
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that is φ(s − τ ∗, x, y) < φ(s, x, y) for all (s, x, y) ∈ (σ + τ ∗, σ) × Ω (notice that this part is
needed only if σ + τ ∗ < σ). Finally,

φ(s− τ ∗, x, y) < φ(s, x, y) for all (s, x, y) ∈ [σ + τ ∗, σ] × Ω.

Together with our assumption (3.8), one gets the existence of τ∗ ∈ (0, τ ∗) such that, for all
τ ∈ [τ∗, τ

∗],

φ(s− τ, x, y) ≤ φ(s, x, y) in [σ + τ, σ] × Ω and φ(σ − τ, x, y) ≤ φ1(σ, x, y) in Ω.

Another application of Lemma 2.3 with Φ(s, x, y) = φ1(s, x, y), Φ(s, x, y) = φ(s−τ, x, y) and
h = σ, for any τ ∈ [τ∗, τ

∗], implies that

φ(s− τ, x, y) ≤ φ1(s, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω.

Thus φ(s−τ, x, y) ≤ φ′(s, x, y) for all (s, x, y) ∈ [σ+τ,+∞)×Ω and for all τ ∈ [τ∗, τ
∗], which

contradicts the minimality of τ ∗. Therefore, (3.8) cannot hold if τ ∗ > 0. That completes the
proof of Lemma 3.1. �

We are now going to apply Lemma 3.1 to the different situations considered in The-
orems 1.3 and 1.5. It will provide exponential lower bounds for the function φ(s, x, y) =
u((s + x · e)/c, x, y) as s → −∞. We are first concerned with the KPP case (1.8), with
c > c∗(e).

Proposition 3.2 Under assumptions (1.4) and (1.8), if c > c∗(e), then

lim inf
s→−∞

[
min

(x,y)∈Ω

(
φ(s, x, y)

eλcs

)]
> 0,

where λc > 0 is defined in Lemma 2.1.

Proof. Assume by contradiction that there exists a sequence (sn, xn, yn)n∈N in R × Ω such
that

sn → −∞ and εn := φ(sn, xn, yn) e−λcsn → 0+ as n→ +∞.

Notice that the vector field

∇φ(s, x, y)

φ(s, x, y)
=
c−1ut(c

−1(s+ x · e), x, y)e+ ∇u(c−1(s+ x · e), x, y)
u(c−1(s+ x · e), x, y)

is bounded in R × Ω from (2.5). Since φ is periodic in (x, y), there exists then a constant
C3 > 0 such that

∀ s ∈ R, ∀ (x, y), (x′, y′) ∈ Ω, φ(s, x, y) ≤ C3 φ(s, x′, y′). (3.9)

Therefore, for all n ∈ N and for all (x, y) ∈ Ω,

φ(sn, x, y) ≤ C3 φ(sn, xn, yn) = C3 εn e
λcsn <

2 C3 εn

κ1

eλcsn ψλc
(x, y),
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where
κ1 := min

(x,y)∈Ω
ψλc

(x, y) > 0. (3.10)

For each n ∈ N, call un(t, x, y) = φn(ct− x · e, x, y), where

φn(s, x, y) = min

(
2 C3 εn

κ1

eλcs ψλc
(x, y), 1

)
.

Observe that φ(sn, x, y) < φn(sn, x, y) for all (x, y) ∈ Ω, that φn(s, x, y) is nondecreasing with
respect to s and that φn(s, x, y) = 1 for all (s, x, y) ∈ [σn,+∞)×Ω, for some σn ∈ [sn,+∞).
Furthermore, if un(t, x, y) < 1, then

(un)t −∇ · (A∇un) + q · ∇un =
2 C3 εn

κ1

(k(λc) + λcc+ ζ(x, y)) eλc(ct−x·e) ψλc
(x, y)

= ζ(x, y) un(t, x, y) ≥ f(x, y, un(t, x, y))

from (1.8) and (1.20), and νA(x, y)∇un = 0 if (t, x, y) ∈ R × ∂Ω.
Part 1) of Lemma 3.1 applied to φ = φ, φ = φn and σ = sn implies that

(0 <) φ(s, x, y) < φn(s, x, y) = min

(
2 C3 εn

κ1

eλcs ψλc
(x, y), 1

)

for all (s, x, y) ∈ [sn,+∞) × Ω. Since sn → −∞ and εn → 0+ as n → +∞, it follows
that, for each (s, x, y) ∈ R × Ω, φ(s, x, y) = 0, which is impossible. Thus, the conclusion of
Proposition 3.2 holds. �

It is immediate to see from the above proof that, under assumptions (1.4) and (1.8),
Proposition 3.2 would still hold if λc were replaced by any λ > 0 such that k(λ) + λc = 0. It
would also hold if c = c∗(e) and if λc is replaced by λ∗ > 0, which solves k(λ∗) + λ∗c∗(e) = 0
(the existence of such a λ∗ is given by Proposition 2.2, provided there is a pulsating front
with speed c = c∗(e)). Actually, in the case c = c∗(e), the exponential lower bound eλ∗s will
not be optimal as s→ −∞, as the following proposition shows.

Proposition 3.3 Under assumptions (1.4) and (1.8), if c = c∗(e), then there is a unique

λ∗ > 0 such that k(λ∗) + c∗(e)λ∗ = 0 and

lim inf
s→−∞

[
min

(x,y)∈Ω

(
φ(s, x, y)

|s|2m+1 eλ∗s

)]
> 0, (3.11)

where m ∈ N and 2m+ 2 is the multiplicity of λ∗ as a root of k(λ) + c∗(e)λ = 0.

Proof. First, from Proposition 2.2, it follows that there exists a positive real number λ∗ > 0
such that

k(λ∗) + c∗(e)λ∗ = 0.

From Lemma 2.1, λ∗ is then the unique root of k(λ) + λc = 0, with multiplicity 2m+ 2 for
some m ∈ N, in the sense of (2.4).

31



As already underlined, the function λ 7→ k(λ) is analytic, and, because of the normaliza-
tion condition (1.18) and standard elliptic estimates, the principal eigenfunctions ψλ of the
operators Lλ are also analytic with respect to λ in the spaces C2,α(Ω). For each j ∈ N and

λ ∈ R, call ψ
(j)
λ the j-th order derivative of ψλ with respect to λ, under the convention that

ψ
(0)
λ = ψλ. All these functions are periodic and of class C2 in Ω. Call also L

(j)
λ the operator

whose coefficients are the j-th order derivatives with respect to λ of the coefficients of Lλ.
In other words,

L
(0)
λ ψ = Lλψ, L

(1)
λ ψ = 2eA∇ψ + [∇ · (Ae) − q · e− 2λeAe]ψ, L

(2)
λ ψ = −2eAe ψ

and L
(j)
λ ψ = 0 for all j ≥ 3 and for all ψ ∈ C2(Ω) and λ ∈ R. Differentiating the relation

Lλψλ − k(λ)ψλ = 0 with respect to λ yields





Lλψ
(1)
λ − k(λ)ψ

(1)
λ + 2eA∇ψλ + [∇ · (Ae) − q · e− 2λeAe]ψλ − k′(λ)ψλ

= (Lλ − k(λ))ψ
(1)
λ + (L

(1)
λ − k′(λ))ψλ = 0,

Lλψ
(j)
λ − k(λ)ψ

(j)
λ + j

(
2eA∇ψ(j−1)

λ + [∇ · (Ae) − q · e− 2λeAe]ψ
(j−1)
λ

)

−j k′(λ)ψ
(j−1)
λ − 2 C2

j eAe ψ
(j−2)
λ −

∑

2≤i≤j

Ci
j k

(i)(λ)ψ
(j−i)
λ

= (Lλ − k(λ))ψ
(j)
λ + j(L

(1)
λ − k′(λ))ψ

(j−1)
λ + C2

j L
(2)
λ ψ

(j−2)
λ −

∑

2≤i≤j

Ci
j k

(i)(λ)ψ
(j−i)
λ

= 0 for all j ≥ 2,

(3.12)

where Ci
j = j!/(i!(j − i)!) for all integers i, j such that i ≤ j. Similarly, since νA∇ψλ =

λ(νAe)ψλ on ∂Ω for all λ ∈ R, one gets that, for all λ ∈ R,

νA∇ψ(j)
λ − λ(νAe)ψ

(j)
λ − j (νAe)ψ

(j−1)
λ = 0 on ∂Ω, for all j ≥ 1. (3.13)

Notic that all the arguments so far have not used the KPP assumption (1.8).
Let us now prove formula (3.11). Assume by contradiction that there exists a sequence

(sn, xn, yn)n∈N in R × Ω such that

sn < 0 for all n ∈ N, sn → −∞ and εn := φ(sn, xn, yn) |sn|−(2m+1) e−λ∗sn → 0+ as n→ +∞.

It follows from (3.9) and for all n ∈ N and for all (x, y) ∈ Ω,

φ(sn, x, y) <
2 C3 εn

κ∗
|sn|2m+1 eλ∗sn ψλ∗(x, y), (3.14)

where C3 > 0 is given in (3.9) and κ∗ := minΩ ψλ∗ > 0.
For each n ∈ N, call an the smallest positive number such that

b(an) :=
C3 εn |sn|2m+1 a2m+1

n eλ∗an/2

22m (an − sn)2m+1
= 1. (3.15)
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The positive real number an is well-defined, since the function b is continuous on [0,+∞),
vanishes at 0 and converges to +∞ at +∞. Observe that the sequence (an)n∈N converges
to +∞ as n → +∞, otherwise, up to extraction of a subsequence, it would converge to a
nonnegative real number, but the left-hand side of (3.15) would then converge to 0, since
εn → 0 and sn → −∞ as n→ +∞.

