
HAL Id: hal-00174239
https://hal.science/hal-00174239v1

Preprint submitted on 21 Sep 2007 (v1), last revised 15 Oct 2008 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON ADAPTIVE WAVELET ESTIMATION OF A
QUADRATIC FUNCTIONAL FROM A

DECONVOLUTION PROBLEM
Christophe Chesneau

To cite this version:
Christophe Chesneau. ON ADAPTIVE WAVELET ESTIMATION OF A QUADRATIC FUNC-
TIONAL FROM A DECONVOLUTION PROBLEM. 2007. �hal-00174239v1�

https://hal.science/hal-00174239v1
https://hal.archives-ouvertes.fr


ON ADAPTIVE WAVELET ESTIMATION

OF A QUADRATIC FUNCTIONAL FROM

A DECONVOLUTION PROBLEM

Christophe Chesneau
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Abstract

We consider the following situation: an unknown function f is observed in Gaussian
white noise after convolution with a known function g. We wish to estimate the
quadratic functional

∫
f2(t)dt from the observations. To reach this goal, we propose

an adaptive estimator based on wavelet thresholding. We prove that it achieves
near optimal rates of convergence under the mean squared error over a range of
smoothness classes.
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1 MOTIVATION

We consider the stochastic process {Y (t); t ∈ [0, 1]} defined by

dY (t) =
(∫ 1

0
f(t− u)g(u)du

)
dt+ n−1/2dW (t), (1.1)

where {W (t); t ∈ [0, 1]} is a standard Brownian motion, f an unknown one-
periodic function such that

∫ 1
0 f

2(t)dt <∞, and g a known one-periodic func-
tion such that

∫ 1
0 g

2(t)dt < ∞. We suppose that the Fourier coefficients of g
decay in a polynomial fashion. The goal is to estimate f , or a quantity depend-
ing on f , from {Y (t); t ∈ [0, 1]}. The equation (1.1) modelizes the important

Preprint submitted to Elsevier 21 September 2007



problem of recovery of noisy signals in linear motion blur. Further details can
be found in Bertero and Boccacci (1998).

In the literature, many authors have examined the estimation of f . See, for
instance, Cavalier and Tsybakov (2002), Johnstone et al. (2004) and Ches-
neau (2007). In this paper, we focus our attention on a different problem: the
estimation of the quadratic functional Q(f) defined by

Q(f) = ‖f‖2
2 =

∫ 1

0
f 2(t)dt.

The problem of estimating quadratic functionals is closely connected to the
construction of confidence balls in nonparametric function estimation. It has
already been investigated for a wide variety of models (density, regression,
Gaussian model in white noise, density derivatives, ... ). See, for instance,
Bickel and Ritov (1988), Donoho and Nussbaum (1990), Kerkyacharian and
Picard (1996), Efromovich and Low (1996), Gayraud and Tribouley (1999),
Johnstone (2001a,b), Laurent (2005), Cai and Low (2005) and Butucea (2007).
However, to our knowledge, the estimation of Q(f) = ‖f‖2

2 from the convolu-
tion model in Gaussian white noise (1.1) has never been studied.

To estimate Q(f) = ‖f‖2
2, we propose an adaptive wavelet estimator based

on the global thresholding. The idea of this thresholding is the following:
we decompose the quadratic function Q(f) by using an appropriate wavelet
basis, we estimate the associated coefficients via natural estimators, then, at
each level of the wavelets, we keep all of these estimators if, and only if,
the corresponding l2 norm is greater than a fixed threshold. This technic has
been initially developed by Gayraud and Tribouley (1999) for the quadratic
functional estimation in the standard Gaussian white noise model.

Naturally, the construction of our estimator depends on the complexity of
the convolution model (1.1) and, in particular, the function g. To evaluate
his theoretical performances, we adopt the (asymptotic) minimax approach
under the mean squared error over Besov balls. More precisely, if Q̂n denotes
our estimator and Bs

2,∞(M) denotes the Besov balls, we aim to determine the
smallest rates of convergence ϕn such that

lim
n→∞

ϕ−1
n sup

f∈Bs
2,∞

(M)
E

((
Q̂n − ‖f‖2

2

)2
)
<∞.

In this statistical framework, we prove that Q̂n achieves near optimal of con-
vergence. The proof is divided into two parts. The first part is devoted to the
upper bounds. A key tool is an inequality for weighted chi-squared established
by Johnstone (2001b). The second part concerns the lower bounds. They are
obtained via a specific theorem proved by Tsybakov (2004).

