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Abstract

Simple and efficient algorithms for orthogonal deqwsition of derivatives and antiderivatives of a
function with rational Laplace transform are progshsBased on a new theorem related to Rauths

expansion, they enable direct evaluation of theredéd Gram matrix which has proved to be very lisefu
model-reduction applications.

1 - Introduction

Since the pioneering work of Jain [1, 2] the Gramtnir has proved to be one of the most reliabldstoo

the field of model reduction [3-6]; its ability toroduce good pole positions has motivated a nurober
papers. Early work has been devoted to the Gramixr@tsuccessive antiderivatives of a time resgons
Some of the authors [3] have shown that evaluadfoiinis Gram matrix can be achieved in the freqyenc
domain; in a sequel to [3], Lucas [7] and Sreerauth @oddard [8] presented additional simplificatioms
computation. Sreeram and Agathoklis [5,9] have shtive connection between the Gram matrix and the
other Gramians, whereby the Gram matrix can bermddeby solving Lyapunov equations.

In [4,6] the Gram matrix has been successfully ke to include both derivatives and antiderivativeis

the purpose of this communication to propose aight@rward orthogonal decomposition of these
derivatives and antiderivatives, directly obtaifies the so-called Routlr - g parameters. Owing to this

orthogonal representation, an elementary and siropiaputation of the extended Gram matrix follows
readily

2 — Background

Although the Routha - £ tables are familiar to model reduction research&rsmake this paper self

contained and to state precisely some notationsnantberings, the procedure is first outlined belaw
polynomial form; for a tabular form see [10].

Let D(s)=2{‘:0disi denote a strictly Hurwitz polynomial. Starting kiits even and odd parts,
D,(s)=d,s"+d,,s"?+... and D,,(s)=d,,s"*+d, ,s"*+..., let a sequence of polynomials of
descending degree be computed recursively by tineufa

Dk_lsz+1—a'kSDk, k:n_l...l (1)

with a, =1c(D,,,)/Ic(D,), k=n-1...0, wherelc(P) denotes the leading coefficient of the polynomial
P. Notice that the numbering as defined in [10] bagn modified for convenience. A strictly proper
rational Laplace transfornfr (s) = N(s)/D(s) that is asymptotically stable can always be deca®gdnto
the following form



F(s)= 035D, (s)/D(s) 2)

in which the coefficientsg, are uniquely determined bi(s)=>I23,D,(s). It is known [11] that the
Laplace transformsb, (s)= D, (s)/D(s), k=0,...n—1, define a set ofi orthogonal time functiong, (t) :

(.0) 2[5 8, (), ()t = 3,/ (2ar, ) (3)

As far as the authors are aware, the following rids@o which is the keystone of the two algorithm&¢o
proposed in this paper, has never been mentiorfedebe

Theorem 1: Define ¢_, = Oand @, = —¢,_,. Then the derivative of, (t) satisfies

dg, (t
ak¢d—kt()=¢k+1(t)_¢k—1(t)- k=0,.,n-1 (4)
Proof of Theorem 1: On the understanding th&t_, = , @gn. 1 can be rewritten as
D, =(Dys; Dy )/ay » k=0,...n—-1 (5)

Assume k<n- 2 The initial value theorem for the Laplace tramsfoyields ¢, (+ O) =0, therefore the
Laplace transform otlg, (t)/dt is sD, /D . Thus, starting from eqn. 5 and dividing throughioyiD , eqn. 4

is proved for k=0,...n- 2 Now, considerg,_,(+0)=d,,/d, =1/a,_, , hence the Laplace transform of
dg,,(t)/dt is (sD,,/D,)-Ya,., which, on account of eqn. 5 and,+D,,=D may be written
—(Dpy + D,-5)/(@,4D) . This achieves the proof of eqn. 4 fer=n- . 1

An extended Gram matrix involves inner products sajnals f; (t) idZ, recursively defined by
fo(t)2 f(t), f,,(t)=df (t)/dt and f,_,(t)=[" f,(r)dr. Applying the inverse Laplace transform to eqn. 2
yields the orthogonal decompositiofy(t) = Y02 8,4, (t). More generally, owing to the pole preserving
property of operatorsl/dt and|. , any f; (t) admits an orthogonal decomposition of the follagviarm

f,(t) =S5 B (1) (6)

Starting from S, = 3, , the coeﬁicientsﬂf( can be efficiently computed for= 12and i=- % 2...by
algorithms D™ and D~ proposed below.

