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Abstract
We present a new method for evaluating the Gramixnadntaining the inner products of repeated iraéyand
derivatives of irrational transfer functions viakautz model. The technique is particularly interestfor

describing resonant systems and it has an immealgiecation in model order reduction.
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1. Introduction

The Gram matrix, subsequently denoted Hs contains the inner products of repeated integaald/or
derivatives of the impulse response of a systemrdvides a description of the input-output behaib the
system and is therefore a potential tool in systgemtification and model order reduction. It isclslosely
related to controllability and observability Gramsa[13]. A variety of methods permit a both fastl atcurate
computation of the Gram matrix of a rational sysf@ri,12]. In the case of an irrational system ppraximation
of the successive derivatives and integrals is llysueeded. In a previous paper [11] some of ththa@s
proposed a method for Gram matrix computation tnoa rational approximation via Laguerre modeling.
Laguerre functions have shown great potential imenous applications (see [3] and its referencesyeiheless,
when dealing with resonant, poorly damped systems,may find this approach less satisfactory dubdgoles
of Laguerre functions which are restricted to thal axis. In this paper we propose a different aagn based on
Kautz functions. The latter can have complex coajeigooles and are therefore more adequate for mgdel
resonant systems. Consequently, their use in congptite Gram matrix of such systems can be a véduab
alternative.

This communication is organized as follows. In mecl we present a practical solution for computing
Kautz spectra of functions defined by their Lapla@nsforms and in section 3 the relations and gnt@s
binding the spectra of successive derivatives atefjials needed to compute the Gram matrix. Tetilitle the

applicability and efficiency of the technique twxaenples of model order reduction are given in sadii.



2. Kautz model

The two-parameter Kautz functions can be definethbir Laplace transforms [5,6,15]

5. (9= J2be (s -bs+c)

2n s +bs+cl s +bs+c

b, (5= J2bs (s?-bs+c) )
2 s +bs+cl s +bs+c

with n=012,... andb,c00" . The time domain functions are written ¢§(t) or ¢m(t,b, c) whenever it is
desirable to observe the parameters. The orthorh(wnéqﬁm}mo is complete inL? [0,00[, thus any finite-energy

real-causal signag(t) can be approximated within any desired accuradyuncating its infinite expansion
g(t) = yutnlt) )
m=0

where y_ is them+1" Kautz-Fourier coefficient, given by the inner pagtly;,, = <g,¢m> = j;o g(t)g,(H)at .

Our main objective in this section is to determinset of relations allowing us to efficiently cortguhe
Kautz spectrum of a function with the sole a priotowledge of its Laplace transform. We use then@asing
results described in [15] and combine two knowndfarmations in order to achieve it.

In 1996 Wahlberg and Makila [15], have shown et et of coefficients{ym} can be found from power

m=0’

series calculations in the following manner. Demgptby @(S) the Laplace transform og(t), assumed to be

analytic outside an appropriate region in $f@ane, let us decomposﬁs) into two orthogonal partitions

~—§°(s)+§°(s). 3)

Let p =¢€,0, each of the two partitions can then be expreased

[

Qp(s):zynp¢2n+1(s) With Vs = Vns Vo = Vons - (4)
n=0

Using the fact thafj® (c/s) =g° (s) derived from (4), it follows from (3) that

§°(s) = \/ES[g(::Z/_S)C_g(S)]’ §°(s) = s Q(Siz—_cg(g;(c/sﬂ'

®)

Moreover, sinced” (C/s) =g° (s) (p =¢€,0) both of these functions are symmetricsofind ¢/s so they can be

represented as functions sf+ (C/ S) and S(C/ s) = c. Denoting the transformatios + (C/ S) = ¢, it follows that

§°(s) =GP (s+c/s,c) with

G™(£.9 =2 1l () (p=e.0) ©



where IAn (&) =

denotes the Laplace transform of the normalizedukare functionl  (t,b).
¢+bl$+b

Notice that the transformatiosa — S+ (c/s) is common in filter design where it is used toiges band-pass

filter from a low-pass filter.