The paper is organized as follows. In Section 2, we present wavelets and Besov
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balls. Section 3 clarifies the assumption made on g and introduces some inter-
mediate estimators. The main estimator of the study is defined in Section 4.
Section 5 is devoted to the results. The proofs are postponed in Section 6.

2 WAVELETS AND BESOV BALLS

We consider an orthonormal wavelet basis generated by dilation and transla-
tion of a ”father” Meyer-type wavelet φ and a ”mother” Meyer-type wavelet ψ.
The particularities of such wavelets are that the Fourier transforms of φ and ψ
have bounded support. More precisely, we have supp (F (φ)) ⊂ [−4π3−1, 4π3−1]
and supp (F (ψ)) ⊂ [−8π3−1,−2π3−1]∪[2π3−1, 8π3−1], where, for any function
h ∈ L

1([0, 1]), F (h) denotes the Fourier transform of h defined by F (h)(l) =∫ 1
0 h(x)e

−2iπlxdx. For further details about Meyer-type wavelets, see Walter
(1994), and Zayed and Walter (1996).

For the purposes of this paper, we use the periodized wavelet bases on the
unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j − 1}, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k)

be the elements of the wavelet basis and

φ
per
j,k (x) =

∑

l∈Z

φj,k(x− l), ψ
per
j,k (x) =

∑

l∈Z

ψj,k(x− l),

their periodized versions. There exists an integer τ such that the collection ζ

defined by ζ = {φper
τ,k , k = 0, ..., 2τ − 1; ψper

j,k , j = τ, ...,∞, k = 0, ..., 2j − 1}
constitutes an orthonormal basis of L

2([0, 1]). In what follows, the superscript
”per” will be suppressed from the notations for convenience. A one-periodic
function f ∈ L

2([0, 1]) can be expanded into a wavelet series as

f(x) =
2τ−1∑

k=0

ατ,kφτ,k(x) +
∞∑

j=τ

2j−1∑

k=0

βj,kψj,k(x),

where ατ,k =
∫ 1
0 f(t)φτ,k(t)dt and βj,k =

∫ 1
0 f(t)ψj,k(t)dt. For further details

about wavelet bases on the unit interval, we refer to Cohen et al. (1993).

Now, let us present the Besov balls Bs
2,∞(M). Let M ∈ (0,∞) and s ∈ (0,∞).

We say that a one-periodic function f belongs to the Besov balls Bs
2,∞(M) if,

and only if, there exists a constant M∗ > 0 such that the associated wavelet
coefficients satisfy

22τ
2τ−1∑

k=0

α2
τ,k + sup

j≥τ
22js

2j−1∑

k=0

β2
j,k ≤ M∗.
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These sets contain all the Besov balls Bs
p,∞(M) with p ≥ 2. See, for instance,

Meyer (1992)

3 PRELEMINARIES

In this section, we clarify the assumption made on g and we introduce some
intermediate estimators.

Assumption on g. As mentioned in Section 1, we suppose that the Fourier
coefficients of g decay in a polynomial fashion. In other words, there exist
three constants, c > 0, C > 0 and δ ≥ 0, such that, for |l| large enough, g
satisfies

c|l|−δ ≤ |F (g)(l)| ≤ C|l|−δ. (3.1)

The factor δ will play a determinant role in our study.

The assumption (3.1) is satisfied for a wide variety of functions. An immedi-
ate example is the one-periodic function g defined by g(x) =

∑
l∈Z e

−|x+l|. It
satisfies the inequality (3.1) with δ = 2.

Preliminaries to the estimation of ‖f‖2
2 from {Y (t); t ∈ [0, 1]}. Thanks to

the orthonormality of the wavelet basis, the unknown quadratic functional
Q(f) = ‖f‖2

2 can be decomposed as

‖f‖2
2 =

2τ−1∑

k=0

α2
τ,k +

∞∑

j=τ

2j−1∑

k=0

β2
j,k.

Thus, the first step to estimate ‖f‖2
2 consists in estimating the unknown co-

efficients (α2
τ,k)k and (β2

j,k)j,k. In what follows, we investigate the estimation

of (β2
j,k)j,k. Since, for any l ∈ Z, F

(∫ 1
0 f(t− u)g(u)du

)
(l) = F (f)(l)F (g)(l),

if we set

yl =
∫ 1

0
e−2πiltdY (t), fl = F (f)(l), gl = F (g)(l) and el =

∫ 1

0
e−2πiltdB(t),

then we have
yl = flgl + el.

