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Abstract We observe a stochastic process where a convolution product of
an unknown function and a known function is corrupted by Gaussian noise.
We wish to estimate the squared L2-norm of the unknown function from the
observations. To reach this goal, we develop adaptive estimators based on
wavelet and thresholding. We prove that they achieve (near) optimal rates of
convergence under the mean squared error over a wide range of smoothness
classes.

Keywords Deconvolution · Quadratic functionals · Adaptive curve estima-
tion · Wavelets · Global thresholding

1 Motivation

We observe the stochastic process {Y (t); t ∈ [0, 1]} where

dY (t) =
(∫ 1

0

f(t− u)g(u)du
)
dt+ n−1/2dW (t), t ∈ [0, 1], (1)

{W (t); t ∈ [0, 1]} is a (non-observed) standard Brownian motion, f is an
unknown one-periodic function such that

∫ 1

0
f2(t)dt < ∞, and g is a known

one-periodic function such that
∫ 1

0
g2(t)dt <∞. The goal is to estimate f , or

a quantity depending on f , from {Y (t); t ∈ [0, 1]}. The convolution model
(1) illustrates the action of a linear time-invariant system on an input sig-
nal f when the data are corrupted with additional noise. See, for instance,
Bertero and Boccacci (1998) and Neelamani, Choi and Baraniuk (2004). This
is a standard inverse problem in the field of function estimation. For related
results on (1), we refer to Cavalier and Tsybakov (2002), Johnstone, Kerky-
acharian, Picard and Raimondo (2004) and Cavalier (2008). Extensions of (1)
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can be found in Willer (2005), Cavalier and Raimondo (2007) and Pensky and
Sapatinas (2008).

In the literature, the main effort was spent on producing adaptive wavelet
estimators of the function f . See, for instance, Cavalier and Tsybakov (2002),
Johnstone, Kerkyacharian, Picard and Raimondo (2004) and Chesneau (2008).
In this paper, we focus our attention on a different problem: the estimation of
the squared L2-norm of f defined by

‖f‖22 =
∫ 1

0

f2(t)dt.

The problem of estimating such a value is closely connected to the construction
of confidence balls in nonparametric function estimation. It has already been
investigated for a wide variety of models (density, regression, Gaussian model
in white noise, density derivatives, . . . ). See, for instance, Bickel and Ritov
(1988), Donoho and Nussbaum (1990), Kerkyacharian and Picard (1996), Efro-
movich and Low (1996), Gayraud and Tribouley (1999), Johnstone (2001a,b),
Laurent (2005), Cai and Low (2005, 2006) and Rivoirard and Tribouley (2008).

To the best of our knowledge, the estimation of ‖f‖22 from a convolution
problem has been firstly studied in Butucea (2007). The model considered is
different to (1) and can be described as follows: i.i.d. random variables Xi,
i = 1, . . . , n, having unknown density f are observed with additive i.i.d. noise,
independent of the Xi’s, with known probability density g. To estimate ‖f‖22,
a kernel estimator is developed. It enjoys good statistical properties under
various assumptions on g. However, it is not adaptive.

In this paper, we consider a simpler convolution model, (1), but we focus
on the adaptive estimation of ‖f‖22. To reach this goal, we use wavelet esti-
mators. As in (Butucea 2007, Theorem 4), we distinguish two cases according
to the nature of g: the ordinary smooth case where the Fourier coefficients
of g decrease in a polynomial fashion, and the supersmooth case where they
decrease in an exponential fashion.

For the ordinary smooth case, we develop an adaptive wavelet estimator Q̂n

based on the global thresholding. The idea is the following: we decompose ‖f‖22
by using an appropriate wavelet basis, we estimate the associated coefficients
via natural estimators, then, at each level of the wavelets, we keep all of these
estimators if, and only if, the corresponding l2 norm is greater than a fixed
threshold. This technic has been initially developed by Gayraud and Tribouley
(1999) for the estimation of ‖f‖22 in the standard Gaussian white noise model.

For the supersmooth case, Q̂n is not adapted. We develop another adaptive
wavelet estimator Q∗n.

We evaluate their theoretical performances via the asymptotic minimax
approach under the mean squared error over Besov balls. If Qn denotes an
estimator of ‖f‖22 and Bs

2,∞(M) denotes the Besov balls, we aim to determine
the smallest rates of convergence ϕn such that

lim
n→∞

ϕ−1
n sup

f∈Bs
2,∞(M)

E
((
Qn − ‖f‖22

)2)
<∞.
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For the ordinary smooth case, we prove that Q̂n achieves (near) optimal rates
of convergence. For the supersmooth case, we prove that Q∗n achieves (exactly)
optimal rates of convergence. The upper bounds follow from a suitable decom-
position of the risk and some technical inequalities (concentration, moment,
. . . ). The lower bounds are applications of a specific theorem established by
Tsybakov (2004).

The paper is organized as follows. In Section 2, we present wavelets and
Besov balls. Section 3 clarifies the assumptions made on the Fourier coefficients
of g and introduces some intermediate estimators. The main estimators of the
study are defined in Section 4. Section 5 is devoted to the results. Perspectives
and open questions are set in Section 6. The proofs of the results are postponed
in Section 7.

2 Wavelets and Besov balls

2.1 Wavelets

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a ”father” Meyer-type wavelet φ and a ”mother” Meyer-type wavelet ψ.
The features of such wavelets are that the Fourier transforms of φ and ψ have
bounded support. More precisely, we have supp (F (φ)) ⊂ [−4π3−1, 4π3−1] and
supp (F (ψ)) ⊂ [−8π3−1,−2π3−1] ∪ [2π3−1, 8π3−1], where, for any function
h ∈ L1([0, 1]), F (h) denotes the Fourier transform of h defined by F (h)(l) =∫ 1

0
h(x)e−2iπlxdx. Moreover, for any l ∈ [−2π,−π]∪ [π, 2π], there exists a con-

stant c > 0 such that |F (ψ)(l)| ≥ c. For further details about Meyer-type
wavelets, see Walter (1994), and Zayed and Walter (1996).

For the purposes of this paper, we use the periodised wavelet bases on the
unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j − 1}, let
φj,k(x) = 2j/2φ(2jx− k) and ψj,k(x) = 2j/2ψ(2jx− k) be the elements of the
wavelet basis, and

φper
j,k (x) =

∑
l∈Z

φj,k(x− l), ψper
j,k (x) =

∑
l∈Z

ψj,k(x− l),

their periodised versions. There exists an integer τ such that the collection ζ
defined by ζ = {φper

τ,k , k = 0, . . . , 2τ−1; ψper
j,k , j = τ, . . . ,∞, k = 0, . . . , 2j−1}

constitutes an orthonormal basis of L2
per([0, 1]), the set of square integrable

one-periodic functions on [0, 1]. In what follows, the superscript ”per” will be
suppressed from the notations for convenience.

