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Abstract 
Simple and efficient algorithms for orthogonal decomposition of derivatives and antiderivatives of a 
function with rational Laplace transform are proposed. Based on a new theorem related to Routh βα −  
expansion, they enable direct evaluation of the extended Gram matrix which has proved to be very useful in 
model-reduction applications. 
 
1 - Introduction  
 
Since the pioneering work of Jain [1, 2] the Gram matrix has proved to be one of the most reliable tools in 
the field of model reduction [3-6]; its ability to produce good pole positions has motivated a number of 
papers. Early work has been devoted to the Gram matrix of successive antiderivatives of a time response. 
Some of the authors [3] have shown that evaluation of this Gram matrix can be achieved in the frequency 
domain; in a sequel to [3], Lucas [7] and Sreeram and Goddard [8] presented additional simplifications in 
computation. Sreeram and Agathoklis [5,9] have shown the connection between the Gram matrix and the 
other Gramians, whereby the Gram matrix can be obtained by solving Lyapunov equations. 
In [4,6] the Gram matrix has been successfully extended to include both derivatives and antiderivatives. It is 
the purpose of this communication to propose a straightforward orthogonal decomposition of these 
derivatives and antiderivatives, directly obtained from the so-called Routh βα −  parameters. Owing to this 
orthogonal representation, an elementary and simple computation of the extended Gram matrix follows 
readily 
 
2 – Background 
 
Although the Routh βα −  tables are familiar to model reduction researchers, to make this paper self 
contained and to state precisely some notations and numberings, the procedure is first outlined below in 
polynomial form; for a tabular form see [10]. 
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descending degree be computed recursively by the formula 

 1,...,1,11 −=−= +− nksDDD kkkk α  (1) 
 
with ( ) ( ) 0,...,1,1 −== + nkDlcDlc kkkα , where ( )Plc  denotes the leading coefficient of the polynomial 

P . Notice that the numbering as defined in [10] has been modified for convenience. A strictly proper 

rational Laplace transform ( ) ( ) ( )sDsNsF =  that is asymptotically stable can always be decomposed into 
the following form 
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in which the coefficients kβ  are uniquely determined by ( ) ( )∑= −

=
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k kk sDsN β . It is known [11] that the 

Laplace transforms ( ) ( ) ( )sDsDs kk =Φ ˆ , 1,...,0 −= nk , define a set of n  orthogonal time functions ( )tkϕ : 
 

 ( ) ( ) ( )kkiikik dttt αδϕϕϕϕ 2ˆ, 0 =∫= ∞  (3) 

 
As far as the authors are aware, the following theorem, which is the keystone of the two algorithms to be 

proposed in this paper, has never been mentioned before. 

Theorem 1: Define 0ˆ1 =−ϕ  and 1ˆ −−= nn ϕϕ . Then the derivative of ( )tkϕ satisfies  

 
( ) ( ) ( )tt

dt

td
kk

k
k 11 −+ −= ϕϕϕα , 1,...,0 −= nk  (4) 

 
Proof of Theorem 1: On the understanding that 01 =−D , eqn. 1 can be rewritten as 

 ( ) kkkk DDsD α11 −+ −= , 1,...,0 −= nk  (5) 
 

Assume 2−≤ nk . The initial value theorem for the Laplace transform yields ( ) 00 =+kϕ , therefore the 

Laplace transform of ( ) dttd kϕ  is DsDk . Thus, starting from eqn. 5 and dividing throughout by D , eqn. 4 

is proved for 2,...,0 −= nk . Now, consider ( ) 111 10 −−− ==+ nnnn dd αϕ , hence the Laplace transform of 

( ) dttd n 1−ϕ  is ( ) 11 1 −− − nnn DDs α  which, on account of eqn. 5 and DDD nn =+ −1  may be written 
( ) ( )DDD nnn 121 −−− +− α . This achieves the proof of eqn. 4 for 1−= nk .  