The Parseval theorem yields

∑

l∈Z

ylg
−1
l F (ψj,k)(l)=

∑

l∈Z

flF (ψj,k)(l) + n−1/2
∑

l∈Z

g−1
l F (ψj,k)(l)el

= βj,k + n−1/2
∑

l∈Z

g−1
l F (ψj,k)(l)el.

4



Since, n−1/2∑
l∈Z g

−1
l F (ψj,k)(l)el ∼ N

(
0, n−1∑

l∈Z g
−2
l F 2(ψj,k)(l)

)
, we have

β̂j,k =
∑

l∈Z

ylg
−1
l F (ψj,k)(l) ∼ N


βj,k, n

−1
∑

l∈Z

g−2
l F 2(ψj,k)(l)


 .

Therefore, the random variable θ̂j,k defined by

θ̂j,k = β̂2
j,k − n−1

∑

l∈Z

g−2
l F 2(ψj,k)(l)

is an unbiased (and a natural) estimator of β2
j,k.

We are now in the position to describe the main estimator of the study.

4 ESTIMATOR

Set (a)+ = max(a, 0). Let j1 be an integer such that

2−1n1/(2δ+1/2) < 2j1 ≤ n1/(2δ+1/2).

We define the thresholding estimator Q̂n by

Q̂n =
2τ−1∑

k=0

(
α̂2

τ,k − n−1η2
τ,k

)
+

j1∑

j=τ




2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − n−1σ2
j,∞λn




+

, (4.1)

where

α̂τ,k =
∑

l∈Z

ylg
−1
l F (φτ,k)(l), β̂j,k =

∑

l∈Z

ylg
−1
l F (ψj,k)(l),

η2
τ,k =

∑

l∈Z

g−2
l F 2(φτ,k)(l), σ2

j,k =
∑

l∈Z

g−2
l F 2(ψj,k)(l),

σ2
j,∞ = supk=0,...,2j−1 σ

2
j,k and λn = λn,j = 2(log 2)1/2(1 + 4δ)1/2 (j2j)

1/2
.

As mentioned in Section 1, the construction of Q̂n is based on the global thresh-
olding technic initially developed by Gayraud and Tribouley (1999) for the
quadratic functional estimation in the standard Gaussian white noise model.

Notice that the definition of Q̂n does not require any a priori knowledge on f .
It is adaptive.
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5 MAIN RESULTS

Theorem 5.1 below determines the rates of convergence achieved by the esti-
mator (4.1) under the mean squared error over the Besov balls Bs

2,∞(M).

Theorem 5.1 Let us consider the convolution model defined by (1.1). Assume
that g satisfies the inequality (3.1). Let Q̂n be the estimator defined by (4.1).
Then, there exists a constant C > 0 such that, for n large enough, we have

sup
f∈Bs

2,∞
(M)

E

((
Q̂n − ‖f‖2

2

)2
)
≤ Cϕn,

where

ϕn =




n−1, when s > δ + 4−1,
(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
, when s ∈ (0, δ + 4−1].

One part of the proof of Theorem 5.1 uses an inequality for weighted chi-
squared established by Johnstone (2001b).

Notice that, the rates of convergence ϕn presented in Theorem 5.1 are equal

to max
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)
.

These rates of convergence are similar to those obtained by Butucea (2007)
(see Theorem 4) for a different model (the density convolution), with a differ-
ent estimator (the deconvolution kernel estimator), and under a different risk
(R(h, f) = E (|h− ‖f‖2

2|)).

The result of Theorem 5.1 raises the following question: are the rates of conver-
gence ϕn the optimal ? Theorem 5.2 below provides the answer by determining
the minimax lower bounds.

Theorem 5.2 Let us consider the convolution model defined by (1.1). Assume
that g satisfies the inequality (3.1). Then, there exists a constant c > 0 such
that, for n large enough, we have

inf
Q̃n

sup
f∈Bs

2,∞
(M)

E

((
Q̃n − ‖f‖2

2

)2
)
≥ cϕ∗

n,

where inf
Q̃n

denotes the infimum over all the possible estimators of ‖f‖2
2, and

ϕ∗
n =




n−1, when s > δ + 4−1,

n−4s/(2s+2δ+1/2), when s ∈ (0, δ + 4−1].
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The proof of Theorem 5.2 is based on a general theorem established by Tsy-
bakov (2004).