Let m be an integer such that m ≥ τ . A function f ∈ L2
per([0, 1]) can be

expanded into a wavelet series as

f(x) =
2m−1∑
k=0

αm,kφm,k(x) +
∞∑

j=m

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],
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where αm,k =
∫ 1

0
f(t)φm,k(t)dt and βj,k =

∫ 1

0
f(t)ψj,k(t)dt. For further de-

tails about wavelet bases on the unit interval, we refer to Cohen, Daubechies,
Jawerth and Vial (1993).

2.2 Besov balls

Let M ∈ (0,∞) and s ∈ (0,∞). We say that a one-periodic function f belongs
to the Besov balls Bs

2,∞(M) if, and only if, there exists a constant M∗ > 0
such that ||f ||22 ≤M∗ and the associated wavelet coefficients satisfy

sup
j≥τ

22js
2j−1∑
k=0

β2
j,k ≤M∗.

These sets contain all the Besov balls Bs
p,∞(M) with p ≥ 2. See, for instance,

Meyer (1992).

3 Preliminary study

3.1 Assumptions on g ; ordinary smooth and supersmooth cases

• Assumption (Ag): ordinary smooth case. We suppose that there exist three
constants, c > 0, C > 0 and δ > 2−1, such that, for any l ∈ (−∞,−1] ∪
[1,∞), the Fourier coefficient of g, i.e. F (g)(l), satisfies

c|l|−δ ≤ |F (g)(l)| ≤ C|l|−δ. (2)

For example, the square integrable one-periodic function g defined by g(x) =∑
m∈Z e

−|x+m|, x ∈ [0, 1], satisfies (Ag). Indeed, for any l ∈ Z, we have
F (g)(l) = 2

(
1 + 4π2l2

)−1. Hence, for any l ∈ (−∞,−1] ∪ [1,∞), F (g)(l)
satisfies (2) with c = 2(1 + 4π2)−1, C = (2π2)−1 and δ = 2.

• Assumption (A∗g): supersmooth case. We suppose that there exist four
constants, c > 0, C > 0, a > 0 and b > 0, such that, for any l ∈
(−∞,−1] ∪ [1,∞), the Fourier coefficient of g, i.e. F (g)(l), satisfies

ce−a|l|b ≤ |F (g)(l)| ≤ Ce−a|l|b . (3)

For example, the square integrable one-periodic function g defined by g(x) =∑
m∈Z e

−(x+m)2/2, x ∈ [0, 1], satisfies (A∗g). Indeed, for any l ∈ Z, we have
F (g)(l) =

√
2πe−2π2l2 . Hence, for any l ∈ (−∞,−1] ∪ [1,∞), F (g)(l) satisfies

(3) with c = C =
√

2π, a = 2π2 and b = 2.

Further details and examples about these cases can be found in Pensky
and Vidakovic (1999) and Fan and Koo (2002).
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3.2 Preliminary to the estimation of ‖f‖22

Thanks to the orthonormality of the wavelet basis, for any integer m ≥ τ , the
unknown ‖f‖22 can be decomposed as

‖f‖22 =
2m−1∑
k=0

α2
m,k +

∞∑
j=m

2j−1∑
k=0

β2
j,k.

Thus, the first step to estimate ‖f‖22 consists in estimating the unknown coef-
ficients (α2

m,k)k and (β2
j,k)j,k. In what follows, we investigate the estimation of

(β2
j,k)j,k. First of all, we aim to write the model (1) in the Fourier domain. For

any l ∈ Z, we have F
(∫ 1

0
f(.− u)g(u)du

)
(l) = F (f ? g) (l) = F (f)(l)F (g)(l),

where ? denotes the standard convolution product on the unit interval. There-
fore, it we set yl =

∫ 1

0
e−2πiltdY (t), fl = F (f)(l), gl = F (g)(l), and el =∫ 1

0
e−2πiltdW (t), it follows from (1) that

yl = flgl + n−1/2el. (4)

The Parseval theorem and the translation theorem of the Fourier transform
give ∑

l∈Z
ylg

−1
l F (ψj,k)(l) =

∑
l∈Z

flF (ψj,k)(l) + n−1/2
∑
l∈Z

g−1
l F (ψj,k)(l)el

= βj,k + n−1/2
∑
l∈Z

g−1
l e2iπlk/2j

F (ψj,0)(l)el.

Since n−1/2
∑

l∈Z g
−1
l e2iπlk/2j

F (ψj,0)(l)el ∼ N
(
0, n−1

∑
l∈Z |gl|−2|F (ψj,0)(l)|2

)
,

we have

β̂j,k =
∑
l∈Z

ylg
−1
l F (ψj,k)(l) ∼ N

(
βj,k, n

−1
∑
l∈Z

|gl|−2|F (ψj,0)(l)|2
)
.

Therefore, the random variable θ̂j,k defined by

θ̂j,k = β̂2
j,k − n−1

∑
l∈Z

|gl|−2|F (ψj,0)(l)|2

is an unbiased (and a natural) estimator of β2
j,k. We are now in the position

to describe the main estimators of the study.

4 Estimators

According to the ordinary smooth case and the supersmooth case, we describe
two different estimators of Q(f) = ‖f‖22. We use the notations introduced in
section 3.2.
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4.1 Estimator: the ordinary smooth case

Suppose that (Ag) is satisfied. Let j0 and j1 be two integers such that

2−1
(
n(log n)−1

)1/(4δ+1)
< 2j0 ≤

(
n(log n)−1

)1/(4δ+1)

and
2−1n1/(2δ+1/2) < 2j1 ≤ n1/(2δ+1/2).

For any real number a, set (a)+ = max(a, 0). Let κ be a positive real number.
We define the thresholding estimator Q̂n by

Q̂n =
2j0−1∑
k=0

(
α̂2

j0,k − n−1η2
j0

)
+

j1∑
j=j0

2j−1∑
k=0

(β̂2
j,k − n−1σ2

j )− κn−1σ2
j

(
j2j
)1/2


+

, (5)

where

α̂j0,k =
∑

l∈Dj0

ylg
−1
l F (φj0,k)(l), β̂j,k =

∑
l∈Cj

ylg
−1
l F (ψj,k)(l), (6)

η2
j0 =

∑
l∈Dj0

|gl|−2F 2(φj0,0)(l), σ2
j =

∑
l∈Cj

|gl|−2|F (ψj,0)(l)|2.