Then, for each n ∈ N and (s, x, y) ∈ (−∞, an/2] × Ω, call





fn(s, x, y) =
2m+1∑

j=1

(−1)j Cj
2m+1 (an − s)2m+1−j ψ

(j)
λ∗ (x, y),

gn(s, x, y) = (an − s)2m+1 ψλ∗(x, y) + fn(s, x, y)

=
2m+1∑

j=0

(−1)j Cj
2m+1 (an − s)2m+1−j ψ

(j)
λ∗ (x, y),

hn(s, x, y) =
4 C3 εn |sn|2m+1

κ∗ (an − sn)2m+1
eλ∗s gn(s, x, y).

For all s ≤ an/2 (< an) and (x, y) ∈ Ω, one has

|fn(s, x, y)|
(an − s)2m+1 ψλ∗(x, y)

≤
2m+1∑

j=1

Cj
2m+1 ‖ψ(j)

λ∗ ‖∞ (an − s)−j

κ∗
≤

2m+1∑

j=1

Cj
2m+1 ‖ψ(j)

λ∗ ‖∞ 2j

κ∗ aj
n

.

Since an → +∞ as n→ +∞, it follows that, for n large enough,

|fn(s, x, y)| ≤ 1

2
(an − s)2m+1 ψλ∗(x, y) for all (s, x, y) ∈ (−∞, an/2] × Ω,

whence

(an − s)2m+1 ψλ∗(x, y)

2
≤ gn(s, x, y) ≤ 3 (an − s)2m+1 ψλ∗(x, y)

2
in (−∞, an/2] × Ω (3.16)

for n large enough. In particular, for n large enough and for all (x, y) ∈ Ω,

hn(an/2, x, y) ≥
4 C3 εn |sn|2m+1

κ∗ (an − sn)2m+1
× eλ∗an/2 × (an/2)2m+1 ψλ∗(x, y)

2
≥ b(an) = 1 (3.17)

from (3.15). On the other hand, for all (s, x, y) ∈ (−∞, an/2] × Ω,

∂hn

∂s
(s, x, y) =

4 C3 εn |sn|2m+1

κ1 (an − sn)2m+1
× eλ∗s×

×
[
λ∗gn(s, x, y) +

2m+1∑

j=0

(−1)j+1 Cj
2m+1 (2m+ 1 − j) (an − s)2m−j ψ

(j)
λ∗ (x, y)

]
.

Therefore, as above, there holds, for n large enough,

∂hn

∂s
(s, x, y) ≥ 4 C3 εn |sn|2m+1

κ∗ (an − sn)2m+1
× eλ∗s × λ∗ (an − s)2m+1ψλ∗(x, y)

2
> 0 (3.18)
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in (−∞, an/2] × Ω.
Choose now n0 ∈ N such that (3.16), (3.17) and (3.18) hold for all n ≥ n0. For each

n ≥ n0 and (s, x, y) ∈ R × Ω, call

φn(s, x, y) =

{
min (hn(s, x, y), 1) if s < an/2,
1 if s ≥ an/2,

and un(t, x, y) = φn(c∗(e)t − x · e, x, y) for all (t, x, y) ∈ R × Ω. If follows from the above
facts that φn is continuous in R×Ω, nondecreasing with respect to s, periodic in (x, y), and

φ(sn, x, y) < φn(sn, x, y) for all (x, y) ∈ Ω

from (3.14) and (3.16).
Lastly, when un(t, x, y) < 1, then ct−x·e < an/2 and un(t, x, y) = hn(c∗(e)t−x·e, x, y) > 0

from (3.16). Furthermore, it is straightforward to check, from the definition of hn and
from (2.4), (3.12) and (3.13) (applied at λ = λ∗) that, for all (t, x, y) ∈ R × Ω such that
un(t, x, y) < 1,

(un)t −∇ · (A(x, y)∇un) + q(x, y) · ∇un = ζ(x, y)un(t, x, y) ≥ f(x, y, un(t, x, y))

from (1.8), and νA(x, y)∇un = 0 if (t, x, y) ∈ R × ∂Ω.
Eventually, one can apply part 1) of Lemma 3.1 with c = c∗(e), φ = φ, φ = φn and

σ = sn, for each n ≥ n0. Therefore, for each n ≥ n0 and for each (s, x, y) ∈ [sn,+∞) × Ω,

(0 <) φ(s, x, y) ≤ φn(s, x, y).

In particular, for each n ≥ n0 and for each (x, y) ∈ Ω, there holds

0 < φ(0, x, y) ≤ hn(0, x, y) ≤ 4 C3 εn |sn|2m+1

κ∗ (an − sn)2m+1
× 3 a2m+1

n ψλ∗(x, y)

2

from (3.16). From (3.15), one gets that

0 < φ(0, x, y) ≤ 3 × 22m+1

κ∗ × eλ∗an/2
→ 0+ as n→ +∞

since limn→+∞ an = +∞. Thus, φ(0, x, y) = 0 for all (x, y) ∈ Ω. We have then reached a
contradiction, whence formula (3.11) follows. �

The last proposition of this section is concerned with the general monostable case, that
is we do not assume the KPP assumption (1.8). Instead, we assume that there is a pulsating
front with a lower speed.

Proposition 3.4 Under assumptions (1.4), (1.6) and (1.7), if there exists a pulsating front

u′(t, x, y) = φ′(c′t − x · e, x, y), in the sense of Definition 1.1, with a speed c′ < c, then

c > c∗(e) and

∀ η > 0, lim inf
s→−∞

[
min

(x,y)∈Ω

(
φ(s, x, y)

e(λc+η)s

)]
> 0.
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Proof. Step 1. First, from Proposition 2.2 applied to u′, it follows that c′ ≥ c∗(e), whence
c > c∗(e). Moreover,

0 < λ′m := lim inf
s→−∞

(
min

(x,y)∈Ω

φ′
s(s, x, y)

φ(s, x, y)

)
≤ lim sup

s→−∞

(
max

(x,y)∈Ω

φ′
s(s, x, y)

φ(s, x, y)

)
=: λ′M < +∞ (3.19)

and k(λ′m) + c′λ′m = k(λ′M) + c′λ′M = 0. Since −k(λ)/λ ≥ c > c′ for all λ ∈ (0, λc], it follows
that

0 < λc < λ′m ≤ λ′M .

Because both φ and φ′ satisfy (1.14), one can assume, even if it means shifting u′ and φ′,
that

φ′(0, x, y) < φ(0, x, y) for all (x, y) ∈ Ω. (3.20)

Step 2. Assume that the conclusion of the proposition does not hold, for some η > 0.
Since −k(λ′M)/λ′M = c′ < c, one can assume without loss of generality that η > 0 is small
enough so that

−k(λ
′
M + η)

λ′M + η
< c. (3.21)

From our assumption, there exists a sequence (sn, xn, yn) ∈ R × Ω such that

sn < 0 for all n, sn → −∞ and εn := φ(sn, xn, yn) e−(λc+η)sn → 0+ as n→ +∞. (3.22)

One can also assume, without loss of generality, that 0 < εn < 1 for all n ∈ N. Property
(3.9) yields

φ(sn, x, y) ≤ C3 εn e
(λc+η)sn for all (x, y) ∈ Ω. (3.23)

Step 3. We now claim that

∀ λ′ > λ′M , lim
n→+∞

εn e
(λc−λ′)sn = +∞. (3.24)

Otherwise, there is λ′ > λ′M and a constant M0 > 0 such that, up to extraction of a
subsequence,

εn e
λcsn ≤M0 e

λ′sn .

Thus,
φ(sn, x, y) < 2 C3 M0 e

(λ′+η)sn for all (x, y) ∈ Ω.

Since 2 C3 M0 e
(λ′+η)sn → 0+ as n→ +∞, one can assume that this quantity is less than 1,

for n large enough. On the other hand, it follows from Proposition 1.2 applied to φ′ that the
continuous function φ′

s is positive in R×Ω. Then, for n large enough, there exists a, unique,
τn ∈ R such that

2 C3 M0 e
(λ′+η)sn = min

(x,y)∈Ω
φ′(sn + τn, x, y).

Because of (3.19), there is s ∈ R such that φ′
s(s, x, y)/φ

′(s, x, y) < λ′ for all (s, x, y) ∈
(−∞, s] × Ω. Thus

φ′(s, x, y) ≥ φ′(s, x, y) eλ′(s−s) ≥ γ0 e
λ′s for all (s, x, y) ∈ (−∞, s] × Ω,

35



where γ0 = e−λ′s×min(x,y)∈Ω φ′(s, x, y) > 0. If there exists τ ∈ R such that, up to extraction
of a subsequence, τn ≥ τ , then

2 C3 M0 e
(λ′+η)sn = min

(x,y)∈Ω
φ′(sn + τn, x, y) ≥ min

(x,y)∈Ω
φ′(sn + τ, x, y) ≥ γ0 e

λ′(sn+τ)

for n large enough, since sn → −∞ as n → +∞. One gets a contradiction as n → +∞,
since η > 0. Therefore, τn → −∞ as n→ +∞.

One shall now apply part 2) of Lemma 3.1 with, for n large enough, σ = sn, φ = φ,

u = u, φ2 = u2 = 0 and

φ1(s, x, y) = φ′(s+ τn, x, y), u1(t, x, y) = u′
(
ct+ τn
c′

, x, y

)
.