The results of Theorems 5.1 and 5.2 show that the estimator Q̂n is near optimal
under the mean squared error over the Besov balls Bs

2,∞(M). ”Near” is due to
the case s ∈ (0, δ + 4−1] where there is an extra logarithmic term.

6 PROOFS

In this section, c and C denote positive constants which can take different
values for each mathematical term. They are independent of f and n.

PROOF OF THEOREM 5.1. The orthonormality of the wavelet basis yields

‖f‖2
2 =

2τ−1∑

k=0

α2
τ,k +

j1∑

j=τ

2j−1∑

k=0

β2
j,k +

∞∑

j=j1+1

2j−1∑

k=0

β2
j,k.

The definition of Q̂n (see (4.1)) and an elementary of convexity give

E

((
Q̂n − ‖f‖2

2

)2
)
≤ 3(R + S + T ), (6.1)

where

R = E



(

2τ−1∑

k=0

(
α̂2

τ,k − n−1η2
τ,k − α2

τ,k

))2

 ,

S = E







j1∑

j=τ




2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − n−1σ2
j,∞λn





+

−
2j−1∑

k=0

β2
j,k




2



and

T =




∞∑

j=j1+1

2j−1∑

k=0

β2
j,k




2

.

Let us investigate the upper bounds for R, S and T in turn.

The upper bound for R. Using the Cauchy-Schwarz inequality, we have

R ≤ 2τ
2τ−1∑

k=0

E

((
α̂2

τ,k − n−1η2
τ,k − α2

τ,k

)2
)
. (6.2)

For the sake of simplicity, set
∑

l∈Z g
−1
l F (φτ,k)(l)el = ητ,kz where z ∼ N (0, 1).

We have
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α̂2
τ,k − n−1η2

τ,k − α2
τ,k =

(
ατ,k + n−1/2ητ,kz

)2
− n−1η2

τ,k − α2
τ,k

= 2n−1/2ητ,kzατ,k + n−1η2
τ,k

(
z2 − 1

)
.

Using the elementary inequality (x + y)2 ≤ 2(|x|2 + |y|2), x, y ∈ R, and the

fact that E (z2) = 1 and E

(
(z2 − 1)

2
)

= V (z2) = 2, we obtain

E

((
α̂2

τ,k − n−1η2
τ,k − α2

τ,k

)2
)
≤CE

(
n−1η2

τ,kz
2α2

τ,k + n−2η4
τ,k

(
z2 − 1

)2
)

≤C
(
n−1η2

τ,kα
2
τ,k + n−2η4

τ,k

)
.

Let Dτ be the support of φτ,k. The assumption made on g (see (3.1)) and the
fact that supl∈Z

F 2(φτ,k)(l) = supl∈Dτ
F 2(φτ,k)(l) ≤ C2−τ imply that

ητ,k =




∑

l∈Z

g−2
l F 2(φτ,k)(l)




1/2

≤ C



2−τ
∑

l∈Dτ

g−2
l




1/2

≤ C

(
sup
l∈Dτ

g−2
l

)1/2

≤C2δτ ≤ C. (6.3)

Moreover, since f ∈ Bs
2,∞(M),

2τ−1∑

k=0

α2
τ,k ≤M∗2

−2τ ≤ C. (6.4)

Putting (6.2), (6.3) and (6.4) together, we have

R≤C

(
n−1

2τ−1∑

k=0

η2
τ,kα

2
τ,k + n−2

2τ−1∑

k=0

η4
τ,k

)
≤ C

(
n−1

2τ−1∑

k=0

α2
τ,k + n−2

)

≤Cn−1 ≤ C max
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)

= Cϕn. (6.5)

We obtain the desired upper bound for R.

The upper bound for S. We consider the following lemma.

Lemma 6.1 Let X1, ..., Xn be n random variables. Then

E




(

n∑

i=1

Xi

)2


 ≤

(
n∑

i=1

(
E

(
X2

i

))1/2
)2

.

Applying Lemma 6.1 above, we obtain
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S≤




j1∑

j=τ


E









2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − n−1σ2
j,∞λn




+

−
2j−1∑

k=0

β2
j,k




2






1/2



2

.

(6.6)

Now, let us consider Lemma 6.2 below. It is a consequence of a result proved
by Johnstone (2001b). Further details are given in the proof of Lemma 6.2.