Here, for any k ∈ {0, . . . , 2j − 1}, Dj0 denotes the support of F (φj0,k)(l) and
Cj the support of F (ψj,k)(l).

Let us briefly explain the construction of Q̂n. Firstly, we estimate the
approximation term,

∑2j0−1
k=0 α2

j0,k, by
∑2j0−1

k=0

(
α̂2

j0,k − n−1η2
j0

)
. Secondly, we

estimate the ”detail term”,
∑j1

j=j0

∑2j−1
k=0 β2

j,k, via the global thresholding rule

described as follows. At each level j ∈ {j0, . . . , j1}, we keep
∑2j−1

k=0 (β̂2
j,k −

n−1σ2
j ) − κn−1σ2

j

(
j2j
)1/2 if, and only if, we have

∑2j−1
k=0 (β̂2

j,k − n−1σ2
j ) ≥

κn−1σ2
j

(
j2j
)1/2. Then we sum all the selected terms. The idea is to only

estimate the unknown coefficients β2
j,k which characterized completely ‖f‖22.

As mentioned in Section 1, the global thresholding technic has been initially
developed by Gayraud and Tribouley (1999) for the estimation of the squared
L2-norm of f in the standard Gaussian white noise model.

4.2 Estimator: the supersmooth case

Suppose that (A∗g) is satisfied. In this case, the estimator Q̂n defined by (5) is
not appropriate. One can prove that, in our minimax framework, it achieves
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a ”suboptimal” bound. For this reason, we propose another estimator. It is
described as follows. Let j∗ be an integer such that

2−1(16π3−1a)−1 (log n)1/b
< 2j∗ ≤ (16π3−1a)−1/b (log n)1/b

.

We define the linear (or projection) estimator Q∗n by

Q∗n =
2j∗−1∑
k=0

(
α̂2

j∗,k − n−1η2
j∗

)
, (7)

where α̂j∗,k and ηj∗ are defined by (6) with j∗ instead of j0. The idea of Q∗n is

to estimate the approximation term
∑2j∗−1

k=0 α2
j∗,k of ‖f‖22 (until the level j∗),

and to neglect the detail term.

Remark. The consideration of two different estimators for each case (ordi-
nary smooth and supersmooth) is standard for the adaptive wavelet estimation
of f from convolution model. See, for instance, Pensky and Vidakovic (1999)
and Fan and Koo (2002). However, to the best of our knowledge, this is new
for the adaptive wavelet estimation of ‖f‖22.

Important remark. The estimators Q̂n and Q∗n do not require any a
priori knowledge on f in their constructions ; they are adaptive.

5 Results

This section is divided into two parts. The first part is devoted to the adaptive
estimation of ||f ||22 for the ordinary smooth case (Ag), and the second part,
for the supersmooth case (A∗g).

5.1 Results: ordinary smooth case

Under (Ag), Theorem 1 below determines the rates of convergence achieved
by Q̂n under the mean squared error over the Besov balls Bs

2,∞(M).

Theorem 1 Consider the convolution model defined by (1). Suppose that (Ag)
is satisfied. Let Q̂n be the estimator defined by (5) with a large enough κ. Then
there exists a constant C > 0 such that, for n large enough,

sup
f∈Bs

2,∞(M)

E
((

Q̂n − ‖f‖22
)2
)
≤ Cϕn,

where

ϕn =

{
n−1, when s > δ + 4−1,(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
, when s ∈ (0, δ + 4−1],

i.e., ϕn = max
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)
.
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The proof of Theorem 1 uses several auxiliary results. In particular, we
establish a functional upper bound for the risk similar to Proposition 3 of
Rivoirard and Tribouley (2008). It is obtained by proving two technical con-
centration inequalities satisfied by the estimators (β̂j,k)k=0,...,2j−1.

The result of Theorem 1 raises the following question: are the rates of
convergence ϕn the optimal ? Theorem 2 below provides the answer by deter-
mining the minimax lower bounds.

Theorem 2 Consider the convolution model defined by (1). Suppose that (Ag)
is satisfied. Then there exists a constant c > 0 such that, for n large enough,

inf
eQn

sup
f∈Bs

2,∞(M)

E
((

Q̃n − ‖f‖22
)2
)
≥ cϕ∗n,

where inf
eQn

denotes the infimum over all the possible estimators of ‖f‖22, and

ϕ∗n =

{
n−1, when s > δ + 4−1,

n−4s/(2s+2δ+1/2), when s ∈ (0, δ + 4−1].

The proof of Theorem 2 is based on a general theorem established by
Tsybakov (2004).

The results of Theorems 1 and 2 show that, under (Ag), Q̂n is near optimal
under the mean squared error over the Besov balls Bs

2,∞(M). ”Near” is due
to the case s ∈ (0, δ + 4−1] where there is an extra logarithmic term.

5.2 Results: supersmooth case

Under (A∗g), Theorem 1 below determines the rates of convergence achieved
by Q∗n under the mean squared error over the Besov balls Bs

2,∞(M).

Theorem 3 Consider the convolution model defined by (1). Suppose that (A∗g)
is satisfied. Let Q∗n be the estimator defined by (7). Then there exists a constant
C > 0 such that, for n large enough,

sup
f∈Bs

2,∞(M)

E
((
Q∗n − ‖f‖22

)2) ≤ C(log n)−4s/b.

The proof of Theorem 3 is based on a good decomposition of the risk and
technical inequalities (l2 norm, moment, . . . ).

As in Theorem 2, but under (A∗g), Theorem 4 below determines the mini-
max lower bounds of the model.

Theorem 4 Consider the convolution model defined by (1). Suppose that (A∗g)
is satisfied. Then there exists a constant c > 0 such that, for n large enough,

inf
eQn

sup
f∈Bs

2,∞(M)

E
((

Q̃n − ‖f‖22
)2
)
≥ c(log n)−4s/b,

where inf
eQn

denotes the infimum over all the possible estimators of ‖f‖22.
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The proof of Theorem 4 is based on a general theorem proved by Tsybakov
(2004).

Theorems 3 and 4 show that, under (A∗g), υn = (log n)−4s/b is the mini-
max rate of convergence under the mean squared error over the Besov balls
Bs

2,∞(M). Moreover the adaptive estimator Q∗n is optimal.