An extended Gram matrix involves inner products of signals ( )tf i , Zi ∈ , recursively defined by 

( ) ( )tftf =̂0 , ( ) ( ) dttdftf ii =+ ˆ1  and ( ) ( ) ττ dftf t
ii ∫= ∞− ˆ1 . Applying the inverse Laplace transform to eqn. 2 

yields the orthogonal decomposition ( ) ( )ttf k
n
k kϕβ∑= −

=
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00 . More generally, owing to the pole preserving 

property of operators dtd  and ∫∞
t , any ( )tf i  admits an orthogonal decomposition of the following form 
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Starting from kk ββ =̂0 , the coefficients i
kβ  can be efficiently computed for ,...2,1=i  and ,...2,1−−=i  by 

algorithms +D  and −D  proposed below. 
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iθ  and i
n

i
n 1ˆ −= θθ ; then the 

following algorithm computes the β ’s and θ ’s relative to the derivative ( )tf i 1+ : 
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Proof of Algorithm +D : Differentiating eqn. 6 with respect to t , using eqn. 4 and rearranging yields 
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0 111  which achieves the proof. This algorithm takes only ( )1−n  additive 

operations ( )−+,  and n  multiplicative operations ( )÷×, . For comparison, the standard way to compute 
1+i

kβ  is to evaluate the Laplace transform of ( )tf i 1+  from that of ( )tfi  and then to construct the related 

−β table. The first step takes exactly the same number of operations as algorithm +D . Hence, the 

orthogonal decomposition of ( )tf i 1+  via algorithm +D  can be obtained as cheaply as its Laplace transform. 
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operations required by the −β table, where  x  denotes the integer part of x  and  x  denotes the smallest 
integer greater than or equal to x . 

Algorithm −D : Given i
kk βα ,  and k
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algorithm computes β ’s and θ ’s relative to the antiderivative ( )tf i 1− : 
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Proof of Algorithm −D : Replacing i  by 1−i  in algorithm +D  we have 1
1
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Letting 0=k , with 01
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−
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0
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1 βθ −=−  ; then it is a simple matter to see that the 1−i
kθ  can 

be computed in succession, in the order indicated by algorithm −D . Once again the orthogonal 

decomposition is obtained as cheaply as the Laplace transform and all the operations required by the 

−β table are saved. 

Theorem 2: Let B = [bij] and Θ = [θij ] denote ( ) npm ×++ 1  matrices with ( )ji,  entries respectively given by 
1

1
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1
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jij θθ . Then, denoting transposition by T , the extended Gram matrix involving m  

antiderivatives and p  derivatives is given by 
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Proof: Using eqn. 6 and the orthogonality property of eqn. 3, any entry ji ff ,  of G  is readily written as 
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3 – Illustrative examples  
 
We first consider the transfer function given by Krajewski et al. in [6] 
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with a view to deriving ( )101 ,, fffG −  and a second-order reduced model. The entries in rows 2 of B  and Θ  

are readily obtained by the standard βα −  Routh algorithm. A run of algorithm −D  yields the entries in 

rows 1 and a run of algorithm +D  yields the entries in rows 3: 
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After the matrix product has been computed, the method described in [4] yields the ( )2,1,1−  approximant 

whose second-order denominator matches exactly that of eqn. 44 in [6]. The squared 2L  norm of the error is 

equal to 210125.1 −×  to be compared with 21095.1 −×  obtained through balancing as pointed out in [6]. Note 
that the 2L optimal value obtained via a Gauss-Newton nonlinear optimisation procedure is 210099.1 −× . 
 
In the case of the transfer function given by Hwang and Chen in [13], 
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with a view to deriving ( )210 ,, fffG  given by 
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and a second order model as in the previous example, the technique described in [4] yields the (0,1,2) 

approximant with an error norm of 2105142.1 −×  while the approximant given by [13] yields 
2102904.8 −× . 

The optimal L2 value in this case, calculated by Lucas in [14], is 3100135.7 −× . 
 
We finally refer to Pal’s celebrated example [12]: 
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with the corresponding Gram matrix G: 
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This time we use Jain’s model order reduction method [2] as described in [3] which yields an error norm of 

210007.3 −× to be compared to Pal’s original model yielding  210098.4 −× . We may observe that our result 

is in fact very close to the optimal value obtained via Gauss-Newton optimisation providing 210909.2 −× . 
 
 



4 – Conclusion 
 
Efficient algorithms for orthogonal decomposition of derivatives and antiderivatives of functions with 
rational Laplace transforms have been presented. A simple method for computing the extended Gram matrix 
follows, whereby model order reduction very close to the optimal can be carried out without any optimising 
iterative procedure 
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