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Introduction

The Gram matrix, subsequently denoted as Ψ , contains the inner products of repeated integrals and/or derivatives of the impulse response of a system. It provides a description of the input-output behavior of the system and is therefore a potential tool in system identification and model order reduction. It is also closely related to controllability and observability Gramians [START_REF] Sreeram | On the computation of the Gram matrix in time domain and its application[END_REF]. A variety of methods permit a both fast and accurate computation of the Gram matrix of a rational system [START_REF] Calvez | Evaluation of scalar products of repeated integrals of a function with rational Laplace transform[END_REF][START_REF] Lucas | Evaluation of scalar products of repeated integrals by Routh algorithm[END_REF][START_REF] Telescu | Orthogonal decomposition of derivatives and antiderivatives for easy evaluation of extended Gram matrix[END_REF]. In the case of an irrational system an approximation of the successive derivatives and integrals is usually needed. In a previous paper [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF] some of the authors proposed a method for Gram matrix computation through a rational approximation via Laguerre modeling.

Laguerre functions have shown great potential in numerous applications (see [START_REF] Heuberger | Modelling and Identification with Rational Orthogonal Basis Functions[END_REF] and its references). Nevertheless, when dealing with resonant, poorly damped systems, one may find this approach less satisfactory due to the poles of Laguerre functions which are restricted to the real axis. In this paper we propose a different approach based on Kautz functions. The latter can have complex conjugate poles and are therefore more adequate for modeling resonant systems. Consequently, their use in computing the Gram matrix of such systems can be a valuable alternative.

This communication is organized as follows. In section 2 we present a practical solution for computing the Kautz spectra of functions defined by their Laplace transforms and in section 3 the relations and properties binding the spectra of successive derivatives and integrals needed to compute the Gram matrix. To illustrate the applicability and efficiency of the technique two examples of model order reduction are given in section 4.

Kautz model

The two-parameter Kautz functions can be defined by their Laplace transforms [START_REF] Kautz | Network synthesis for specific transient response[END_REF][START_REF] Kautz | Transient synthesis in time domain[END_REF][START_REF] Wahlberg | On approximation of stable linear dynamical systems using Laguerre and Kautz functions[END_REF] 
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where m γ is the 1 + m th Kautz-Fourier coefficient, given by the inner product

∫ ∞ = = 0 ) ( ) ( , dt t t g g m m m ϕ ϕ γ .
Our main objective in this section is to determine a set of relations allowing us to efficiently compute the Kautz spectrum of a function with the sole a priori knowledge of its Laplace transform. We use the pioneering results described in [START_REF] Wahlberg | On approximation of stable linear dynamical systems using Laguerre and Kautz functions[END_REF] and combine two known transformations in order to achieve it.

In 1996 Wahlberg and Makila [START_REF] Wahlberg | On approximation of stable linear dynamical systems using Laguerre and Kautz functions[END_REF], have shown that the set of coefficients { } 0 ≥ m m γ , can be found from power series calculations in the following manner. Denoting by ( ) s g ˆ the Laplace transform of ( ) t g , assumed to be analytic outside an appropriate region in the s-plane, let us decompose ( )
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The combination of the two transformations
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The inverse transformation has two solutions ( )
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with the properties 9), [START_REF] Lucas | Evaluation of scalar products of repeated integrals by Routh algorithm[END_REF] and ( 5) one can then deduce the following relation binding the Laplace transform and the ztransform of the Kautz spectrum
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It will be noted that relations [START_REF] Oliveira E Silva | Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles[END_REF] are independent of the choice of the solution ( )
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. One can find them very interesting in deriving the properties of Kautz spectra, despite the irrational form of ( )
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Moreover, relations [START_REF] Oliveira E Silva | Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles[END_REF] may also be used to numerically evaluate the Kautz spectrum of a given function from its Laplace transform: setting , keeping in mind [START_REF] Morvan | Pertinent parameters for Kautz approximation[END_REF], the Kautz coefficients m γ could then be computed using a FFT or DCT algorithm. Our first objective has thus been achieved.

Derivatives and integrals computation
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Derivative and integral operators defined in [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF] preserve natural frequencies or poles in the Laplace domain;

therefore Ω constitutes an efficient set of approximation functions for determining an r-order reduced model.

When dealing with irrational transfer functions, direct computation of their Gram matrix could be an insurmountable problem. In this section we propose a solution based on Kautz modeling.

Let us consider the derivative operator defined in [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF], in Laplace domain it yields ( ) ( ) ( )
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With [START_REF] Nagaoka | Mullis-Roberts-type approximation for continuous-time linear systems[END_REF], using the fact that
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It follows that the Kautz spectra of the successive derivatives of ( ) t g q can be recursively computed using the following relations for
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In practice, Kautz series are often truncated at order M=2N. Therefore, and more particularly when the initial values ( )
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are not readily available, an approximation of the coefficients of the various Kautz spectra can be computed for
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and where the starting point of the computation is
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An approximated value of ( )
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can then be evaluated using [START_REF] Wahlberg | On approximation of stable linear dynamical systems using Laguerre and Kautz functions[END_REF] or [START_REF] Vilbé | Suboptimal model reduction via least-square approximation of timeresponse by its derivatives and integrals[END_REF] i.e.
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Integral and derivative operators as defined in [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF] are reciprocal; we can therefore obtain the recurrence relations binding the Kautz spectra of the successive integrals of ( ) 
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Keeping in mind that Kautz functions form an orthonormal basis, the inner products defined by [START_REF] Telescu | Orthogonal decomposition of derivatives and antiderivatives for easy evaluation of extended Gram matrix[END_REF] can therefore be expressed as
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and all elements of the Gram matrix can at this point be computed. Using the properties of the Gram matrix given in [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF], an efficient algorithm for its computation is summarized in the appendix.