6 Conclusion and open questions

The following table summarizes the minimax results of the paper:

Case ordinary smooth supersmooth

Estimator Q̂n Q∗n

Upper bound max
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)

(log n)−4s/b

Optimality

{
optimal, when s > δ + 4−1,

near optimal, when s ∈ (0, δ + 4−1].
optimal

Our rates of convergence are similar to those determined in (Butucea 2007,
Theorem 4) which considers the density convolution, a non-adaptive estimator
based on kernel, and the risk: R(h, f) = E

(∣∣h− ‖f‖22∣∣), h ∈ R. In comparison
to this result, we consider another convolution model, simpler to manipulate,
but we provide a contribution to the adaptive estimation of ‖f‖22.

Some perspectives and open questions are presented below:

– A possible extension of this work is to adapt our estimators to other convo-
lution models. For instance, the density convolution model: i.i.d. random
variables Xi, i = 1, . . . , n, having unknown density f are observed with ad-
ditive i.i.d. noise, independent of the Xi’s, with known probability density
g. Another interesting convolution model is the one studied in Pensky and
Sapatinas (2008): one observes n random variables {Yi; i = 1, . . . , n} where
Yi =

∫ 1

0
f(i/n − u)g(u)du + εi, i = 1, . . . , n, {εi; i = 1, . . . , n} are (non-

observed) i.i.d. Gaussian standard random variables, f is an unknown one-
periodic function such that

∫ 1

0
f2(t)dt <∞, and g is a known one-periodic

function such that
∫ 1

0
g2(t)dt <∞. Despite the ”equivalences” which exist

between these models and (1), they are more difficult to manipulate. In
particular, they can not be directly written as a sequence model of the
form (4) with ”fl×gl” and/or ”el” independent N (0, 1). For instance, this
last point is an obstacle to the application of the Cirelson inequality used
in the proof of Theorem 1 (see Lemma 3). Thus, the estimation of ‖f‖22
from these models via our estimators requires technical tools certainly not
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used in our study.

– Our minimax results can be extended to the Besov balls Bs
p,∞(M) with

p ≥ 2. However, the case p < 2 is beyond the scope of the paper. As un-
derlined in Cai and Low (2006) for the standard Gaussian sequence model
(page 2300, lines 18-19): ”The sparse case where p < 2 presents some ma-
jor new difficulties which requires a novel approach for the construction of
adaptive procedures”. In response to these difficulties, Cai and Low (2006)
have developed a sophisticated adaptive estimator which uses both block
thresholding and term-by-term thresholding. Taking the minimax approach
under the mean squared error over Bs

p,∞(M), it is (near) optimal for p ≥ 1.
An open question is: for the model (1), more complex than the standard
Gaussian sequence model due to the presence of g, how can we adapt this
estimator in order to keep these optimal properties over Bs

p,∞(M) for any
p ≥ 1 ?

– And, finally: can we construct only one adaptive estimator Qn which are
(near) optimal for both ordinary smooth case and supersmooth case ?

All these aspects need further investigation that we leave for a future work.

7 Proofs

In this section, c and C denote positive constants which can take different
values for each mathematical term. They are independent of f and n.

Proof of Theorem 1. Proposition 1 below presents a ”functional” up-
per bound for the mean squared risk of Q̂n without any assumption on the
smoothness of f .

Proposition 1 Let Q̂n be the estimator defined by (5) with a large enough κ.
There exist two constants C1 > 0 and C2 > 0 such that

E
((

Q̂n − ‖f‖22
)2
)
≤ C1(A + B + C + D),

where

A = n−22(1+4δ)j0 , B = n−1‖f‖22, C =

 ∞∑
j=j1+1

2j−1∑
k=0

β2
j,k

2

and

D =

 j1∑
j=j0

min

2j−1∑
k=0

β2
j,k, C2κ22δjn−1(j2j)1/2

2

.
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Therefore, to prove Theorem 1, it is enough to investigate the upper bounds
for the terms A, B, C and D defined in Proposition 1 above.

The upper bound for A. Thanks to the definition of j0, we have

A = n−22(1+4δ)j0 ≤ n−1 ≤ max
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)

= ϕn.

The upper bound for B. Since f ∈ Bs
2,∞(M), we have ‖f‖22 ≤M∗. Therefore

B = n−1‖f‖22 ≤ Cmax
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)

= Cϕn.

The upper bound for C. Since f ∈ Bs
2,∞(M), we have

C =

 ∞∑
j=j1+1

2j−1∑
k=0

β2
j,k

2

≤ C

 ∞∑
j=j1+1

2−2js

2

≤ C2−4j1s ≤ Cn−4s/(2δ+1/2)

≤ Cmax
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)

= Cϕn.

The upper bound for D. We distinguish the case s > δ + 4−1 and the case
s ∈ (0, δ + 4−1].

- The case s > δ + 4−1. Since f ∈ Bs
2,∞(M), the definition of j0 yields

D =

 j1∑
j=j0

min

2j−1∑
k=0

β2
j,k, C2κ22δjn−1(j2j)1/2

2

≤ C

 j1∑
j=j0

2j−1∑
k=0

β2
j,k

2

≤ C

 j1∑
j=j0

2−2js

2

≤ C2−4j0s ≤ C
(
n(log n)−1

)−4s/(4δ+1) ≤ Cn−1.

- The case s ∈ (0, δ + 4−1]. Let j2 be an integer such that

2−1
(
n(log n)−1/2

)1/(2s+2δ+1/2)

< 2j2 ≤
(
n(log n)−1/2

)1/(2s+2δ+1/2)

.

Notice that j0 ≤ j2 ≤ j1. We have the following decomposition

D = (L + M)2,

where

L =
j2∑

j=j0

min

2j−1∑
k=0

β2
j,k, C2κ22δjn−1(j2j)1/2


and

M =
j1∑

j=j2+1

min

2j−1∑
k=0

β2
j,k, C2κ22δjn−1(j2j)1/2

 .
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Let us study the upper bounds for L and M in turn.
It follows from the definition of j2 that

L ≤ Cn−1

j2∑
j=j0

j1/22(2δ+1/2)j ≤ Cn−1(log n)1/22(2δ+1/2)j2

≤ C
(
n(log n)−1/2

)−2s/(2s+2δ+1/2)

.

Since f ∈ Bs
2,∞(M), the definition of j2 yields

M ≤
j1∑

j=j2+1

2j−1∑
k=0

β2
j,k ≤ C

j1∑
j=j2+1

2−2js ≤ C2−2j2s

≤ C
(
n(log n)−1/2

)−2s/(2s+2δ+1/2)

.