Indeed, notice that, for n large enough, φ(sn, x, y) < φ′(sn + τn, x, y) in Ω and there exists
σn > 0 (> sn) such that

φ′(s+ τn, x, y) > 1 − ρ in [σn,+∞) × Ω (3.25)

and φ(sn, x, y) ≤ φ′(σn + τn, x, y) in Ω. Furthermore, φ′
s > 0 in R × Ω, which yields (3.2).

Lastly, let us check that u1 is a strict supersolution of (1.1) in R × Ω. First, νA∇u1 = 0 on
R × ∂Ω, and, if for any (t, x, y) ∈ R × Ω we call t′ = (ct+ τn)/c′, then

(u1)t(t, x, y) −∇ · (A(x, y)∇u1(t, x, y)) + q(x, y) · ∇u1(t, x, y) − f(x, y, u1(t, x, y))

=
c

c′
× u′t(t

′, x, y) −∇ · (A(x, y)∇u′(t′, x, y)) + q(x, y) · ∇u′(t′, x, y) − f(x, y, u′(t′, x, y))

=
c− c′

c′
× u′t(t

′, x, y) > 0

since c > c′ and c′u′t > 0 since φ′
s > 0. Part 2) of Lemma 3.1 then implies that, for n large

enough, there exists τ ∗n ∈ [0, σn − sn] such that

φ(s− τ ∗n, x, y) ≤ φ′(s+ τn, x, y) in [sn + τ ∗n,+∞) × Ω

and min(x,y)∈Ω (φ′(σn + τn, x, y) − φ(σn − τ ∗n, x, y)) = 0 if τ ∗n > 0.
If 0 < τ ∗n < σn − sn, then

u

(
t− τ ∗n

c
, x, y

)
≤ u′

(
ct+ τn
c′

, x, y

)
for all (t, x, y) ∈ R × Ω such that ct− x · e ≥ sn + τ ∗n

with equality at a point (tn, xn, yn) such that ctn−xn ·e = σn > sn+τ ∗n. Since u(t−τ ∗n/c, x, y)
is a solution of (1.1) while u′((ct+τn)/c′, x, y) is a strict supersolution, the maximum principle
and Hopf lemma lead to a contradiction.

If τ ∗n = σn − sn (> 0), then there exists a point (xn, yn) ∈ Ω such that

φ′(σn + τn, xn, yn) = φ(σn − τ ∗n, xn, yn) = φ(sn, xn, yn).
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But the left-hand side of this last equality is larger than the fixed quantity 1 − ρ > 0 from
(3.25) and the definition of ρ, while the right-hand side goes to 0 since sn → −∞. Thus, the
case τ ∗n = σn − sn is ruled out too.

Thus, τ ∗n = 0, which means that

φ(s, x, y) ≤ φ′(s+ τn, x, y) in [sn,+∞) × Ω.

Since sn → −∞ and τn → −∞ as n → +∞, it follows that φ ≤ 0 in R × Ω, which is a
contradiction.

As a consequence, formula (3.24) is proved.
Step 4. For each n, call µn the unique real number such that

εn e
(λc+η)sn =

√
εn e

µnsn . (3.26)

This is indeed possible since each sn is negative. Since 0 < εn < 1, one gets that

µn > λc + η > 0 for all n ∈ N.

Furthermore, Step 3 implies that limn→+∞ εn e
(λc−λ′)sn = +∞ for all λ′ > λ′M , that is

∀ λ′ > λ′M , lim
n→+∞

e(2(µn−λc−η)+λc−λ′)sn = +∞.

Hence, lim supn→+∞ µn ≤ λc + η + (λ′ − λc)/2 for all λ′ > λ′M . Therefore,

lim sup
n→+∞

µn ≤ λc + η +
λ′M − λc

2
< λ′M + η

since λc < λ′M . Thus, for n large enough, there holds

(λc <) λc + η < µn < λ′M + η. (3.27)

But the function λ 7→ −k(λ) is convex, and it satisfies −k(λc) = cλc and −k(λ′M + η) <
c(λ′M + η) from (3.21). Consequently, −k(λ) < cλ for all λ ∈ [λc + η, λ′M + η], and by
continuity, there exists then k0 > 0 such that k(λ) + cλ ≥ k0 for all λ ∈ [λc + η, λ′M + η]. In
particular,

k(µn) + cµn ≥ k0 > 0 for n large enough. (3.28)

Step 5. Let us now check that all assumptions of part 2) of Lemma 3.1 are fulfilled, for

n large enough, with σ = sn, φ = φ, u = u, φ1 = φ′, u1(t, x, y) = u′(ct/c′, x, y),

φ2(s, x, y) =
2 C3

κn

√
εn e

µnsψµn
(x, y) and u2(t, x, y) = φ2(ct− x · e, x, y),

where κn = min(x,y)∈Ω ψµn
(x, y) ∈ (0, 1]. Call φ = φ1 + φ2 and u = u1 + u2. The functions

φ, φ1 and φ2 are continuous, periodic in (x, y), and φ1 and φ2 are nondecreasing with respect

to s, which yields (3.2) (actually, both φ1 and φ2 are increasing in s). One has φ(s, x, y) < 1

in R × Ω and u is a solution of (1.1). At sn, there holds

φ(sn, x, y) < 2 C3 εn e
(λc+η)sn = 2 C3

√
εn e

µnsn ≤ φ2(sn, x, y) ≤ φ(sn, x, y)
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for all (x, y) ∈ Ω, from (3.23) and (3.26). Since φ1(s, x, y)
<→1 as s → +∞ uniformly in

(x, y) ∈ Ω, there exists a positive number σ > 0 (which does not depend on n) such that

φ1(s, x, y) > 1 − ρ > 0 in [σ,+∞) × Ω, (3.29)

and for n large enough,

φ(sn, x, y) ≤ φ1(σ, x, y) ≤ φ(σ, x, y) in Ω,

since sn → −∞ as n → +∞ and φ(−∞, ·, ·) = 0. As already underlined, the function u1 is
a (strict) supersolution of (1.1).

It only remains to check that, for n large enough, u is a strict supersolution of (1.1) in
the domain

Ωσ = {(t, x, y) ∈ R × Ω, ct− x · e ≤ σ}.
First, one has that νA∇u = 0 on R × ∂Ω. For any (t, x, y) ∈ Ωσ,

0 < u(t, x, y) ≤ φ′(σ, x, y) +
2 C3

κn

√
εn e

µnσ.

Because of (3.27) (which holds for n large enough), the constants κn are bounded from below
by a positive constant, namely there exists κ > 0 such that

0 < κ ≤ κn ≤ 1 (3.30)

for n large enough. Thus, (2C3/κn)
√
εn eµnσ → 0 as n → +∞ (remember that εn → 0+

as n → +∞), and max(t,x,y)∈Ωσ u(t, x, y) ≤ 1 for n large enough. For such n, and for any
(t, x, y) ∈ Ωσ, one has

ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u)

=
2 C3

√
εn

κn

(cµn + k(µn) + ζ(x, y)) eµn(ct−x·e) ψµn
(x, y) +

c− c′

c′
u′t(ct/c

′, x, y)

+f(x, y, u1) − f(x, y, u).

(3.31)

From assumption (1.7) (with p− = 0), and since ∂f
∂u

is globally bounded in, say, Ω × [0, 1],
there exists δ > 0 such that

∀ 0 ≤ ξ′ ≤ ξ ≤ 1, ∀ (x, y) ∈ Ω, f(x, y, ξ) − f(x, y, ξ′) ≤ (ζ(x, y) + δξβ) × (ξ − ξ′).

Thus, for n large enough,

f(x, y, u1(t, x, y))−f(x, y, u(t, x, y)) ≥ −(ζ(x, y)+δuβ(t, x, y))×2 C3
√
εn

κn

eµn(ct−x·e)ψµn
(x, y)

for all (t, x, y) ∈ Ωσ. From (3.28) and (3.31), it follows that, for n large enough,

ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u)

≥ 2 C3

(
k0 − δ κ−1 uβ(t, x, y)

) √
εn e

µn(ct−x·e) ψµn
(x, y) +

c− c′

c′
u′t(ct/c

′, x, y)
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in Ωσ. Fix a real number σ < σ such that δ κ−1 φ′(s, x, y)β ≤ k0/2 in (−∞, σ] × Ω. Since

max
(s,x,y)∈(−∞,σ]×Ω

φ2(s, x, y) ≤ 2 C3 κ
−1 √

εn e
µnσ → 0+ as n→ +∞,

(because εn → 0 and (3.27) holds), it follows that, for n large enough, δ κ−1 uβ(t, x, y) ≤ k0

for all (t, x, y) such that ct−x · e ≤ σ. Remember that ((c− c′)/c′)u′t > 0. Hence, for n large
enough,

ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u) > 0 if ct− x · e ≤ σ.

Lastly, when σ ≤ ct− x · e ≤ σ,

ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u)

≥ 2 C3 (k0 κ e
µnσ − δ κ−1 eµnσ)

√
εn +

c− c′

c′
u′t(ct/c

′, x, y).
(3.32)

Since c− c′ > 0 and since the function φ′
s is positive (from Proposition 1.2), continuous, and

periodic in (x, y), there is η0 > 0 such that

c− c′

c′
u′t(ct/c

′, x, y) = (c− c′) φ′
s(ct− x · e, x, y) ≥ η0 > 0

for all (t, x, y) such that σ ≤ ct− x · e ≤ σ. One concludes from (3.27) and (3.32) that, for
n large enough,

ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u) ≥ η0

2
> 0

for all (t, x, y) such that σ ≤ ct− x · e ≤ σ. Eventually, for n large enough,

ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u) > 0 in Ωσ.