A well-known relation binds the Laplace transfornddhe z-transform of the Laguerre spectrum: cagyiut the

+
bilinear transformatiorf = bz—i in (6), one can deduce
Z —

z-1 1

Fp(z):\/z_b—Gp(b—j (p=¢€0) ()

where

re(z)=>.yPz" (p=e0). (8)

o , z+1
The combination of the two transformatioss- (C/S) =& and§ = b—1 corresponds to the second-order all-
Z —_—

pass transformation

_s®+bs+c
s?—bs+c

The inverse transformation has two soluti@s a, (z) where

a,(z )—— bz—+1 \/(b—jz —-4c 9)

2 z-1 z-1

with the propertiesa, (z)a_(z) = ¢ anda, (z) +a_(z) = b%.

From (9), (7) and (5) one can then deduce the \iatig relation binding the Laplace transform and the

transform of the Kautz spectrum

- .2, Ol )]

(
ro(z) =202 z () (a+( )) _(2)g(a ())} (10)

It will be noted that relations (10) are indepertdefrithe choice of the solutios = a, (z) ors=a. (Z) One can
find them very interesting in deriving the propestiof Kautz spectra, despite the irrational forma,_)(z).
Moreover, relations (10) may also be used to nurabyievaluate the Kautz spectrum of a given fuorctrom its
Laplace transform: setting = e ¢ in (10) with 9D[0,277[, keeping in mind (8), the Kautz coefficiengs,

could then be computed using a FFT or DCT algoritBor first objective has thus been achieved.



3. Derivatives and integrals computation

Let Q= {gl, 9,04 ,...grﬂ} denote an orderly set of real functions where

g, (t) = olt)

d .
9..(t) 2 %t y (i=aq,q+1...r) (12)

0ia()2 [ ai()r  (=q9-1..2)

g(t) being the impulse response of the stable systémtvainsfer function@(s) (assuming thag(t) is a well-

behaved square-integrable other responses of stensycould be considered for example, the steponsgp

shifted of its final value).

The elementgy, ; of the Gram matriX¥ are all the possible inner products of real fundig; (t) and g; (t)

defined as
i =g ’gj>£.[: gi (t)a; (t)et (12)

Derivative and integral operators defined in (1dserve natural frequencies or poles in the Lapiaceain;
therefore Q constitutes an efficient set of approximation fiimts for determining an r-order reduced model.
When dealing with irrational transfer functions,redit computation of their Gram matrix could be an
insurmountable problem. In this section we propselution based on Kautz modeling.

Let us consider the derivative operator define.ij, in Laplace domain it yields
Qi+1(s) = s, (S) ~- 0 (+ O)- (13)

With (9), using the fact tha[ai( ] = bz—ia (z) —C one can deduce from (10)

riu(z)=—Jere(2)
(g =b 2 (@)« Jerr(d) - Vb2 g (+0).

7—
It follows that the Kautz spectra of the successleevatives ofgq(t) can be recursively computed using the
following relations fori = q,q+1,...,r

Vian = —\/Eyfn, n=012,..

Voun = Voana +3ElVy =¥ )+ 002, +00). n=12... (14)
with 5, = Jeye o thy’ —/2bg,(+0) for n=0. When the valueg; (+0) is not known it can be computed

as
6,(+0)=lim g, (5) =V2b3. y7, 15)
-0 =0

In practice, Kautz series are often truncated demdv=2N. Therefore, and more particularly when the initial

values g (+ O) are not readily available, an approximation of ¢befficients of the various Kautz spectra can be



computed fori =q,q+1,...,r as follows

Ve =—Jcy%, n=N-1LN-2..0

Vs = Vs ~NCTo = 75 ) 6750 + 750) n=N-2N =3,..0 (16)
with yo, v = \/_y w1 —byG for n= N -1 and where the starting point of the computatlorycﬁ Von

(p =¢€,0). The approximate Kautz series gf(t) is then given by

§,(0)= Y75 )+ X 7oonat). 7)
n=0 n=0

An approximated value of); (+ 0) can then be evaluated using (15) or (14) i.e.