Putting these two inequalities together, we obtain

D = (L + M)2 ≤ C
(
n(log n)−1/2

)−4s/(2s+2δ+1/2)

.

It follows from Proposition 1 and the obtained upper bounds for A, B, C and
D, that

E
((

Q̂n − ‖f‖22
)2
)
≤ C1(A + B + C + D) ≤ Cϕn.

Theorem 1 is proved.

�

Proof of Proposition 1. The proof of Proposition 1 is similar to the
proof of Proposition 3 of Rivoirard and Tribouley (2008). If we analyze this
proof, Proposition 1 follows from Lemmas 1 and 2 below.

Lemma 1 If (Ag) is satisfied, then here exist two constants c > 0 and C > 0
such that, for any integer j ≥ τ , we have

c22δj ≤ σ2
j ≤ C22δj .

Moreover, we have η2
j0
≤ C22δj0 .

Proof of Lemma 1. Using the inequalities supl∈Cj
|F (ψj,0)(l)|2 ≤ C2−j ,

Card(Cj) ≤ C2j and (Ag), we have

σ2
j =

∑
l∈Cj

|gl|−2|F (ψj,0)(l)|2 ≤ C2−j
∑
l∈Cj

|gl|−2 ≤ C sup
l∈Cj

|gl|−2 ≤ C22δj .

In the same way, we prove that η2
j0
≤ C22δj0 .
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Recall that, for any l ∈ [−2π,−π]∪[π, 2π], there exists a constant c > 0 such
that |F (ψ)(l)| ≥ c. Therefore, there exists a setHj such that inf l∈Hj |F (ψj,0)(l)|2 ≥
c2−j , Card(Hj) ≥ c2j and, thanks to (Ag), inf l∈Hj

g−2
l ≥ c22δj . Hence,

c22δj ≤ c inf
l∈Hj

g−2
l ≤ c2−j

∑
l∈Hj

|gl|−2 ≤
∑
l∈Cj

|gl|−2|F (ψj,0)(l)|2 = σ2
j .

This ends the proof of Lemma 1.

�

Lemma 2 below presents two concentration inequalities satisfied by the
estimator β̂j,k.

Lemma 2 Let β̂j,k be the estimator defined by (6). For λ large enough, there
exists a constant C > 0 such that, for any integer j ≥ τ , we have

P


∣∣∣∣∣∣
2j−1∑
k=0

βj,k(β̂j,k − βj,k)

∣∣∣∣∣∣ ≥ λn−1/2j1/22δj

2j−1∑
k=0

β2
j,k

1/2
 ≤ 2 exp

(
−Cλ2j

)
(8)

and

P


2j−1∑

k=0

(β̂j,k − βj,k)2

1/2

≥ λn−1/22j/22δj

 ≤ 2 exp
(
−Cλ22j

)
. (9)

Proof of Lemma 2. The first part of the proof is devoted to the bound
(8) and the second part, to the bound (9).

- Proof of the bound (8). Since the random variable (el)l are i.i.d. with
el ∼ N (0, 1), we have

2j−1∑
k=0

βj,k(β̂j,k − βj,k) = n−1/2
∑
l∈Cj

elg
−1
l

2j−1∑
k=0

βj,kF (ψj,k)(l) ∼ N
(
0, θ2j

)
,

where

θ2j = n−1
∑
l∈Cj

|gl|−2

2j−1∑
k=0

βj,kF (ψj,k)(l)

2

.
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(Ag) yields supl∈Cj
|gl|−2 ≤ C22δj . It follows from this, the Plancherel theorem

and the orthonormality of the wavelet basis that

θ2j = n−1
∑
l∈Cj

|gl|−2

F
2j−1∑

k=0

βj,kψj,k

 (l)

2

≤ Cn−122δj
∑
l∈Cj

F
2j−1∑

k=0

βj,kψj,k

 (l)

2

= Cn−122δj

∫ 1

0

2j−1∑
k=0

βj,kψj,k(x)

2

dx = Cn−122δj
2j−1∑
k=0

β2
j,k.

Applying a standard Gaussian concentration inequality, we obtain

P


∣∣∣∣∣∣
2j−1∑
k=0

βj,k(β̂j,k − βj,k)

∣∣∣∣∣∣ ≥ λn−1/2j1/22δj

2j−1∑
k=0

β2
j,k

1/2


≤ 2 exp

−
λn−1/2j1/22δj

2j−1∑
k=0

β2
j,k

1/2


2

/(2θ2j )

 ≤ 2 exp
(
−Cλ2j

)
.

This ends the proof of the bound (8).
- Proof of the bound (9). To obtain the bound (9), we need the Cirelson

inequality presented in Lemma 3 below.

Lemma 3 (Cirelson, Ibragimov and Sudakov (1976)) Let D be a subset
of R. Let (ηt)t∈D be a centered Gaussian process. If E (supt∈D ηt) ≤ N and
supt∈D V (ηt) ≤ V then, for any x > 0, we have

P
(

sup
t∈D

ηt ≥ x+N

)
≤ exp

(
−x2/(2V )

)
.

We have β̂j,k − βj,k = n−1/2
∑

l∈Cj
elg

−1
l F (ψj,k)(l) ∼ N

(
0, n−1σ2

j

)
, where

σ2
j =

∑
l∈Cj

|gl|−2|F (ψj,0)(l)|2. Set Ω = {a = (ak) ∈ R;
∑2j−1

k=0 a2
k ≤ 1}. For

any a ∈ Ω, let Z(a) be the centered Gaussian process defined by

Z(a) =
2j−1∑
k=0

ak(β̂j,k − βj,k) = n−1/2
∑
l∈Cj

elg
−1
l

2j−1∑
k=0

akF (ψj,k)(l).

By an argument of duality, we have supa∈Ω Z(a) =
(∑2j−1

k=0 (β̂j,k − βj,k)2
)1/2

.
Now, let us determine the values of N and V which appeared in the Cirelson
inequality (see Lemma 3).
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Value of N . The Cauchy-Schwarz inequality and Lemma 1 imply that

E
(

sup
a∈Ω

Z(a)
)

= E


2j−1∑

k=0

(β̂j,k − βj,k)2

1/2
 ≤

2j−1∑
k=0

E
(
(β̂j,k − βj,k)2

)1/2

≤ C

n−1
2j−1∑
k=0

σ2
j

1/2

≤ Cn−1/22j/22δj .