Lemma 6.2 We adopt the notations of the previous sections. There exist two
constants c and γ such that, for any j ∈ {τ, ..., j1}, we have

E









2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − n−1σ2
j,∞λn




+

−
2j−1∑

k=0

β2
j,k




2



≤ γσ4
j,∞


cn−22−4δj + min


2




2j−1∑

k=0

β2
j,kσ

−2
j,k




2

, vj





 ,

where

vj = 2n−22j + 4n−1
2j−1∑

k=0

β2
j,kσ

−2
j,k + 4(log 2)(1 + 4δ)

(
n−2j2j

)
.

Applying Lemma 6.2 above and an elementary inequality of convexity, we have


E









2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − σ2
j,∞n

−1λn




+

−
2j−1∑

k=0

β2
j,k




2






1/2

≤Cσ2
j,∞


n−12−2δj + min




2j−1∑

k=0

β2
j,kσ

−2
j,k , v

1/2
j




 . (6.7)

Let Cj be the support of ψj,k. Since supl∈Z
F 2(ψj,k)(l) = supl∈Cj

F 2(ψj,k)(l) ≤

C2−j, we have

σ2
j,∞ = sup

k=0,...,2j−1

σ2
j,k ≤ C2−j

∑

l∈Cj

g−2
l ≤ C sup

l∈Cj

g−2
l ≤ C22δj . (6.8)

It follows from (6.6), (6.7) and (6.8) that

S ≤ C(I + J)2, (6.9)
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where

I = n−1
j1∑

j=τ

22δj2−2δj

and

J =
j1∑

j=τ

22δj min




2j−1∑

k=0

β2
j,kσ

−2
j,k , v

1/2
j


 .

Let us study the upper bounds for I and J in turn.

The upper bound for I. We have

I = n−1(j1 − τ + 1) ≤ Cn−1 log n

≤Cmax
(
n−1/2,

(
n(log n)−1/2

)−2s/(2s+2δ+1/2)
)

= Cϕ1/2
n . (6.10)

The upper bound for J . We distinguish the case s > δ + 4−1 and the case
s ∈ (0, δ + 4−1].

The case s > δ + 4−1 . Let j2 be an integer such that

2−1
(
n(log n)−1

)1/(4δ+1)
< 2j2 ≤

(
n(logn)−1

)1/(4δ+1)
.

Notice that j2 ≤ j1. We have the following decomposition

J = G+H, (6.11)

where

G =
j2∑

j=τ

22δj min




2j−1∑

k=0

β2
j,kσ

−2
j,k , v

1/2
j




and

H =
j1∑

j=j2+1

22δj min




2j−1∑

k=0

β2
j,kσ

−2
j,k , v

1/2
j


 .

Let us investigate the upper bounds for G and H in turn.

The upper bound for G. Since inf l∈Z F
2(ψj,k)(l) = inf l∈Cj

F 2(ψj,k)(l) ≥ C2−j ,
we have

σ−2
j,k ≤ C


2−j

∑

l∈Cj

g−2
l




−1

≤ C

(
inf
l∈Cj

g−2
l

)−1

≤ C2−2δj . (6.12)

Using an elementary inequality of convexity, the inequality (6.12), and the

fact that f ∈ Bs
2,∞(M) (i.e.

∑2j−1
k=0 β

2
j,k ≤M∗2−2js), we obtain

10



v
1/2
j ≤C


n−1/2




2j−1∑

k=0

β2
j,kσ

−2
j,k




1/2

+ n−1j1/22j/2




≤C
(
n−1/22−(s+δ)j + n−1j1/22j/2

)
. (6.13)

It follows from the inequality (6.13) and the definition of j2 that

G≤
j2∑

j=τ

22δjv
1/2
j ≤ C


n−1/2

j2∑

j=τ

2−(s−δ)j + n−1
j2∑

j=τ

j1/22(2δ+1/2)j




≤C
(
n−1/2 + n−1j

1/2
2 2(2δ+1/2)j2

)
≤ Cn−1/2. (6.14)

The upper bound for H. It follows from the inequality σ−2
j,k ≤ C2−2δj (see

(6.12)) , the fact that f ∈ Bs
2,∞(M) and the definition of j2 that

H ≤
j1∑

j=j2+1

2j−1∑

k=0

β2
j,k(2

2δjσ−2
j,k ) ≤ C

j1∑

j=j2+1

2j−1∑

k=0

β2
j,k ≤ C

j1∑

j=j2+1

2−2js

≤C2−2j2s ≤ C
(
n(log n)−1

)−2s/(4δ+1)
≤ Cn−1/2. (6.15)