Step 6. As a conclusion, part 2) of Lemma 3.1 can be applied, for n large enough, with

σ = sn < 0, φ = φ, φ1 = φ′, φ2(s, x, y) = (2 C3/κn)
√
εn e

µns ψµn
(x, y) and our fixed number

σ > 0. Thus, for n large enough, there exists τ ∗n ∈ [0, σ − sn] such that




φ(s− τ ∗n, x, y) ≤ φ′(s, x, y) +
2 C3

√
εn

κn

eµns ψµn
(x, y) in [sn + τ ∗n, σ] × Ω,

φ(s− τ ∗n, x, y) ≤ φ′(s, x, y) in [σ,+∞) × Ω
(3.33)

and
min

(x,y)∈Ω
(φ′(σ, x, y) − φ(σ − τ ∗n, x, y)) = 0 if τ ∗n > 0.

If τ ∗n → +∞, up to extraction of a subsequence, then there exists a sequence (xn, yn) in
C such that

φ′(σ, xn, yn) = φ(σ − τ ∗n, xn, yn)

for n large enough. But the right-hand would then converge to 0 as n → +∞, while the
left-hand side is bounded from below by min(x,y)∈Ω φ′(σ, x, y) > 0. This case is ruled out.
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Thus the sequence (τ ∗n)n∈N is bounded, and up to extraction of a subsequence, it converges
to a real number τ ∗ ≥ 0. If τ ∗ = 0, then, by passing to the limit as n → +∞ in (3.33) at
s = 0, it follows from (3.30) and the limits limn→+∞ εn = 0 and limn→+∞(sn + τ ∗n) = −∞,
that φ(0, x, y) ≤ φ′(0, x, y) in Ω. This is impossible from our normalization (3.20).

Therefore, up to extraction of a subsequence, τ ∗n → τ ∗ ∈ (0,+∞) as n→ +∞. For n large
enough, τ ∗n is positive, and then there exists a point (xn, yn) ∈ Ω such that φ(σ−τ ∗n, xn, yn) =
φ′(σ, xn, yn). One can assume without loss of generality that (xn, yn) → (x∞, y∞) ∈ C as
n→ +∞, whence

φ(σ − τ ∗, x∞, y∞) = φ′(σ, x∞, y∞).

On the other hand, as above, and since the real numbers µn satisfy (3.27), it follows that

φ(s− τ ∗, x, y) ≤ φ′(s, x, y) for all (s, x, y) ∈ R × Ω.

In other words, u(t− τ ∗/c, x, y) ≤ u′(ct/c′, x, y) for all (t, x, y) ∈ R × Ω with equality at the
point ((σ + x∞ · e)/c, x∞, y∞). But u is a solution of (1.1), while u′(ct/c′, x, y) is a strict
supersolution, as already underlined. The maximum principle and Hopf lemma lead to a
contradiction.

One concludes that our assumption (3.22) cannot be satisfied and the proof of Proposi-
tion 3.4 is now complete. �

Remark 3.5 Since the conclusion of Proposition 3.4 holds for all η > 0, it follows immedi-
ately that, under the same assumptions, then

lim inf
s→−∞

[
min

(x,y)∈Ω

(
φ(s, x, y)

e(λc+η)s

)]
= +∞ for all η > 0.

4 Exponential upper bounds of φ(s, x, y) as s→ −∞
In this section, given a pulsating travelling front u(t, x) = φ(ct − x · e, x, y) in the sense of
Definition 1.1, we shall now construct suitable sub-solutions for φ in domains of the type
[σ,+∞)×Ω. These estimates will then provide sharp exponential upper bounds as s→ −∞.
To do so, we first prove a comparison lemma, which can be viewed as the counterpart of
Lemma 3.1.

Lemma 4.1 Let u(t, x, y) = φ(ct−x ·e, x, y) be a continuous function defined in R×Ω such

that φ(s, x, y) is periodic in (x, y) and u is a classical supersolution of

{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u ≥ f(x, y, u) in R × Ω,

νA∇u ≥ 0 on R × ∂Ω.
(4.1)

Assume that φ(s, x, y) > 0 in R × Ω and that lim infs→+∞

(
min(x,y)∈Ω φ(s, x, y)

)
≥ 1. Let

u(t, x, y) = φ(ct− x · e, x, y) be a continuous function defined in R×Ω such that φ(s, x, y) is
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periodic in (x, y) and sup(s,x,y)∈R×Ω φ(s, x, y) < 1. If there exists σ ∈ R such that (3.1) and

(3.2) hold and

{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u ≤ f(x, y, u) in Ω′,

νA∇u ≤ 0 on (R × ∂Ω) ∩ Ω′,
(4.2)

where

Ω′ = {(t, x, y) ∈ R × Ω, ct− x · e ≥ σ and u(t, x, y) > 0},
then

φ(s, x, y) < φ(s, x, y) for all s ≥ σ and (x, y) ∈ Ω.

Proof. This time, we choose to slide the function φ with respect to s, to the left and then
back to the right, and we compare it to the function φ.

First, since lim infs→+∞

(
min(x,y)∈Ω φ(s, x, y)

)
≥ 1 and sup

R×Ω φ < 1, it follows that

there exists τ0 ≥ 0 such that

φ(s, x, y) ≤ φ(s+ τ, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω and for all τ ≥ τ0.

Define

τ ∗ = inf
{
τ > 0, φ(s, x, y) ≤ φ(s+ τ, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω

}
.

One has τ ∗ ∈ [0, τ0] and

φ(s, x, y) ≤ φ(s+ τ ∗, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω.

Assume that τ ∗ > 0. From the same reasons as above, there is then a point (s∗, x∗, y∗) ∈
[σ,+∞) × Ω such that φ(s∗, x∗, y∗) = φ(s∗ + τ ∗, x∗, y∗). Since

φ(σ, x∗, y∗) < φ(σ, x∗, y∗) ≤ φ(σ + τ ∗, x∗, y∗) (4.3)

from (3.1) and (3.2), one gets that s∗ > σ.
Call now

U(t, x, y) = φ(ct− x · e+ τ ∗, x, y) = u

(
t+

τ ∗

c
, x, y

)

for all (t, x, y) ∈ R × Ω. There holds

u ≤ U in Ωσ = {(t, x, y) ∈ R × Ω, ct− x · e ≥ σ}

with equality at the point

(t∗, x∗, y∗) =

(
s∗ + x∗ · e

c
, x∗, y∗

)
such that ct∗ − x∗ · e = s∗ > σ.

Moreover u(t∗, x∗, y∗) = U(t∗, x∗, y∗) > 0. Since U still satisfies (4.1), it follows from the
assumptions of Lemma 4.1 and from the strong maximum principle and Hopf lemma that
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u = U in the connected component of Ωσ ∩ {u(t, x, y) > 0} ∩ {t ≤ t∗} containing (t∗, x∗, y∗).
If c > 0, then

u(t, x∗, y∗) = U(t, x∗, y∗) for all t ∈
[
σ + x∗ · e

c
, t∗
]
,

whence, at t = (σ + x∗ · e)/c,

φ(σ, x∗, y∗) = φ(σ + τ ∗, x∗, y∗),

which is impossible from (4.3). If c < 0, then u(t, x∗, y∗) = U(t, x∗, y∗) for all t ≤ t∗, whence

φ(ct− x∗ · e, x∗, y∗) = φ(ct− x∗ · e+ τ ∗, x∗, y∗) for all t ≤ t∗.

As t→ −∞, lim supt→−∞ φ(ct−x∗·e, x∗, y∗) < 1 while lim inft→−∞ φ(ct−x∗·e+τ ∗, x∗, y∗) ≥ 1.
One has again reached a contradiction.

As a conclusion, the assumption τ ∗ > 0 cannot hold. Thus τ ∗ = 0 and

φ(s, x, y) ≤ φ(s, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω.

Actually, the inequality is strict at s = σ, and if equality holds at point (s, x, y) ∈
(σ,+∞) × Ω, then the strong maximum principle and Hopf lemma lead as above to a
contradiction. Thus, φ(s, x, y) < φ(s, x, y) for all (s, x, y) ∈ [σ,+∞) × Ω and the proof
of Lemma 4.1 is complete. �

We shall now apply Lemma 4.1 to the different situations which are listed in Theorems 1.3
and 1.5, in order to get sharp exponential upper bounds for the function φ(s, x, y) as s→ −∞.
We first deal with the case when c > c∗(e), with or without the KPP assumption (1.8). This
case corresponds to both the first part of Theorem 1.3 and part a) of Theorem 1.5. Then,
we shall treat separately the case when c = c∗(e).

We are given a nonzero speed c such that c > c∗(e), we assume that (1.4) holds (with
p− = 0) and we remind that λc > 0 is given by (1.20). We need a few more notations. First,
there exists then

µ > λc such that − k(µ)

µ
< c = −k(λc)

λc

.