Hence N = Cn−1/22j/22δj .
Value of V . Using the fact that, for any l, l′ ∈ Z, we have E (elel′) =∫ 1

0
e−2iπ(l−l′)tdt = 1{l=l′}, (Ag), the Plancherel inequality and the orthonor-

mality of the wavelet basis, we obtain

sup
a∈Ω

V(Z(a)) = sup
a∈Ω

E

2j−1∑
k=0

2j−1∑
k′=0

ak(β̂j,k − βj,k)ak′(β̂j,k′ − βj,k′)


= n−1 sup

a∈Ω

( 2j−1∑
k=0

2j−1∑
k′=0

akak′

∑
l∈Cj

∑
l′∈Cj

gl
−1F (ψj,k)(l)(gl′)−1F (ψj,k′)(l′)E (elel′)

)

= n−1 sup
a∈Ω

2j−1∑
k=0

2j−1∑
k′=0

akak′

∑
l∈Cj

|gl|−2
F (ψj,k)(l)F (ψj,k′)(l)


≤ Cn−122δj sup

a∈Ω

2j−1∑
k=0

2j−1∑
k′=0

akak′

∑
l∈Cj

F (ψj,k)(l)F (ψj,k′)(l)


= Cn−122δj sup

a∈Ω

2j−1∑
k=0

2j−1∑
k′=0

akak′

∫ 1

0

ψj,k(x)ψj,k′(x)dx


= Cn−122δj sup

a∈Ω

2j−1∑
k=0

a2
k

 ≤ C22δjn−1.

Hence V = C22δjn−1. By taking λ large enough and x = 2−1λn−1/22j/22δj ,
the Cirelson inequality described in Lemma 3 yields

P


2j−1∑

k=0

(β̂j,k − βj,k)2

1/2

≥ λn−1/22j/22δj


≤ P

(
sup
a∈Ω

Z(a) ≥ x+N

)
≤ exp

(
−x2/(2V )

)
≤ 2 exp

(
−Cλ22j

)
.

The bound (9) is proved. The proof of Lemma 2 is complete.

�
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This ends the proof of Proposition 1.
�

Proof of Theorem 2. We distinguish the case s > δ + 4−1 and the case
s ∈ (0, δ + 4−1].

The case s > δ + 4−1. We consider the two functions

f0(x) = 1, f1(x) = 1 + n−1/2, x ∈ [0, 1].

Clearly, f0 and f1 belong to Bs
2,∞(M). Moreover, we have∣∣‖f0‖22 − ‖f1‖22∣∣ = 2n−1/2 + n−1 ≥ n−1/2 = κn.

Now, in order to apply Theorem 2.12 (iii) of Tsybakov (2004), we aim to
bound (by a constant C) the chi-square divergence χ2(Pf1 ,Pf0) defined by

χ2(Pf1 ,Pf0) =
∫ (

dPf1

dPf0

)2

dPf0 − 1, (10)

where Ph denotes the probability distribution of {Y (t); t ∈ [0, 1]} indexed by
the function h.

Let ? be the standard convolution product on the unit interval. The Gir-
sanov theorem yields

dPf1

dPf0

= exp(n
∫ 1

0

((f1 ? g)(t)− (f0 ? g)(t)))dY (t)−

2−1n

∫ 1

0

(
(f1 ? g)2(t)− (f0 ? g)2(t)

)
dt)

= exp

(
n1/2

∫ 1

0

g(u)du
∫ 1

0

dY (t)− 2−1n

(∫ 1

0

g(u)du
)2

(2n−1/2 + n−1)

)
.

So, under Pf0 , we have

dPf1

dPf0

= exp

(∫ 1

0

g(u)du
∫ 1

0

dW (t)− 2−1

(∫ 1

0

g(u)du
)2

(2n1/2 + 1)

)
.

Using the equality
∫

exp
(
2
∫ 1

0
g(u)du

∫ 1

0
dW (t)

)
dPf0 = exp

(
2
(∫ 1

0
g(u)du

)2
)

,

the Cauchy-Schwarz inequality and the fact that
∫ 1

0
g2(t)dt <∞, we have∫ (

dPf1

dPf0

)2

dPf0

= exp

(
−
(∫ 1

0

g(u)du
)2

(2n1/2 + 1)

)∫
exp

(
2
∫ 1

0

g(u)du
∫ 1

0

dW (t)
)
dPf0

= exp

(
−
(∫ 1

0

g(u)du
)2

(2n1/2 + 1)

)
exp

(
2
(∫ 1

0

g(u)du
)2
)

≤ exp

((∫ 1

0

g(u)du
)2
)
≤ exp

(∫ 1

0

g2(u)du
)
≤ C.
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Therefore, there exists a constant C > 0 such that

χ2(Pf1 ,Pf0) =
∫ (

dPf1

dPf0

)2

dPf0 − 1 ≤ C <∞.

It follows from Theorem 2.12 (iii) of Tsybakov (2004) that

inf
eQn

sup
f∈Bs

2,∞(M)

E
((

Q̃n − ‖f‖22
)2
)
≥ cκ2

n = cn−1 = cϕ∗n. (11)

The case s ∈ (0, δ + 4−1]. We consider the two functions

f0(x) = 0, f1(x) = γj∗

2j∗∑
k∗=0

wk∗ψj∗,k∗(x), x ∈ [0, 1], (12)

where j∗ is an integer to be chosen below, γj∗ is a quantity to be chosen
below, and w0, . . . , w2j∗−1 are i.i.d. Rademacher random variables (i.e., for
any u ∈ {0, . . . , 2j∗ − 1}, P(wu = 1) = P(wu = −1) = 2−1).

Clearly, f0 belongs to Bs
2,∞(M). Thanks to the orthogonality of the wavelet

basis, for any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, we have βj,k =∫ 1

0
f1(x)ψj,k(x)dx = γj∗wk for j = j∗, and 0 otherwise. Thus, if γ2

j∗
= M∗2−j∗(2s+1),

then

22j∗s
2j∗−1∑
k=0

β2
j∗,k = 22j∗sγ2

j∗

2j∗−1∑
k=0

w2
k = γ2

j∗2
j∗(2s+1) = M∗.

Therefore, for such a choice of γj∗ , we have f1 ∈ Bs
2,∞(M).