Combining (6.11), (6.14) and (6.15), we obtain

J = G+H ≤ Cn−1/2. (6.16)

By putting the inequalities (6.9), (6.10) and (6.16) together, we have

S ≤ C (I + J)2 ≤ Cn−1. (6.17)

The case s ∈ (0, δ + 4−1]. Let j3 be an integer such that

2−1
(
n(log n)−1/2

)1/(2s+2δ+1/2)
< 2j3 ≤

(
n(logn)−1/2

)1/(2s+2δ+1/2)
.

Notice that j3 ≤ j1. We have the following decomposition

J = L+M, (6.18)

where

L =
j3∑

j=τ

22δj min




2j−1∑

k=0

β2
j,kσ

−2
j,k , v

1/2
j





and

M =
j1∑

j=j3+1

22δj min




2j−1∑

k=0

β2
j,kσ

−2
j,k , v

1/2
j



 .
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Let us study the upper bounds for L and M in turn.

The upper bound for L. Set (a)+ = max(a, 0). Using the inequality (6.13), we
have

L≤
j3∑

j=τ

22δjv
1/2
j ≤ C



n−1/2
j3∑

j=τ

2−(s−δ)j + n−1
j3∑

j=τ

j1/22(2δ+1/2)j





≤C
(
n−1/22j3(δ−s)+ + n−1(log n)1/22(2δ+1/2)j3

)

≤C

(
n−(−(δ−s)++s+δ+1/4)/(2s+2δ+1/2) +

(
n(log n)−1/2

)−2s/(2s+2δ+1/2)
)

≤C
(
n(log n)−1/2

)−2s/(2s+2δ+1/2)
. (6.19)

The upper bound for M . By the inequality σ−2
j,k ≤ C2−2δj (see (6.12)) , the fact

that f ∈ Bs
2,∞(M) and the definition of j3, we have

M ≤
j1∑

j=j3+1

2j−1∑

k=0

β2
j,k(2

2δjσ−2
j,k ) ≤ C

j1∑

j=j3+1

2j−1∑

k=0

β2
j,k ≤ C

j1∑

j=j3+1

2−2js

≤C2−2j3s ≤ C
(
n(log n)−1/2

)−2s/(2s+2δ+1/2)
. (6.20)

Putting (6.18), (6.19) and (6.20) together, we obtain

J = L+M ≤ C
(
n(log n)−1/2

)−2s/(2s+2δ+1/2)
. (6.21)

Combining the inequalities (6.9), (6.10) and (6.21), we have

S ≤ C (I + J)2 ≤ C
(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
. (6.22)

It follows from (6.17) and (6.22) that, for any s > 0, we have

S ≤ C max
(
n−1,

(
n(logn)−1/2

)−4s/(2s+2δ+1/2)
)

= Cϕn. (6.23)

We obtain the desired upper bound for S.

The upper bound for T . Using the fact that f ∈ Bs
2,∞(M) and the definition

of j1, we have

T =




∞∑

j=j1+1

2j−1∑

k=0

β2
j,k




2

≤




∞∑

j=j1+1

2−2js




2

≤ C2−4j1s ≤ Cn−4s/(1/2+2δ)

≤Cmax
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)

= Cϕn. (6.24)
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We obtain the desired upper bound for T .

It follows from (6.1), (6.5), (6.23) and (6.24) that

sup
f∈Bs

2,∞
(M)

E

((
Q̂n − ‖f‖2

2

)2
)
≤ 3(R + S + T ) ≤ Cϕn,

where ϕn = max
(
n−1,

(
n(log n)−1/2

)−4s/(2s+2δ+1/2)
)
.

Theorem 5.1 is proved.

PROOF OF LEMMA 6.2. First of all, notice that

W =




2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − n−1σ2
j,∞λn




+

−
2j−1∑

k=0

β2
j,k

=




2j−1∑

k=0

σ2
j,k(β̂

2
j,kσ

−2
j,k − n−1) − n−1σ2

j,∞λn




+

−
2j−1∑

k=0

σ2
j,k

(
β2

j,kσ
−2
j,k

)
.