N-1
gi("'o):\/%zyi?n_\/—(\/_ 0 byo y|+1o) (18)

Integral and derivative operators as defined in @k reciprocal; we can therefore obtain the recoe

relations binding the Kautz spectra of the suceessitegrals ofg(t) directly from (14) fori =q,9-1....2

© _'-—!l— 4 =
yi—l,n - \/E in? n 0,1.2,
Vi =V +%(yi?n - J/io,n—l)"'g(yi(?n + ﬁn—l)v n=12,... (29)

with 2,0 = 2 \/_y"o \/79”(+O)forn 0.

When working with truncated Kautz series at ofder2N or when facing difficulties to calculatg; _1(+ O) itis

easier to use the following expressions:

o =-L e n=N-1N-2..0

Vian = _\/E v,

Vfln = y -1n+l %(Vi?ml _j;i(,)n)_%(yleml y ) n= N 2 N 3 O (20)

with i, = —%JZ?N_I for n=N -1 and where the starting point of the computatiogfs =y,

1 -
Tyi(,JN—l
C
(p=¢€0).
Keeping in mind that Kautz functions form an ortbonal basis, the inner products defined by (12) can

therefore be expressed as
wi,j :zyie,nyje,n +zyi?ny}),n (21)
n=0 n=0

and all elements of the Gram matrix can at thisifoe computed. Using the properties of the Grarmixngiven
in [11], an efficient algorithm for its computatimsummarized in the appendix.
The recurrent relations described in this sectibomaan efficient way to compute the Kautz model thé

successive derivatives and integrals of a functidoreover, equations (16) and (20) yield two sétfunctions



verifying the strict equalitiesd;.4(t) = dg; (t)/dt and G (t) = I g (r)dr respectively. Consequently, in

model order reduction applications, at least twduoed order models provably stable [9] can be hgadiitained

according to the procedure described in [14] for gimen value ofg .

Especially in the case of resonant systems, withr ttivo parameters granting them an extra degrdesetiom,
Kautz functions should allow either a more accuramputation of the Gram matrix, for an equal numtfe
coefficients N or a faster way of computation of the Gram mathixn their Laguerre counterparts, for a given
precision.

A good choice of Kautz parameters may contributiengarove the efficiency or accuracy of the compota(the
same remark could be made for the choice of theitiag parameter). Different works addressed thel@no and

proposed optimal or suboptimal solutions for makimg choice [1,8,10].

4. Examples

To illustrate the proposed method, the Gram matrafetwo infinite-dimensional resonant systems \wil
computed and used in a typical model order redn@juplication.

Let us first consider a simple closed-loop systdath e delay ofT =1secin the feedback (Fig.1.).

+

s+1

»
»

1
s

Fig.1. A closed-loop system with a delay in the feedback

This system has an infinite order transfer functioren by
A Ks
a(s) = — (T =1seq)
s +s+Ke ™

which becomes unstable wh&ngrows beyond a certain valu& (= 1.135 for T =1sec). Taking K =1, the
impulse response given in Fig.2. shows strong learahsing oscillations. The first 10 Kautz coeffits are
computed according to the technique described dticge2. We chosec = 068 and then computed a quasi-
optimal corresponding value df = 0.088 minimizing a superior boundary of the truncationoe [8]. As we

search for order =3 rational models, a siz& +1) x (r +1) Gram matrix is computed following the algorithm

given in the appendix. A set of reduced order 3 elmdguaranteed to be stable, can readily be detigang the

method described in [14] fag = 1.2,...,r +1. The best modeﬁK (s) with respect to the relative quadratic error
| 2 2
£|| '[ [g ] dt/j [g ] dt is obtained for a Gram matrix constructed with itier products of

g(t), its first integral and its first two derivativéise. q = 2):

0.93882 + 2.15% + 0.00436
s3 +3.12252 + 09325+ 2.051

Kk (S) =

[(@)))]



The corresponding relative quadratic erronéﬁ ||2 = 444x1073. For this system, a good approximation of the
transfer function can also be obtained by replading delay in the feedback by its Padé approximant
e '® = (2-Ts)/(2+Ts) which leads to

s? +2s
2 +3s% +5+2

p(s) =

)