Let j∗ be an integer such that

2−1n1/(2s+2δ+1/2) ≤ 2j∗ ≤ n1/(2s+2δ+1/2). (13)

With the previous value of γj∗ , the orthonormality of the wavelet basis gives

∣∣‖f0‖22 − ‖f1‖22∣∣ = ‖f1‖22 = γ2
j∗

2j∗−1∑
k=0

w2
k = γ2

j∗2
j∗ ≥ C2−2j∗s

≥ Cn−2s/(2s+2δ+1/2) = κn.

In what follows, we consider the function f1 described by (19) with the inte-
ger j∗ defined by (13) and the quantity γj∗ = M

1/2
∗ 2−j∗(s+1/2). In order to

apply Theorem 2.12 (iii) of Tsybakov (2004), we aim to bound the chi-square
divergence χ2(Pf1 ,Pf0) (see (10)) by a constant.

Let ? be the standard convolution product. Due to the definitions of f0,
f1, the random variables w0, . . . , w2j∗−1, and the Girsanov theorem, we have

dPf1

dPf0

=
2j∗−1∏
k=0

[2−1 exp
(
nγj∗

∫ 1

0

(ψj∗,k ? g)(t)dY (t)− 2−1nγ2
j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)

+ 2−1 exp
(
−nγj∗

∫ 1

0

(ψj∗,k ? g)(t)dY (t)− 2−1nγ2
j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)

].
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So, under Pf0 , we have

dPf1

dPf0

=
2j∗−1∏
k=0

[2−1 exp
(
n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)− 2−1nγ2
j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)

+ 2−1 exp
(
−n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)− 2−1nγ2
j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)

]

=
2j∗−1∏
k=0

2−1 exp
(
−2−1nγ2

j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)
×

[exp
(
n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)
)

+ exp
(
−n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)
)

].

Hence,

∫ (
dPf1

dPf0

)2

dPf0 =
2j∗−1∏
k=0

2−2 exp
(
−nγ2

j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)
×

∫
[exp

(
n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)
)

+ exp
(
−n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)
)

]2dPf0 .

Since ∫
exp

(
2n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)
)
dPf0

=
∫

exp
(
−2n1/2γj∗

∫ 1

0

(ψj∗,k ? g)(t)dW (t)
)
dPf0

= exp
(

2nγ2
j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)
,

we have∫ (
dPf1

dPf0

)2

dPf0

=
2j∗−1∏
k=0

2−1

(
exp

(
nγ2

j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
)

+ exp
(
−nγ2

j∗

∫ 1

0

(ψj∗,k ? g)2(t)dt
))

.

The inequality 2−1(ex + e−x) ≤ ex2/2, x ∈ R, implies that

∫ (
dPf1

dPf0

)2

dPf0 ≤
2j∗−1∏
k=0

exp

(
2−1n2γ4

j∗

(∫ 1

0

(ψj∗,k ? g)2(t)dt
)2
)
. (14)
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Using (Ag) and the Plancherel theorem, we obtain∫ 1

0

(ψj∗,k ? g)2(t)dt =
∑
l∈Z

(F (ψj∗,k ? g))
2 (l) =

∑
l∈Cj∗

|F (ψj∗,k) (l)|2|gl|2

≤ C2−2δj∗
∑

l∈Cj∗

|F (ψj∗,k) (l)|2 = C2−2δj∗

∫ 1

0

ψ2
j∗,k(x)dx

= C2−2δj∗ .

We deduce that∫ (
dPf1

dPf0

)2

dPf0 ≤
2j∗−1∏
k=0

exp
(
Cn2γ4

j∗2
−4δj∗

)
= exp

(
Cn2γ4

j∗2
(1−4δ)j∗

)
.

Thanks to the definitions of j∗ and γj∗ , we have

n2γ4
j∗2

(1−4δ)j∗ ≤ Cn22−j∗(4s+2)2(1−4δ)j∗ ≤ Cn22−j∗(4s+1+4δ) ≤ C.

It follows the existence of a constant C > 0 such that

χ2(Pf1 ,Pf0) =
∫ (

dPf1

dPf0

)2

dPf0 − 1 ≤ C <∞.

Theorem 2.12 (iii) of Tsybakov (2004) yields

inf
eQn

sup
f∈Bs

2,∞(M)

E
((

Q̃n − ‖f‖22
)2
)
≥ cκ2

n = cn−4s/(2s+2δ+1/2) = cϕ∗n. (15)

Putting (11) and (15) together, we prove the existence of a constant c > 0
such that

inf
eQn

sup
f∈Bs

2,∞(M)

E
((

Q̃n − ‖f‖22
)2
)
≥ cϕ∗n,

where ϕ∗n = max
(
n−1, n−4s/(2s+2δ+1/2)

)
. Theorem 2 is proved.

�

Proof of Theorem 3. We need the following lemma.

Lemma 4 If (A∗g) is satisfied, then there exists a constant C > 0 such that,
for any integer j ≥ τ ,

η2
j ≤ Ce(8π3−1a)2bj

.

Proof of Lemma 4. Using the inequalities supl∈Dj
|F (φj,0)(l)|2 ≤ C2−j ,

Card(Dj) ≤ C2j , (A∗g) and the fact that supl∈Dj
|gl|−2 ≤ C supl∈Dj

e2a|l|b ≤
Ce(8π3−1a)2bj

, we have

η2
j =

∑
l∈Dj

|gl|−2|F (φj,0)(l)|2 ≤ C2−j
∑
l∈Dj

|gl|−2 ≤ C sup
l∈Dj

|gl|−2 ≤ Ce(8π3−1a)2bj

.
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The decomposition ‖f‖22 =
∑2j∗−1

k=0 α2
j∗,k +

∑∞
j=j∗

∑2j−1
k=0 β2

j,k and the ele-
mentary inequality: (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, we have

E
((
Q∗n − ‖f‖22

)2) ≤ 2(E + F), (16)

where

E = E


2j∗−1∑

k=0

(
α̂2

j∗,k − n−1η2
j∗ − α2

j∗,k

)2
 , F =

 ∞∑
j=j∗

2j−1∑
k=0

β2
j,k

2

.

The upper bound for F. Since f ∈ Bs
2,∞(M), we have

F =

 ∞∑
j=j∗

2j−1∑
k=0

β2
j,k

2

≤ C

 ∞∑
j=j∗

2−2js

2

≤ C2−4j∗s ≤ C(log n)−4s/b.(17)

The upper bound for E. It follows from the decomposition α̂j∗,k = αj∗,k +
n−1/2

∑
l∈Z g

−1
l e2iπlk/2j∗

F (φj∗,0)(l)el and again: (x+y)2 ≤ 2(x2+y2), (x, y) ∈
R2, that

E ≤ 2 (G + H) ,

where

G = n−2E


2j∗−1∑

k=0

(∑
l∈Z

g−1
l e2iπlk/2j∗

F (φj∗,0)(l)el

)2

− η2
j∗

2


and

H = 4n−1E


2j∗−1∑

k=0

|αj∗,k|

(∑
l∈Z

g−1
l e2iπlk/2j∗

F (φj∗,0)(l)el

)2
 .