Since β̂j,kσ
−1
j,k ∼ N (0, n−1), σj,k ≤ σj,∞ and λn = (2d)1/2(2ω log d)1/2 with

d = 2j and ω = 1 + 4δ, an inequality for weighted chi-squared proved by
Johnstone (2001b) (see Corollary 2.3 without the bound ”ρ ≤ ρa” used in the
corresponding proof) implies the existence of two constants c > 0 and γ > 0
such that

E

(
W 2

)
≤ γσ4

j,∞


cn−2d1−β + min


2




2j−1∑

k=0

β2
j,kσ

−2
j,k




2

, vj





 ,

where

vj = V




2j−1∑

k=0

(β̂2
j,kσ

−2
j,k − n−1)


+ n−2λ2

n.

After some computations, we obtain

E









2j−1∑

k=0

(β̂2
j,k − n−1σ2

j,k) − n−1σ2
j,∞λn




+

−
2j−1∑

k=0

β2
j,k




2



≤ γσ4
j,∞


cn−22−4δj + min


2




2j−1∑

k=0

β2
j,kσ

−2
j,k




2

, vj





 ,
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where

vj = 2n−22j + 4n−1
2j−1∑

k=0

β2
j,kσ

−2
j,k + 4(log 2)(1 + 4δ)

(
n−2j2j

)
.

Lemma 6.2 is proved.

PROOF OF THEOREM 5.2. We distinguish the case s > δ + 4−1 and the
case s ∈ (0, δ + 4−1].

The case s > δ + 4−1. Let us consider the two following functions

f0(x) = 1, f1(x) = 1 + n−1/2.

Clearly, f0 and f1 belong to Bs
2,∞(M). Moreover, we have

∣∣∣‖f0‖
2
2 − ‖f1‖

2
2

∣∣∣ = 2n−1/2 + n−1 ≥ n−1/2 = κn.

Now, in order to apply Theorem 2.12 (iii) of Tsybakov (2004), we aim to
bound (by a constant C) the chi-square divergence χ2(Pf1

,Pf0
) defined by

χ2(Pf1
,Pf0

) =
∫ (

dPf1

dPf0

)2

dPf0
− 1, (6.25)

where Ph denotes the probability distribution of {Y (t); t ∈ [0, 1]} indexed by
the function h.

Let ⋆ be the standard convolution product on the unit interval. The Girsanov
theorem yields

dPf1

dPf0

=exp(n
∫ 1

0
((f1 ⋆ g)(t) − (f0 ⋆ g)(t)))dY (t) −

2−1n

∫ 1

0

(
(f1 ⋆ g)

2(t) − (f0 ⋆ g)
2(t)

)
dt)

= exp

(
n1/2

∫ 1

0
g(u)du

∫ 1

0
dY (t) − 2−1n

(∫ 1

0
g(u)du

)2

(2n−1/2 + n−1)

)
.

So, under Pf0
, we have

dPf1

dPf0

= exp

(∫ 1

0
g(u)du

∫ 1

0
dB(t) − 2−1

(∫ 1

0
g(u)du

)2

(2n1/2 + 1)

)
.

Using the equality
∫

exp
(
2
∫ 1
0 g(u)du

∫ 1
0 dB(t)

)
dPf0

= exp
(
2
(∫ 1

0 g(u)du
)2
)

and the Cauchy-Schwarz inequality, we have
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∫ (
dPf1

dPf0

)2

dPf0

= exp

(
−
(∫ 1

0
g(u)du

)2

(2n1/2 + 1)

)∫
exp

(
2
∫ 1

0
g(u)du

∫ 1

0
dB(t)

)
dPf0

= exp

(
−
(∫ 1

0
g(u)du

)2

(2n1/2 + 1)

)
exp

(
2
(∫ 1

0
g(u)du

)2
)

≤ exp

((∫ 1

0
g(u)du

)2
)
≤ exp

(∫ 1

0
g2(u)du

)
≤ C.

Therefore, there exists a constant C > 0 such that

χ2(Pf1
,Pf0

) =
∫ (

dPf1

dPf0

)2

dPf0
− 1 ≤ C <∞.

It follows from Theorem 2.12 (iii) of Tsybakov (2004) that

inf
Q̃n

sup
f∈Bs

2,∞
(M)

E

((
Q̃n − ‖f‖2

2

)2
)
≥ cκ2

n = cn−1 = cϕ∗
n. (6.26)

The case s ∈ (0, δ + 4−1]. Let us consider the two following functions

f0(x) = 0, f1(x) = γj∗

2j∗∑

k∗=0

wk∗
ψj∗,k∗

(x), (6.27)

where j∗ is an integer to be chosen below, γj∗ is a quantity to be chosen below,
and w0, ..., w2j∗−1 are i.i.d. Rademacher random variables (i.e. P(wu = 1) =
P(wu = −1) = 2−1 for any u ∈ {0, ..., 2j∗ − 1}).

