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Simple and efficient algorithms for orthogonal decomposition of derivatives and antiderivatives of a function with rational Laplace transform are proposed. Based on a new theorem related to Routh β αexpansion, they enable direct evaluation of the extended Gram matrix which has proved to be very useful in model-reduction applications.

-Introduction

Since the pioneering work of Jain [START_REF] Jain | Decoupled method for approximation of signals by exponentials[END_REF][START_REF] Jain | Identification of linear systems through a Grammian technique[END_REF] the Gram matrix has proved to be one of the most reliable tools in the field of model reduction [START_REF] Calvez | Evaluation of scalar products of repeated integrals of a function with rational Laplace transform[END_REF][START_REF] Vilbe | Suboptimal model reduction via least-square approximation of time-response by its derivatives and integrals[END_REF][START_REF] Sreemam | On the computation of the Gram matrix in time domain and its application[END_REF][START_REF] Krajewski | Model reduction by matching Markov parameters, time moments, and impulse-response energies[END_REF]; its ability to produce good pole positions has motivated a number of papers. Early work has been devoted to the Gram matrix of successive antiderivatives of a time response. Some of the authors [START_REF] Calvez | Evaluation of scalar products of repeated integrals of a function with rational Laplace transform[END_REF] have shown that evaluation of this Gram matrix can be achieved in the frequency domain; in a sequel to [START_REF] Calvez | Evaluation of scalar products of repeated integrals of a function with rational Laplace transform[END_REF], Lucas [START_REF] Lucas | Evaluation of scalar products of repeated integrals by Routh algorithm[END_REF] and Sreeram and Goddard [START_REF] Sreeram | Evaluation of Gram matrix off-diagonal elements using system time moments[END_REF] presented additional simplifications in computation. Sreeram and Agathoklis [START_REF] Sreemam | On the computation of the Gram matrix in time domain and its application[END_REF][START_REF] Sreeram | On the properties of Gram matrix[END_REF] have shown the connection between the Gram matrix and the other Gramians, whereby the Gram matrix can be obtained by solving Lyapunov equations. In [START_REF] Vilbe | Suboptimal model reduction via least-square approximation of time-response by its derivatives and integrals[END_REF][START_REF] Krajewski | Model reduction by matching Markov parameters, time moments, and impulse-response energies[END_REF] the Gram matrix has been successfully extended to include both derivatives and antiderivatives. It is the purpose of this communication to propose a straightforward orthogonal decomposition of these derivatives and antiderivatives, directly obtained from the so-called Routh β αparameters. Owing to this orthogonal representation, an elementary and simple computation of the extended Gram matrix follows readily

-Background

Although the Routh β αtables are familiar to model reduction researchers, to make this paper self contained and to state precisely some notations and numberings, the procedure is first outlined below in polynomial form; for a tabular form see [START_REF] Hutton | Routh approximations for reducing order of linear, timeinvariant systems[END_REF].
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As far as the authors are aware, the following theorem, which is the keystone of the two algorithms to be proposed in this paper, has never been mentioned before.
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-Illustrative examples

We first consider the transfer function given by Krajewski et al. in [START_REF] Krajewski | Model reduction by matching Markov parameters, time moments, and impulse-response energies[END_REF] ( ) 
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with a view to deriving ( ) and a second order model as in the previous example, the technique described in [START_REF] Vilbe | Suboptimal model reduction via least-square approximation of time-response by its derivatives and integrals[END_REF] yields the (0,1,2) approximant with an error norm of This time we use Jain's model order reduction method [START_REF] Jain | Identification of linear systems through a Grammian technique[END_REF] as described in [START_REF] Calvez | Evaluation of scalar products of repeated integrals of a function with rational Laplace transform[END_REF] which yields an error norm of . We may observe that our result is in fact very close to the optimal value obtained via Gauss-Newton optimisation providing Efficient algorithms for orthogonal decomposition of derivatives and antiderivatives of functions with rational Laplace transforms have been presented. A simple method for computing the extended Gram matrix follows, whereby model order reduction very close to the optimal can be carried out without any optimising iterative procedure
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  Proof of Algorithm + D : Differentiating eqn. 6 with respect to t , using eqn. 4 and rearranging yields ( ) (

Theorem 2 :

 2 succession, in the order indicated by algorithm -D . Once again the orthogonal decomposition is obtained as cheaply as the Laplace transform and all the operations required by the β table are saved. Let B = [b ij ] and Θ = [θ ij ] denote ( ) denoting transposition by T , the extended Gram matrix involving m antiderivatives and p derivatives is given by

  and a second-order reduced model. The entries in rows 2 of B and Θ are readily obtained by the standard β α -Routh algorithm. A run of algorithm - D yields the entries in rows 1 and a run of algorithm + D yields the entries in rows 3:

.

  The optimal L 2 value in this case, calculated by Lucas in[14]to Pal's celebrated example[START_REF] Pal | Improved Padé approximants using stability equation method[END_REF]:
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