The upper bound for G. Using the Minkowski inequality, the fact that the
random variables (el)l∈Z are independent N (0, 1), (A∗g) and Lemma 4, we
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obtain

G ≤ n−2

2j∗−1∑
k=0

E


(∑

l∈Z
g−1

l e2iπlk/2j∗
F (φj∗,0)(l)el

)2

− η2
j∗

2



1/2


2

= n−2

2j∗−1∑
k=0

V

(∑
l∈Z

g−1
l e2iπlk/2j∗

F (φj∗,0)(l)el

)2
1/2


2

≤ n−2

2j∗−1∑
k=0

E

(∑
l∈Z

g−1
l e2iπlk/2j∗

F (φj∗,0)(l)el

)4
1/2


2

≤ Cn−2

2j∗−1∑
k=0

η2
j∗

2

= Cn−222j∗η4
j∗ ≤ Cn−222j∗e(16π3−1a)2bj∗

≤ Cn−2(log n)2/bn = Cn−1(log n)2/b ≤ C(log n)−4s/b.

The upper bound for H. Using the Hölder inequality, the inequality
∑2j∗−1

k=0 α2
j∗,k ≤

||f ||22 ≤M∗, the fact that the random variables (el)l∈Z are independentN (0, 1),
(A∗g) and Lemma 4, we obtain

H = 4n−1E


2j∗−1∑

k=0

|αj∗,k|

(∑
l∈Z

g−1
l e2iπlk/2j∗

F (φj∗,0)(l)el

)2


≤ 4n−1
2j∗−1∑
k=0

α2
j∗,k

2j∗−1∑
k=0

E

(∑
l∈Z

g−1
l e2iπlk/2j∗

F (φj∗,0)(l)el

)2


≤ Cn−1
2j∗−1∑
k=0

η2
j∗ = Cn−12j∗η2

j∗ ≤ Cn−12j∗e(8π3−1a)2bj∗

≤ Cn−1(log n)1/bn1/2 = Cn−1/2(log n)1/b ≤ C(log n)−4s/b.

It follows from the obtained upper bounds for G and H that

E ≤ 2 (G + H) ≤ C(log n)−4s/b. (18)

Putting (16), (17) and (18) together, we obtain

E
((
Q∗n − ‖f‖22

)2) ≤ 2(E + F) ≤ C(log n)−4s/b.

This ends the proof of Theorem 3.

�
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Proof of Theorem 4. The proof is similar to the proof of Theorem 2 in the
case s ∈ (0, δ + 4−1]. We consider the two functions

f0(x) = 0, f1(x) = γj∗

2j∗∑
k∗=0

wk∗ψj∗,k∗(x), x ∈ [0, 1], (19)

where j∗ is an integer to be chosen below, γj∗ is a quantity to be chosen below,
and w0, . . . , w2j∗−1 are i.i.d. Rademacher random variables. Clearly, f0 belongs
to Bs

2,∞(M). If γ2
j∗

= M∗2−j∗(2s+1), then f1 ∈ Bs
2,∞(M). Let j∗ be an integer

such that

(8π3−1a)−1/b (2 log n− ((4s+ 1)/b) log(log n))1/b

≤ 2j∗ < 2(8π3−1a)−1/b (2 log n− ((4s+ 1)/b) log(log n))1/b
. (20)

With the previous value of γj∗ , the orthonormality of the wavelet basis gives

∣∣‖f0‖22 − ‖f1‖22∣∣ = ‖f1‖22 = γ2
j∗

2j∗−1∑
k=0

w2
k = γ2

j∗2
j∗ ≥ C2−2j∗s

≥ C(log n)−2s/b = κn.

In what follows, we consider the function f1 described by (19) with the inte-
ger j∗ defined by (20) and the quantity γj∗ = M

1/2
∗ 2−j∗(s+1/2). In order to

apply Theorem 2.12 (iii) of Tsybakov (2004), we aim to bound the chi-square
divergence χ2(Pf1 ,Pf0) by a constant. It follows from (14) that

χ2(Pf1 ,Pf0) =
∫ (

dPf1

dPf0

)2

dPf0 − 1 ≤
∫ (

dPf1

dPf0

)2

dPf0

≤
2j∗−1∏
k=0

exp

(
2−1n2γ4

j∗

(∫ 1

0

(ψj∗,k ? g)2(t)dt
)2
)
.

Using (A∗g) and the Plancherel theorem, we obtain∫ 1

0

(ψj∗,k ? g)2(t)dt =
∑
l∈Z

(F (ψj∗,k ? g))
2 (l) =

∑
l∈Cj∗

|F (ψj∗,k) (l)|2|gl|2

≤ Ce−(4π3−1a)2bj∗ ∑
l∈Cj∗

|F (ψj∗,k) (l)|2

= Ce−(4π3−1a)2bj∗
∫ 1

0

ψ2
j∗,k(x)dx = Ce−(4π3−1a)2bj∗

.

We deduce that

χ2(Pf1 ,Pf0) ≤
2j∗−1∏
k=0

exp
(
Cn2γ4

j∗e
−(8π3−1a)2bj∗

)
= exp

(
Cn2γ4

j∗2
j∗e−(8π3−1a)2bj∗

)
.
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Thanks to the definitions of j∗ and γj∗ , we have

n2γ4
j∗2

j∗e−(8π3−1a)2bj∗ ≤ Cn22−j∗(4s+1)e−(8π3−1a)2bj∗

≤ C
(log n)(4s+1)/b

(2 log n− ((4s+ 1)/b) log(log n))(4s+1)/b
≤ C.

It follows the existence of a constant C > 0 such that

χ2(Pf1 ,Pf0) =
∫ (

dPf1

dPf0

)2

dPf0 − 1 ≤ C <∞.

Theorem 2.12 (iii) of Tsybakov (2004) yields

inf
eQn

sup
f∈Bs

2,∞(M)

E
((

Q̃n − ‖f‖22
)2
)
≥ cκ2

n = c(log n)−4s/b.

Theorem 4 is proved.

�
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