It yields a relative quadratic error ﬂxfpnz = 712x1072. The previous modeﬁK (s) is clearly more precise

benefiting from a very accurate computation of Bem matrix with a relatively small number of Kautz
coefficients. Due to the highly resonant naturetloé system, achieving such accuracy via a Laguerre
decomposition as described in [11] would requimawch greater number of coefficients (several huhdioe a

well chosen Laguerre parameter). For the sake mpeoison we specify that the use of 10 Laguerréficants

would in this case lead to a relatively bad modithva respective quadratic erre, ||2 = 144x107%. This

underlines the advantages of computing the Granrimeia Kautz functions in applications dealing it
resonant systems. The original impulse responselerseé of the three proposed models can be compafed.
2 and 3.

15 T
----- original system
order 3 model via Padé

-1 I I I I
0 20 40 60 80 100

time (s)

Fig.2. Impulse response of the original system and tterd3 model obtained via Padé



15 T ‘

— - — - original system

order 3 model via Kautz

— — — order 3 model via Laguerre

-1 I I I I

0 20 40 60 80 100
time (s)

Fig.3. Impulse response of the original system and therd® model obtained via Kautz and Laguerre

The second example we present is the band-passt aréig.4. first proposed by Johnson [4].

RC

4{

Fig.4. Band-pass circuit

This system has an irrational transfer functioregity

K
@ (1—coshd)

a(s) =

(coshg + K)(s+ 1]
RC,

with 8 = \/R_CS RC =187992, RC, =0.909087 and K = 9.95065. Using 60 Kautz coefficients computed
for ¢ =1 and quasi-optimal corresponditg= 0.11454 let us compute th&x5 Gram matrix constructed with
the inner products ofj(t), its first integral and its first three derivativéi.e. r =4, q=2). As seen in the
previous example this Gram matrix allows the ddioveof a rational approximation aj(s) :

— 1056s% - 1796s% - 27895+ 0.6894
s* +2588° +4.351s% + 2.8245+3.118'

The impulse response of the original system, tdeaed order 4 model given above, and the best drdeodel

Kk (S) =

[(@}))]

computed by the use of Laguerre functions instéathatz [11] are shown in Fig.5. The differenceatturacy is



visible, especially in Fig.6., where the variatiointhe squared error is plotted. Indeed the modeigua Gram

matrix computed via Laguerre modeling yields atreéaquadratic error oHé‘L ||2 =135%107, to be compared

with &, ||2 = 163%107 for computation via Kautz modeling. In fact, irder to obtain a comparable precision
via Laguerre, around 200 coefficients need to kertanto consideration.

8 \

Lo == original system
6 — — — order 4 model via Laguerre |
order 4 model via Kautz

-12 I I I I I I
0 10 20 30 40 50 60 70

time

Fig.5. Impulse response of the original system, andwleereduced order models
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Fig.6. Squared erroe?(t) =[g(t) - g(t)]"

6. Conclusion
Accurately computing the Gram matrix of resonanstes;s may prove time consuming. The method
proposed in this paper is in such cases a vialbdenakive, benefiting from the interesting propestiof two

parameter Kautz functions. The work is also reléwarthe model order reduction of infinite dimemsabsystems



as shown by the illustrative examples.
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Appendix: Gram matrix computation algorithm

Once the Kautz spectra of the successive integralglerivatives of the original function have been



computed using (19) or (20) and (14) or (16), tigerdthm to compute the Gram matrix is similar lbe one
described in [11] and is summarized as follows :

1. Compute the elements of the main diagonal usiny (21

2. Compute the elements of the first secondary didgesiag the property); ;3 = - gi2_1(+ O)/2.
Recursively compute the other elements of the ldviengular part of the Gram matrix using the rielat
v, = _gi—1(+ O)gj (+ O)_wi—l,jﬂ'

3. Using its symmetry property; ; =¢/;, complete the matrix with its upper triangular part

It will be noted that the initial time valueg; (+ O) can be evaluated using (18).