Call
κ0 = min

(x,y)∈Ω
ψµ(x, y) > 0 and κ = κ0 × (k(µ) + µc) > 0. (4.4)

As done at the beginning of the proof of Proposition 2.5, it follows from (1.4) (and Proposi-
tion 2.2) that there exists Σ > 0 such that (2.20) holds, that is

∀ τ ≥ 0, ∀ s ≤ −Σ, ∀ (x, y) ∈ Ω, φ(s, x, y) ≤ φ(s+ τ, x, y). (4.5)

We also assume here that property (1.7) is satisfied, that is, with p− = 0, the function ∂f
∂u

is

of class C0,β(Ω × [0, γ]), where β and γ are positive constants. We now fix β′ such that

0 < β′ ≤ β
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and
λc + λcβ

′ < µ. (4.6)

The function ∂f
∂u

is of class C0,β′

(Ω × [0, γ]). In particular, there is δ > 0 such that

f(x, y, u) ≥ ζ(x, y) u− δ u1+β′

for all (x, y, u) ∈ Ω × [0, γ]. (4.7)

Even if it means decreasing γ > 0, one can assume without loss of generality that

0 < γ < 1. (4.8)

Lastly, we call

D = min

(
κ δ−1, κ0 γ

µ−λc
λc ×

[
(λc/µ)

λc
µ−λc − (λc/µ)

µ

µ−λc

]λc−µ

λc

)
> 0. (4.9)

All above constants are fixed in the sequel.

Corollary 4.2 Under assumptions (1.4), (1.7) and c > c∗(e), and under the above notations,

if there are real numbers σ, θ and ω such that

σ ≤ −Σ, 0 < θ ≤ 1, θ1+β′ ≤ D ω (4.10)

and

φ(σ, x, y) > θ ψλc
(x, y) − ω ψµ(x, y) for all (x, y) ∈ Ω, (4.11)

then

φ(s, x, y) > θ eλc(s−σ) ψλc
(x, y) − ω eµ(s−σ) ψµ(x, y)

for all (s, x, y) ∈ [σ,+∞) × Ω.

Proof. We are going to apply Lemma 4.1 to u = u, φ = φ,

φ(s, x, y) = θ eλc(s−σ) ψλc
(x, y) − ω eµ(s−σ) ψµ(x, y),

u(t, x, y) = φ(ct − x · e, x, y) and the real numbers σ which is given in (4.10) and (4.11).

All assumptions related to u and φ in Lemma 4.1 are immediately satisfied. In particu-
lar, property (3.2) holds from (4.5) and the inequality σ ≤ −Σ. It remains to check that
sup

R×Ω φ < 1 and that u satisfies (4.2).

First, it is straightforward to see that, for all s ∈ R and for all (x, y) ∈ Ω,

φ(s, x, y) ≤ θ eλc(s−σ) − ωκ0 e
µ(s−σ) ≤

(
θµ

(ωκ0)λc

) 1

µ−λc

×
[(

λc

µ

) λc
µ−λc

−
(
λc

µ

) µ

µ−λc

]
,

whence
φ(s, x, y) ≤ γ < 1 for all (s, x, y) ∈ R × Ω (4.12)

from (4.8) and (4.10).
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In the set Ω′ = {(t, x, y) ∈ R × Ω, ct− x · e ≥ σ and u(t, x, y) > 0}, it follows then from
(1.20), (4.7) and (4.12) that

Lu := ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u− f(x, y, u(t, x, y))

= ζ(x, y) u(t, x, y) − ω (k(µ) + µc) eµ(ct−x·e−σ) ψµ(x, y) − f(x, y, u(t, x, y))

≤ −ω (k(µ) + µc) eµ(ct−x·e−σ) ψµ(x, y) + δ θ1+β′

eλc(1+β′)(ct−x·e−σ).

But λc(1 + β′) ≤ µ from (4.6), and ct − x · e − σ ≥ 0 in Ω′. It then follows from (4.4) and
(4.10) that, in Ω′,

Lu(t, x, y) ≤
(
−ω κ+ δ θ1+β′

)
eµ(ct−x·e−σ) ≤ 0.

Moreover, νA∇u = 0 on R × ∂Ω.
Lemma 4.1 can then be applied, and it yields

θ eλc(s−σ) ψλc
(x, y) − ω eµ(s−σ) ψµ(x, y) = φ(s, x, y) < φ(s, x, y) = φ(s, x, y)

for all (s, x, y) ∈ [σ,+∞) × Ω, which is the desired conclusion. �

Proposition 4.3 Under the same assumptions and notations as in Corollary 4.2, then

lim sup
s→−∞

[
max

(x,y)∈Ω

(
φ(s, x, y)

eλcs

)]
< +∞.

Proof. Remember that µ−λc−λcβ
′ > 0 from (4.6), fix any real number m such that m > 1

and call

β1 =
λcβ

′

µ− λc − λcβ′
> 0 and β2 =

ln m

µ− λc − λcβ′
> 0. (4.13)

Set γm,0 = 1 and, for each n ∈ N, n ≥ 1,

γm,n = (1 −m−1)−1 × (1 −m−2)−1 × · · · × (1 −m−n)−1.

The sequence (γm,n)n∈N is increasing and it converges, as n → +∞, to the positive real
number γm,∞ defined by

γm,∞ =
∞∏

n=1

(1 −m−n)−1.

Then, fix η > 0 small enough so that

0 < η ≤ 1

γm,∞

and β3 :=
ln(Dκ1γ

−β′

m,∞η
−β′

)

µ− λc − λcβ′
>

(1 + β1)β2

β1

, (4.14)

where κ1 and D are given in (3.10) and (4.9).
Lastly, choose σ0 = σ0 ≤ −Σ such that

min
(x,y)∈Ω

φ(σ0, x, y)

ψλc
(x, y)

≤ η, (4.15)
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and define inductively σ1, σ2, . . . by

σn − σn−1 = β1(σn−1 − σ0) + nβ2 − β3 (4.16)

for all n ≥ 1. It is immediately found that, for all n ≥ 1,

σn − σn−1 = β2 ×
(1 + β1)

n − 1

β1

− β3 × (1 + β1)
n−1

≤ (1 + β1)
n−1 × (1 + β1)β2 − β1β3

β1

≤ (1 + β1)β2 − β1β3

β1

=: β4 < 0

from (4.14). In particular, the sequence (σn)n∈N is decreasing and converges to −∞ as
n → +∞ (moreover, σn − σn−1 ∼ β4(1 + β1)

n−1 and σn ∼ β4(1 + β1)
n/β1 as n → +∞).

Notice that the constants β2, β3, β4, η and σn a priori depend on m.
Assume now, by contradiction, that there exists n ∈ N such that

min
(x,y)∈Ω

φ(σn, x, y)

ψλc
(x, y)

≤ η γm,n e
λc(σn−σ0) (4.17)

and that there exists σn+1 ≤ σ < σn such that

min
(x,y)∈Ω

φ(σ, x, y)

ψλc
(x, y)

> η γm,n+1 e
λc(σ−σ0).

We apply Corollary 4.2 with σ(< σn ≤ σ0 ≤ −Σ), 0 < θ = η γm,n+1 e
λc(σ−σ0) ≤ 1 (from

(4.14)) and ω = D−1 θ1+β′

> 0. Since

φ(σ, x, y) > θ ψλc
(x, y) > θ ψλc

(x, y) − ω ψµ(x, y) for all (x, y) ∈ Ω,

one gets that

φ(σn, x, y) > θ eλc(σn−σ) ψλc
(x, y) −D−1 θ1+β′

eµ(σn−σ) ψµ(x, y) for all (x, y) ∈ Ω. (4.18)

Since µ− λc − λcβ
′ > 0 and σ ≥ σn+1, it follows that

ηβ′

γβ′

m,∞ e−λcβ′(σ0−σ)+(µ−λc)(σn−σ) ≤ ηβ′

γβ′

m,∞ e−λcβ′(σ0−σn+1)+(µ−λc)(σn−σn+1)

= ηβ′

γβ′

m,∞ e(µ−λc−λcβ′)(σn−σn+1)+λcβ′(σn−σ0).

But

ηβ′

γβ′

m,∞ e(µ−λc−λcβ′)(σn−σn+1)+λcβ′(σn−σ0) =
D κ1

mn+1

from (4.13), (4.14) and (4.16). Thus,

θβ′

e(µ−λc)(σn−σ) = ηβ′

γβ′

m,n+1e
−λcβ′(σ0−σ)+(µ−λc)(σn−σ)

≤ ηβ′

γβ′

m,∞ e−λcβ′(σ0−σ)+(µ−λc)(σn−σ) ≤ D κ1

mn+1
,
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whence

D−1 θ1+β′

eµ(σn−σ) ≤ κ1 θ e
λc(σn−σ)

mn+1
.

Since ψµ(x, y) ≤ 1 and κ1 ≤ ψλc
(x, y) for all (x, y) ∈ Ω, it follows that

D−1 θ1+β′

eµ(σn−σ) ψµ(x, y) ≤ θ eλc(σn−σ) ψλc
(x, y)

mn+1
for all (x, y) ∈ Ω.

One concludes from (4.18) that

∀ (x, y) ∈ Ω, φ(σn, x, y) > θ eλc(σn−σ) ψλc
(x, y) (1 −m−(n+1)) = η γm,n e

λc(σn−σ0) ψλc
(x, y),

which is in contradiction with (4.17).
Therefore, if (4.17) holds, then

∀ σ ∈ [σn+1, σn), min
(x,y)∈Ω

φ(σ, x, y)

ψλc
(x, y)

≤ η γm,n+1 e
λc(σ−σ0). (4.19)

Because of (4.15), it follows by induction that (4.19) holds for all n ∈ N. Eventually, since
γm,n ≤ γm,∞ for all n ∈ N and σn → −∞ as n→ +∞, one gets that

∀ σ ≤ σ0, min
(x,y)∈Ω

φ(σ, x, y)

ψλc
(x, y)

≤ η γm,∞ eλc(σ−σ0).