The recurrent relations described in this section allow an efficient way to compute the Kautz model of the successive derivatives and integrals of a function. Moreover, equations ( 16) and (20) yield two sets of functions verifying the strict equalities
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respectively. Consequently, in model order reduction applications, at least two reduced order models provably stable [START_REF] Nagaoka | Mullis-Roberts-type approximation for continuous-time linear systems[END_REF] can be readily obtained according to the procedure described in [START_REF] Vilbé | Suboptimal model reduction via least-square approximation of timeresponse by its derivatives and integrals[END_REF] for any given value of q .

Especially in the case of resonant systems, with their two parameters granting them an extra degree of freedom, Kautz functions should allow either a more accurate computation of the Gram matrix, for an equal number of coefficients N or a faster way of computation of the Gram matrix than their Laguerre counterparts, for a given precision.

A good choice of Kautz parameters may contribute to improve the efficiency or accuracy of the computation (the same remark could be made for the choice of the Laguerre parameter). Different works addressed the problem and proposed optimal or suboptimal solutions for making this choice [START_REF] Brinker | Optimality conditions for a specific class of truncated Kautz series[END_REF][START_REF] Morvan | Pertinent parameters for Kautz approximation[END_REF][START_REF] Oliveira E Silva | Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles[END_REF].

Examples

To illustrate the proposed method, the Gram matrices of two infinite-dimensional resonant systems will be computed and used in a typical model order reduction application.

Let us first consider a simple closed-loop system with a delay of sec 1 = T in the feedback (Fig. 1.). Gram matrix is computed following the algorithm given in the appendix. A set of reduced order 3 models, guaranteed to be stable, can readily be derived using the method described in [START_REF] Vilbé | Suboptimal model reduction via least-square approximation of timeresponse by its derivatives and integrals[END_REF] is clearly more precise benefiting from a very accurate computation of the Gram matrix with a relatively small number of Kautz coefficients. Due to the highly resonant nature of the system, achieving such accuracy via a Laguerre decomposition as described in [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF] would require a much greater number of coefficients (several hundred for a well chosen Laguerre parameter). For the sake of comparison we specify that the use of 10 Laguerre coefficients would in this case lead to a relatively bad model with a respective quadratic error The second example we present is the band-pass circuit in Fig. 4. first proposed by Johnson [START_REF] Johnson | High pass and band pass filters with distributed-lumped-active networks[END_REF].
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Fig.4. Band-pass circuit

This system has an irrational transfer function given by ). As seen in the previous example this Gram matrix allows the derivation of a rational approximation of The impulse response of the original system, the reduced order 4 model given above, and the best order 4 model computed by the use of Laguerre functions instead of Kautz [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF] are shown in Fig. 5. The difference in accuracy is visible, especially in Fig. 6., where the variation of the squared error is plotted. Indeed the model using a Gram matrix computed via Laguerre modeling yields a relative quadratic error of 
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  filter design where it is used to design a band-pass filter from a low-pass filter.A well-known relation binds the Laplace transform and the z-transform of the Laguerre spectrum: carrying out

  truncated Kautz series at order M=2N or when facing difficulties to calculate the following expressions:
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 11 Fig.1. A closed-loop system with a delay in the feedbackThis system has an infinite order transfer function given by ( )

  the advantages of computing the Gram matrix via Kautz functions in applications dealing with resonant systems. The original impulse response and those of the three proposed models can be compared in Fig.2 and 3.
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 23 Fig.2. Impulse response of the original system and the order 3 model obtained via Padé

  first integral and its first three derivatives (i.e

  Kautz modeling. In fact, in order to obtain a comparable precision via Laguerre, around 200 coefficients need to be taken into consideration.
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 5 Fig.5. Impulse response of the original system, and the two reduced order models
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 6 Fig.6. Squared error

  . For this system, a good approximation of the transfer function can also be obtained by replacing the delay in the feedback by its Padé approximant
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Appendix: Gram matrix computation algorithm

Once the Kautz spectra of the successive integrals and derivatives of the original function have been computed using (19) or (20) and ( 14) or (16), the algorithm to compute the Gram matrix is similar to the one described in [START_REF] Tanguy | Gram matrix of a Laguerre model: application to model reduction of irrational transfer function[END_REF] and is summarized as follows :

1. Compute the elements of the main diagonal using (21).

2. Compute the elements of the first secondary diagonal using the property

Recursively compute the other elements of the lower triangular part of the Gram matrix using the relation

3. Using its symmetry property i j j i , , ψ ψ = complete the matrix with its upper triangular part.

It will be noted that the initial time values ( ) 0 + i g can be evaluated using (18).