Algorithm D*: Given a,, B, and 6. 2. /a, relative tof,(t), let 8,20 and 8 246 _,; then the
following algorithm computes thg’'s and @’s relative to the derivative‘i+1(t):

iHl._ i _ pi
v =G~ 6

0|i(+1 = ,8|i<+l/a'k

Proof of Algorithm D*: Differentiating eqn. 6 with respect tb, using eqn. 4 and rearranging yields
f.(t)= E;})(Hii_l—e,iﬁl}bk(t) which achieves the proof. This algorithm takesyorfn-1) additive
operations (+,-) and n multiplicative operations(x,+). For comparison, the standard way to compute

"1 is to evaluate the Laplace transform f,(t) from that of f,(t) and then to construct the related
[ —table. The first step takes exactly the same nundfeoperations as algorithnD*. Hence, the

orthogonal decomposition of.,,(t) via algorithmD* can be obtained as cheaply as its Laplace transfor



In short, algorithm D* saves the{ﬂ(EJﬂj multiplicative operations anc{%JUﬂ—l} additive

operations required by thg —table, where| x| denotes the integer part &f and[x] denotes the smallest
integer greater than or equabto

Algorithm D™: Given a,, 8. and 6, = . /a, relative tof,(t), define 8';*2 Q then the following
algorithm computeg3 's and 8''s relative to the antiderivativéi_l(t):

n-2
For k=
o QLZJ

Orca = Oas — Ba
if nisodd therd2:=6731 -4 |
elsed =672+ 4

n-1
Fork = .-
e
‘9i2;1—2 = '951 + :Bi2k—1
F&=0,.,n—- 1
pt=a g’

Proof of Algorithm D™: Replacingi by i-1 in algorithm D* we haveg =62 -6, 6 =4 /a,.
Letting k = 0, with 8';* = 0 in mind, yieldsg,™ =-g} ; then it is a simple matter to see that #)¢ can
be computed in succession, in the order indicatgdalgorithm D~. Once again the orthogonal

decomposition is obtained as cheaply as the Lapieoesform and all the operations required by the
[ —table are saved.
Theorem 2: LetB = [b;] and® = [§; ] denote(m+ p+1)xn matrices with(i, j) entries respectively given by

b = ;_f’l and 6, 6" P Then, denoting transposition Ay, the extended Gram matrix involviny

antiderivatives anqb derlvatlves is given by

G(F_ s Forern ) = (V2)BOT 7)

Proof: Using eqn. 6 and the orthogonality property afi.e8, any entry< fi, f ]> of G is readily written as
(f,.1,) =203 BB /(2 ) = 225 B.6) /2 by which eqn. 7 follows

3 — lllustrative examples

We first consider the transfer function given byjewskiet al. in [6]

B s® +10s+100
F( )_ 4 3 2
1.21s" +3s” +11Cs” +23Cs +10C

with a view to derivingG(f_,, f,, f,) and a second-order reduced model. The entriesna 2 of B and ©
are readily obtained by the standard- # Routh algorithm. A run of algorithnD~ yields the entries in
rows 1 and a run of algorithid@™ yields the entries in rows 3:



- 2026 - 0076 - 0174 - 0403]- 0953 - 0942 -1000 - 1000]
G -1 0942 0047 0058 0000 | 0443 0580 0333 0000
- 0580 0110 0580 0333 |-0273 1354 3333 0826

1290 -05 -0232
=| -05 0232 0
-0232 O 1258

After the matrix product has been computed, thehowtescribed in [4] yields thEl-12) approximant
whose second-order denominator matches exactlypthegin. 44 in [6]. The squardd, norm of the error is

equal to 1125x107? to be compared witl1.95x107 obtained through balancing as pointed out inf&jte
that theL, optimal value obtained via a Gauss-Newton nonlimggimisation procedure #099x1072.

In the case of the transfer function given by Hwand Chen in [13],

95’ +425* +31s+10
F(S)_ 4 3 2
ST +8s” +21s° +22<+8

with a view to derivingG(f,, f,, f,) given by

1140 -4050 1117
G=|-4050 1582 -4500
1117 -4500 0451

and a second order model as in the previous exartipetechnique described in [4] yields the (0,1,2)
approximant with an error norm of.5142x107 while the approximant given by [13] yields
8.2904x107.

The optimal L value in this case, calculated by Lucas in [121]7.0135x107°.

We finally refer to Pal's celebrated example [12]:

85" +6s+2
ik s® +4s® +55+2

with the corresponding Gram mati&

0451 -0125 -1194
G=|-0125 0694 -05
-1194 -05 9222

This time we use Jain’s model order reduction me{i2$ as described in [3] which yields an error masf
3007x107°to be compared to Pal’s original model yielding098x10*. We may observe that our result
is in fact very close to the optimal value obtainélGauss-Newton optimisation providing909x107.



4 — Conclusion

Efficient algorithms for orthogonal decompositiofi derivatives and antiderivatives of functions with
rational Laplace transforms have been presentaimple method for computing the extended Gram matri
follows, whereby model order reduction very closdhte optimal can be carried out without any oping
iterative procedure
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