But φ > 0 and 0 < ψλc
≤ 1. From (3.9), one concludes that

∀ σ ≤ σ0, max
(x,y)∈Ω

φ(σ, x, y) ≤ C3 η γm,∞ eλc(σ−σ0),

which completes the proof of Proposition 4.3. �

Remark 4.4 A byproduct of the proof of Proposition 4.3 is the following result: for any
real number m > 1, there exists ηm > 0 such that for any η ∈ (0, ηm) and σ0 ≤ −Σ satisfying

min
(x,y)∈Ω

φ(σ0, x, y)

ψλc
(x, y)

≤ η,

then

∀ σ ≤ σ0, min
(x,y)∈Ω

φ(σ, x, y)

ψλc
(x, y)

≤ η γm,∞ eλc(σ−σ0).

Lastly, we consider the case c = c∗(e), with or without the KPP assumption (1.8). Notice
that in the proof of Proposition 3.3, we used the fact that all j-th order derivatives of k(λ)
at λ∗ are zero for j = 2, . . . , 2m+ 1. But we did not use the fact that the derivative of order
2m+2 is not zero (actually, it is negative). We will use this fact here to show that the lower
bound obtained in Proposition 3.3 in the KPP case when c = c∗(e) is actually optimal in
the general monostable case.
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Proposition 4.5 Under assumptions (1.4) and (1.7), if c = c∗(e), then

lim sup
s→−∞

[
max

(x,y)∈Ω

(
φ(s, x, y)

|s|2m+1 eλ∗s

)]
< +∞, (4.20)

where λ∗ > 0 and m ∈ N are the same as in Proposition 3.3.

Proof. With the same notations as in Proposition 3.3, call, for all (s, x, y) ∈ (−∞, 0] × Ω,

φ1(s, x, y) = eµ(s−a) ×
[

2m+2∑

j=0

(−1)j Cj
2m+2 (−s+ a)2m+2−j ψ(j)

µ (x, y)

]

for some positive real numbers a and µ to be chosen later. Remember that, as soon as u is a
pulsating front with speed c∗(e), the numbers λ∗ and m can be defined even without the KPP
assumption (1.8), as already underlined in the beginning of the proof of Proposition 3.3. Let

u1(t, x, y) = φ1(c
∗(e)t− x · e, x, y)

for all (t, x, y) ∈ R × Ω such that c∗(e)t − x · e ≤ 0. First, it follows from (3.13) that, if
(x, y) ∈ ∂Ω, then νA(x, y)∇u1(t, x, y) = 0. On the other hand, for s = c∗(e)t − x · e ≤ 0,
there holds

(u1)t −∇ · (A(x, y)∇u1) + q(x, y) · ∇u1 − ζ(x, y) u1

= eµ(s−a) ×
[

2m+2∑

j=0

(−1)j Cj
2m+2 (−s+ a)2m+2−j

(
Lµψ

(j)
µ + µc∗(e)ψ(j)

µ

)

+
2m+1∑

j=0

(−1)j Cj
2m+2 (2m+ 2 − j) (−s+ a)2m+1−j

(
−L(1)

µ ψ(j)
µ − c∗(e)ψ(j)

µ

)

+
2m∑

j=0

(−1)j Cj
2m+2

(2m+ 2 − j)(2m+ 1 − j)

2
(−s+ a)2m−j L(2)

µ ψ(j)
µ

]

= eµ(s−a) ×
{

2m+2∑

j=0

(−1)j Cj
2m+2 (−s+ a)2m+2−j

[
Lµψ

(j)
µ + µc∗(e)ψ(j)

µ

+j
(
L

(1)
µ ψ

(j−1)
µ + c∗(e)ψ

(j−1)
µ

)
+ C2

j L
(2)
µ ψ

(j−2)
µ

]}

under the convention that ψ
(−1)
µ = ψ

(−2)
µ = 0 and Ci

j = 0 if j < i. From (3.12) at λ = µ, it
follows that

(u1)t −∇ · (A(x, y)∇u1) + q(x, y) · ∇u1 − ζ(x, y) u1

= eµ(s−a) ×
(

2m+2∑

j=0

(−1)j Cj
2m+2 (−s+ a)2m+2−jRj(x, y)

)
,

where

Rj(x, y) = (k(µ) + µc∗(e))ψ(j)
µ + j (k′(µ) + c∗(e))ψ(j−1)

µ +

j∑

i=2

Ci
j k

(i)(µ) ψ(j−i)
µ .
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Because of (2.4) and since ψλ∗(x, y) ≥ κ∗ > 0, there holds

R0(x, y) ∼
k(2m+2)(λ∗) ψλ∗(x, y)

(2m+ 2)!
× (µ− λ∗)2m+2 as µ→ λ∗,

uniformly in (x, y) ∈ Ω. Thus, we can fix the real number µ > 0 so that

λ∗ < µ < λ∗ + λ∗β

where β > 0 is given in (1.7), and, for all (x, y) ∈ Ω,

R0(x, y) ≤
k(2m+2)(λ∗) ψλ∗(x, y)

(2m+ 2)!
× (µ− λ∗)2m+2

2
≤ k(2m+2)(λ∗) κ∗ (µ− λ∗)2m+2

2 (2m+ 2)!
=: κ′ < 0.

Call κµ = min(x,y)∈Ω ψµ(x, y) > 0. Then, we fix a > 0 so that

∣∣∣∣∣

2m+2∑

j=1

(−1)j Cj
2m+2 (−s+ a)2m+2−jRj(x, y)

∣∣∣∣∣ ≤
(−s+ a)2m+2 |R0(x, y)|

2

and ∣∣∣∣∣

2m+2∑

j=1

(−1)j Cj
2m+2 (−s+ a)2m+2−j ψ(j)

µ (x, y)

∣∣∣∣∣ ≤
(−s+ a)2m+2 κµ

2

for all (s, x, y) ∈ (−∞, 0] × Ω. Therefore,





0 <
κµ

2
× eµ(s−a) (−s+ a)2m+2 ≤ φ1(s, x, y) ≤

3

2
× eµ(s−a) (−s+ a)2m+2,

(u1)t −∇ · (A(x, y)∇u1) + q(x, y) · ∇u1 − ζ(x, y) u1

≤ κ′

2
× eµ(s−a) (−s+ a)2m+2 < 0

(4.21)

for all (s, x, y) = (c∗(e)t− x · e, x, y) ∈ (−∞, 0] × Ω.
Now, for all (s, x, y) ∈ (−∞, 0] × Ω, define

φ2(s, x, y) = eλ∗s ×
[(

2m+1∑

j=0

(−1)j Cj
2m+1 (−s)2m+1−j ψ

(j)
λ∗ (x, y)

)
−M ψλ∗(x, y)

]
,

where M > 0 is fixed so that

3

2
× e−µa a2m+2 − ψ

(2m+1)
λ∗ (x, y) ≤M κ∗ ≤M ψλ∗(x, y) for all (x, y) ∈ Ω, (4.22)

and κ∗ = minΩ ψλ∗ > 0. As in Proposition 3.3, it follows from (3.12) and (3.13) applied at
λ = λ∗ that the function

u2(t, x, y) = φ2(c
∗(e)t− x · e, x, y)
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satisfies
(u2)t −∇ · (A(x, y)∇u2) + q(x, y) · ∇u2 − ζ(x, y) u2 = 0 (4.23)

for all (t, x, y) ∈ R × Ω such that c∗(e)t− x · e ≤ 0, and νA∇u2 = 0 if (x, y) ∈ ∂Ω.
For any positive real numbers b1 and b2, call, for all (s, x, y) ∈ R × Ω,

φb1,b2(s, x, y) =

{
max (b1φ1(s, x, y) + b2φ2(s, x, y), 0) if s ≤ 0,
0 if s > 0.

It follows from the above definitions that the functions φb1,b2 are periodic in (x, y), and contin-
uous in R×Ω as soon as 0 < b1 ≤ b2 (from (4.21) and (4.22)). Call Mi = ‖φi‖L∞((−∞,0]×Ω) ∈
(0,+∞) for i = 1, 2 and observe that

0 ≤ φb1,b2(s, x, y) ≤ b1M1 + b2M2 for all (s, x, y) ∈ R × Ω.

Owing to (4.21) and to the facts that µ > λ∗ and 1 ≥ ψλ∗ ≥ κ∗ > 0 in Ω, there exists s0 < 0
such that

0 < φ1(s, x, y) ≤ φ2(s, x, y) ≤ 2 eλ∗s |s|2m+1 for all (s, x, y) ∈ (−∞, s0] × Ω. (4.24)

For 0 < b1 ≤ b2, call

ub1,b2(t, x, y) = φb1,b2(c
∗(e)t− x · e, x, y) for all (t, x, y) ∈ R × Ω.

Remember that, from (1.7) applied with p− = 0, there exist 0 < γ < 1 and δ > 0 such that

f(x, y, v) ≥ ζ(x, y) v − δ v1+β for all (x, y, v) ∈ Ω × [0, γ]. (4.25)

Take any

0 < b1 ≤ b2 ≤
γ

M1 +M2

and let (t, x, y) ∈ R × Ω be such that

ub1,b2(t, x, y) > 0.

Then s = c∗(e)t − x · e < 0 and 0 < ub1,b2(t, x, y) ≤ γ. If (x, y) ∈ ∂Ω, then
νA(x, y)∇ub1,b2(t, x, y) = 0. Furthermore, in the general case when (x, y) ∈ Ω, one has

(ub1,b2)t −∇ · (A(x, y)∇ub1,b2) + q(x, y) · ∇ub1,b2 − f(x, y, ub1,b2)

≤ (ub1,b2)t −∇ · (A(x, y)∇ub1,b2) + q(x, y) · ∇ub1,b2 − ζ(x, y) ub1,b2(t, x, y)

+δ (ub1,b2(t, x, y))
1+β

≤ b1 κ
′

2
eµ(s−a) (−s+ a)2m+2 + δ (ub1,b2(t, x, y))

1+β

(4.26)

from (4.21), (4.25) and (4.23). If s = c∗(e)t− x · e ≤ s0, then (4.24) yields

(ub1,b2)t −∇ · (A(x, y)∇ub1,b2) + q(x, y) · ∇ub1,b2 − f(x, y, ub1,b2)

≤ b1 κ
′

2
eµ(s−a) (−s+ a)2m+2 + δ (2 b2 φ2(s, x, y))

1+β

≤ b1 κ
′

2
eµ(s−a) (−s+ a)2m+2 + δ (4 b2)

1+β eλ∗(1+β)s |s|(2m+1)(1+β).
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On the other hand, since µ was chosen so that 0 < µ < λ∗(1 + β), there exists a constant
M3 > 0 such that

δ 41+β eλ∗(1+β)ξ |ξ|(2m+1)(1+β) ≤M3 ×
−κ′
2

× eµ(ξ−a) (−ξ + a)2m+2 for all ξ ≤ s0

(remember that κ′ < 0). Thus, if s = c∗(e)t− x · e ≤ s0, then

(ub1,b2)t−∇·(A∇ub1,b2)+q ·∇ub1,b2−f(x, y, ub1,b2) ≤
κ′

2
×(b1−M3 b

1+β
2 )×eµ(s−a) (−s+a)2m+2.

If s0 < s = c∗(e)t− x · e < 0, then (4.26) implies that

(ub1,b2)t −∇ · (A(x, y)∇ub1,b2) + q(x, y) · ∇ub1,b2 − f(x, y, ub1,b2)

≤ b1 κ
′

2
eµ(s0−a) a2m+2 + δ (b2(M1 +M2))

1+β

≤ κ′

2
× (b1 −M4 b

1+β
2 ) × eµ(s0−a) a2m+2,

where
M4 = 2 δ (M1 +M2)

1+β |κ′|−1 e−µ(s0−a) a−2m−2 > 0.

Call M5 = M3 +M4 > 0. To sum up, it follows that if

0 < M5 b
1+β
2 ≤ b1 ≤ b2 ≤

γ

M1 +M2

, (4.27)

then 0 ≤ ub1,b2 ≤ γ in R × Ω and

(ub1,b2)t −∇ · (A(x, y)∇ub1,b2) + q(x, y) · ∇ub1,b2 − f(x, y, ub1,b2) ≤ 0 in Ω′

and νA(x, y)∇ub1,b2(t, x, y) = 0 on (R × ∂Ω) ∩ Ω′, where

Ω′ = {(t, x, y) ∈ R × Ω, ub1,b2(t, x, y) > 0}.

Lastly, fix b2 > 0 small enough so that (4.27) holds with b1 = M5 b
1+β
2 . Because of (4.24)

and φ(−∞, x, y) = 0 uniformly in Ω, there exists τ0 ∈ R such that

max
(x,y)∈Ω

φ(s0 + τ0, x, y) ≤ max
(x,y)∈Ω

(b2φ2(s0, x, y)) . (4.28)

Remember that u(t, x, y) = φ(c∗(e)t−x·e, x, y) is a pulsating front with speed c∗(e) in the
sense of Definition 1.1. Notice that property (4.5) still holds for φ(s+τ0, x, y) when c = c∗(e),
from Proposition 2.2, that is there is Σ > 0 such that φ(s+ τ0, x, y) ≤ φ(s+ τ + τ0, x, y) for
all τ ≥ 0 and (s, x, y) ∈ (−∞,−Σ]×Ω. Assume now that there exists σ < min(−Σ, s0) such
that

φb1,b2(σ, x, y) < φ(σ + τ0, x, y) for all (x, y) ∈ Ω.
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It is then straightforward to check that all assumptions of Lemma 4.1 are satisfied with
c = c∗(e), u(t, x, y) = u(t + τ0/c

∗(e), x, y), φ(s, x, y) = φ(s + τ0, x, y), u = ub1,b2 , φ = φb1,b2

and σ. It follows then from Lemma 4.1 that, in particular,

φb1,b2(s0, x, y) < φ(s0 + τ0, x, y) for all (x, y) ∈ Ω.

Because of (4.24) and (4.27), one gets that

b2φ2(s0, x, y) < φ(s0 + τ0, x, y),

which contradicts (4.28).
As a conclusion, for all σ < min(−Σ, s0),

min
(x,y)∈Ω

φ(σ + τ0, x, y) ≤ max
(x,y)∈Ω

φb1,b2(σ, x, y) ≤ 4 b2 e
λ∗σ |σ|2m+1

from (4.24) and (4.27). Because of (3.9), formula (4.20) follows and the proof of Proposi-
tion 4.3 is complete. �

5 Exponential decay of φ(s, x, y) as s→ −∞
This last section is devoted to the proofs of Theorems 1.3 and 1.5 about the exponential
behavior or logarithmic equivalent of φ(s, x, y) as s→ −∞.

Proof of Theorem 1.3. We assume that conditions (1.4), (1.7) and (1.8) are fulfilled. We
will distinguish the cases when c > c∗(e) or c = c∗(e).

First case: c > c∗(e). From Propositions 3.2 and 4.3, and the fact that 0 < κ1 ≤ ψλc
≤ 1

in Ω, one has

0 < B := lim inf
s→−∞

(
min

(x,y)∈Ω

φ(s, x, y)

eλcs ψλc
(x, y)

)

≤ lim sup
s→−∞

(
max

(x,y)∈Ω

φ(s, x, y)

eλcs ψλc
(x, y)

)
=: B′ < +∞.

(5.1)

One shall now prove that B = B′, that is φ(s, x, y) ∼ Beλcsψλc
(x, y) as s→ −∞.

Pick any ε > 0. There exists a sequence (sn)n∈N such that sn → −∞ as n→ +∞ and

min
(x,y)∈Ω

φ(sn, x, y)

ψλc
(x, y)

≤
(
B +

ε

2

)
eλcsn for all n ∈ N.

Under the notations of Proposition 4.3, choose m > 1 such that
(
B +

ε

2

)
γm,∞ ≤ B + ε.

This is indeed possible since γm,∞ → 1 as m→ +∞. Since sn → −∞ as n→ +∞, it follows
from Remark 4.4 that there exists n0 ∈ N such that

sn ≤ −Σ and 0 <
(
B +

ε

2

)
eλcsn < ηm for all n ≥ n0,
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whence, for n = n0,

∀ s ≤ sn0
, min

(x,y)∈Ω

φ(s, x, y)

ψλc
(x, y)

<
(
B +

ε

2

)
eλcsn0 γm,∞ eλc(s−sn0

) ≤ (B + ε) eλcs.

By definition of B, and since ε > 0 was arbitrary, one gets that

min
(x,y)∈Ω

φ(s, x, y)

eλcs ψλc
(x, y)

→ B as s→ −∞. (5.2)

On the other hand, by definition of B′, there is a sequence (s′n, x
′
n, y

′
n)n∈N in R × Ω such

that

s′n → −∞ and
φ(s′n, x

′
n, y

′
n)

eλcs′n ψλc
(x′n, y

′
n)

→ B′ as n→ +∞.

Since φ and ψλc
are periodic in (x, y), one can assume without loss of generality that (x′n, y

′
n) ∈

C for all n, and that, up to extraction of a subsequence, (x′n, y
′
n) → (x′∞, y

′
∞) ∈ C as n→ +∞.

Call

un(t, x, y) =
φ(ct− x · e+ s′n, x, y)

eλc(ct−x·e+s′n) ψλc
(x, y)

=
u(t+ s′n/c, x, y)

eλc(ct−x·e+s′n) ψλc
(x, y)

.

Since Lλc
ψλc

+ λccψλc
= 0 in Ω and νA∇ψλc

= λc(νAe)ψλc
on ∂Ω, it follows from (1.1) that

the functions un satisfy

(un)t −∇ · (A∇un) + 2λceA∇un − 2
∇ψλc

ψλc

A∇un + q · ∇un

+ζ un − f(x, y, u(t+ s′n/c, x, y))

u(t+ s′n/c, x, y)
un = 0 in R × Ω,

(5.3)

with νA∇un = 0 on R× ∂Ω. From (5.1), and since s′n → −∞, the functions (un) are locally
bounded, and u(t+s′n/c, x, y) → 0 as n→ +∞, locally uniformly in (t, x, y). From standard
parabolic estimates, the functions un converge in C1;2

t;(x,y),loc(R × Ω), up to extraction of a
subsequence, to a function u∞ satisfying

(u∞)t −∇ · (A∇u∞) + 2λceA∇u∞ − 2
∇ψλc

ψλc

A∇u∞ + q · ∇u∞ = 0 in R × Ω, (5.4)

with νA∇u∞ = 0 on R × ∂Ω. From (5.1), the function u∞ is trapped between B and B′,
that is B ≤ u∞ ≤ B′ in R × Ω. Moreover, u∞(x′∞ · e/c, x′∞, y′∞) = B′ from the choice
of the sequence (s′n, x

′
n, y

′
n). The strong maximum principle and Hopf lemma imply that

u∞(t, x, y) = B′ for all t ≤ x′∞ · e/c and (x, y) ∈ Ω, and then for all (t, x, y) ∈ R × Ω by
uniqueness of the Cauchy problem associated to (5.4). As a consequence,

φ(s+ s′n, x, y)

eλc(s+s′n) ψλc
(x, y)

= un

(
s+ x · e

c
, x, y

)
→ B′ as n→ +∞,

locally uniformly in (s, x, y) ∈ R × Ω. Since both φ and ψλc
are periodic in (x, y), it follows

that
φ(s′n, x, y)

eλcs′n ψλc
(x, y)

→ B′ as n→ +∞, uniformly in (x, y) ∈ Ω.
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Because of (5.2), one concludes that B = B′, which yields

φ(s, x, y)

eλcs ψλc
(x, y)

→ B as s→ −∞, uniformly in (x, y) ∈ Ω.

Second case: c = c∗(e). From Propositions 3.3 and 4.5, and the fact that 0 < κ∗ ≤ ψλ∗ ≤ 1
in Ω, one has

0 < B∗ := lim inf
s→−∞

(
min

(x,y)∈Ω

φ(s, x, y)

|s|2m+1 eλ∗s ψλ∗(x, y)

)

≤ lim sup
s→−∞

(
max

(x,y)∈Ω

φ(s, x, y)

|s|2m+1 eλ∗s ψλ∗(x, y)

)
=: B∗′ < +∞.

(5.5)

One shall now prove that B∗ = B∗′.
Fix any ε ∈ (0, B∗′). There exists a sequence (sk)k∈N such that sk < 0 for all k ∈ N,

sk → −∞ as k → +∞ and

max
(x,y)∈Ω

φ(sk, x, y)

ψλ∗(x, y)
≥
(
B∗′ − ε

3

)
|sk|2m+1 eλ∗sk for all k ∈ N. (5.6)

Call

h(s, x, y) =

(
B∗′ − 2 ε

3

)
× eλ∗s ×

[
2m+1∑

j=0

(−1)j Cj
2m+1 (a− s)2m+1−j ψ

(j)
λ∗ (x, y)

]

for all (s, x, y) ∈ (−∞, 0] × Ω, and

φ(s, x, y) =

{
min (h(s, x, y), 1) if s < 0
1 if s ≥ 0,

for all (s, x, y) ∈ R×Ω, where a > 0 is chosen large enough so that φ is continuous in R×Ω
and nondecreasing with respect to s (hence, it is positive in R × Ω). As in the proof of
Proposition 3.3, the function u(t, x, y) = φ(c∗(e)t − x · e, x, y) is a solution of (1.1) in the
domain where u(t, x, y) < 1.

Assume now that there exists a sequence (σn)n∈N such that σn < s0 for all n ∈ N,
σn → −∞ as n→ +∞, and

φ(σn, x, y) < φ(σn, x, y) for all n ∈ N and (x, y) ∈ Ω.

Thus, for each n ∈ N, part 1) of Lemma 3.1 can be applied with c = c∗(e), u = u, φ = φ,

σ = σn, σ = 0, φ and u. In particular, φ(s, x, y) < φ(s, x, y) for all n ∈ N and for all
(s, x, y) ∈ [σn,+∞) × Ω. But there exists a sequence of integers (kn)n∈N such that σn ≤ skn

for all n ∈ N and kn → +∞ as n→ +∞. Since

φ(skn
, x, y) <

(
B∗′ − 2 ε

3

)
× eλ∗snk ×

[
2m+1∑

j=0

(−1)j Cj
2m+1 (a− skn

)2m+1−j ψ
(j)
λ∗ (x, y)

]
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for all n ∈ N and (x, y) ∈ Ω, one gets that

max
(x,y)∈Ω

φ(skn
, x, y)

|snk
|2m+1 eλ∗snk ψλ∗(x, y)

< B∗′ − ε

3

for n large enough, which is in contradiction with (5.6).
Therefore, there exists M < s0 such that

max
(x,y)∈Ω

φ(σ, x, y)

φ(σ, x, y)
≥ 1 for all σ ≤M.

Owing to the definition of φ, one gets that

max
(x,y)∈Ω

φ(σ, x, y)

|σ|2m+1 eλ∗σ ψλ∗(x, y)
≥ B∗′ − ε for all σ ≤M ′,

for some M ′ ≤ M . Since ε > 0 can be arbitrary small, one concludes from the definition of
B∗′ that

max
(x,y)∈Ω

φ(s, x, y)

|s|2m+1 eλ∗s ψλ∗(x, y)
→ B∗′ as s→ −∞. (5.7)

On the other hand, by definition of B∗, there is a sequence (sn, xn, yn)n∈N in R ×Ω such
that sn < 0 for all n ∈ N,

sn → −∞ and
φ(sn, xn, yn)

|sn|2m+1 eλ∗sn ψλ∗(xn, yn)
→ B∗ as n→ +∞.

As in case 1, one can assume that, up to extraction of a subsequence, (xn, yn) → (x∞, y∞) ∈ Ω
as n→ +∞. Call

un(t, x, y) =
φ(c∗(e)t− x · e+ sn, x, y)

|sn|2m+1 eλ∗(c∗(e)t−x·e+sn) ψλ∗(x, y)
=

u(t+ sn/c
∗(e), x, y)

|sn|2m+1 eλ∗(c∗(e)t−x·e+sn) ψλ∗(x, y)
.

The functions un satisfy (5.3) with c∗(e), λ∗ and sn instead of c, λc and s′n respectively, and
νA∇un = 0 on R × ∂Ω. From (5.5), and since sn → −∞, the functions (un) are locally
bounded, and u(t + sn/c

∗(e), x, y) → 0 as n → +∞, locally uniformly in (t, x, y). Up to
extraction of a subsequence, the functions un converge in C1;2

t;(x,y),loc(R × Ω) to a function

u∞ satisfying (5.4) in R × Ω with λ∗ instead of λc, and νA∇u∞ = 0 on R × ∂Ω. From
(5.5), B∗ ≤ u∞ ≤ B∗′ in R × Ω. Moreover, u∞(x∞ · e/c∗(e), x∞, y∞) = B∗ from the choice
of the sequence (sn, xn, yn). The strong maximum principle and Hopf lemma imply that
u∞(t, x, y) = B∗ for all t ≤ x∞ · e/c∗(e) and (x, y) ∈ Ω, and then for all (t, x, y) ∈ R×Ω. As
a consequence,

φ(s+ sn, x, y)

|sn|2m+1 eλ∗(s+sn) ψλ∗(x, y)
= un

(
s+ x · e
c∗(e)

, x, y

)
→ B∗ as n→ +∞,

locally uniformly in (s, x, y) ∈ R × Ω. Therefore,

φ(sn, x, y)

|sn|2m+1 eλ∗sn ψλ∗(x, y)
→ B∗ as n→ +∞, uniformly in (x, y) ∈ Ω.
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Because of (5.7), one concludes that B∗ = B∗′, which implies that

φ(s, x, y)

|s|2m+1 eλ∗s ψλ∗(x, y)
→ B∗ > 0 as s→ −∞, uniformly in (x, y) ∈ Ω.

That completes the proof of Theorem 1.3. �

Proof of Theorem 1.5. Part a) follows immediately from Propositions 3.4 and 4.3. Now,
for part b), if c = c∗(e), then there is a unique λ∗ > 0 such that k(λ∗) + c∗(e)λ∗ = 0
(from the first paragraph in the proof of Proposition 3.3, which does not use the KPP
assumption (1.8)). Then Proposition 2.2 implies that φs(s, x, y)/φ(s, x, y) → λ∗ as s→ −∞,
uniformly in (x, y) ∈ Ω. Formula (1.23) follows. �

Remark 5.1 The proof of the first part of Theorem 1.3 (the KPP case with c >
c∗(e)) could have been done another way by choosing first a sequence (σn)n∈N such
that max(x,y)∈Ω (φ(σn, x, y)/ψλc

(x, y)) ≥ (B′ − ε) eλcσn . By using the arguments of
the proof of Proposition 3.2 and the KPP assumption (1.8), it would follow that
max(x,y)∈Ω (φ(s, x, y)/ψλc

(x, y)) ≥ (B′ − ε) eλcs for all s ≤ σn, whence

lim
s→−∞

[
max

(x,y)∈Ω

(
φ(s, x, y)

eλcs ψλc
(x, y)

)]
= B′.

The rest of the proof can be adapted and implies that B = B′.
But the strategy we chose in the proof of the first part of Theorem 1.3 is motivated by

the fact that it would work in the general monostable case, under the assumptions of part a)
of Theorem 1.5, provided we knew that B is positive in (5.1).
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[42] L. Ryzhik, A. Zlatos, KPP pulsating front speed-up by flows, preprint.

[43] A. Scheel, Coarsening fronts, Arch. Ration. Mech. Anal. 181 (2006), pp. 505-534.

[44] N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology
and Evolution, Oxford : Oxford UP, 1997.

[45] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling wave solutions of parabolic systems, Translations
of Math. Monographs 140, Amer. Math. Soc., 1994.

[46] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic

habitat, J. Math. Biol. 45 (2002), pp. 511-548.

57



[47] F. Williams, Combustion Theory, Addison-Wesley, Reading MA, 1983.

[48] X. Xin, Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion

nonlinearity, Idiana Univ. Math. J. 40 (1991), pp. 985-1008.

[49] X. Xin, Existence and stability of travelling waves in periodic media governed by a bistable nonlin-

earity, J. Dyn. Diff. Eq. 3 (1991), pp. 541-573.

[50] X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech.
Anal. 121 (1992), pp. 205-233.

[51] J.X. Xin, Analysis and modeling of front propagation in heterogeneous media, SIAM Review 42

(2000), pp. 161-230.

[52] A. Zlatos, Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows,
preprint.

58