Clearly, f0 belong to Bs
2,∞(M). Thanks to the orthogonality of the wavelet

basis, for any integer j ≥ τ and any k ∈ {0, ..., 2j − 1}, we have βj,k =∫ 1
0 f1(x)ψj,k(x)dx = γj∗wk for j = j∗ and 0 otherwise. Thus, if γ2

j∗ = M∗2
−j∗(2s+1),

then

22j∗s
2j∗−1∑

k=0

β2
j∗,k = 22j∗sγ2

j∗

2j∗−1∑

k=0

w2
k = γ2

j∗2
j∗(2s+1) = M∗.

Therefore, for such a choice of γj∗, we have f1 ∈ Bs
2,∞(M).

Let j∗ be an integer such that

2−1n1/(2s+2δ+1/2) ≤ 2j∗ ≤ n1/(2s+2δ+1/2). (6.28)

With the previous value of γj∗, the orthonormality of the wavelet basis gives
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∣∣∣‖f0‖
2
2 − ‖f1‖

2
2

∣∣∣= ‖f1‖
2
2 = γ2

j∗

2j∗−1∑

k=0

w2
k = γ2

j∗2
j∗ ≥ C2−2j∗s

≥Cn−2s/(2s+2δ+1/2) = κn.

In what follows, we consider the function f1 described by (6.27) with the
integer j∗ defined by (6.28) and the quantity γ2

j∗ = M∗2
−j∗(2s+1). In order to

apply Theorem 2.12 (iii) of Tsybakov (2004), we aim to bound (by a constant
C) the chi-square divergence χ2(Pf1

,Pf0
) (see (6.25)).

Let ⋆ be the standard convolution product. Due to the definitions of f0, f1,
the variables w0, ..., w2j∗−1, and the Girsanov theorem, we have

dPf1

dPf0

=
2j∗−1∏

k=0

[2−1 exp
(
nγj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dY (t) − 2−1nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)

+2−1 exp
(
−nγj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dY (t) − 2−1nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)
].

So, under Pf0
, we have

dPf1

dPf0

=
2j∗−1∏

k=0

[2−1 exp
(
n1/2γj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dB(t) − 2−1nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)

+2−1 exp
(
−n1/2γj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dB(t) − 2−1nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)
]

=
2j∗−1∏

k=0

2−1 exp
(
−2−1nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)
×

[exp
(
n1/2γj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dB(t)

)
+ exp

(
−n1/2γj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dB(t)

)
].

Hence,

∫ (
dPf1

dPf0

)2

dPf0
=

2j∗−1∏

k=0

2−2 exp
(
−nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)
×

∫
[exp

(
n1/2γj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dB(t)

)
+ exp

(
−n1/2γj∗

∫ 1

0
(ψj∗,k ⋆ g)(t)dB(t)

)
]2dPf0

.

Since
∫

exp
(
2n1/2γj∗

∫ 1
0 (ψj∗,k ⋆ g)(t)dB(t)

)
dPf0

=

∫
exp

(
−2n1/2γj∗

∫ 1
0 (ψj∗,k ⋆ g)(t)dB(t)

)
dPf0

= exp
(
2nγ2

j∗

∫ 1
0 (ψj∗,k ⋆ g)

2(t)dt
)
,

we have
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∫ (
dPf1

dPf0

)2

dPf0

=
2j∗−1∏

k=0

2−1
(
exp

(
nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)

+ exp
(
−nγ2

j∗

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
))

.

Using the inequality 2−1(ex + e−x) ≤ ex2/2, x ∈ R, we obtain

∫ (
dPf1

dPf0

)2

dPf0
≤

2j∗−1∏

k=0

exp

(
2−1n2γ4

j∗

(∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt
)2
)
.

Using the condition (3.1) and the Plancherel theorem, we obtain

∫ 1

0
(ψj∗,k ⋆ g)

2(t)dt=
∫ 1

0
(F (ψj∗,k ⋆ g))

2 (t)dt =
∫ 1

0
F 2 (ψj∗,k) (t)F 2 (g) (t)dt

≤C2−2δj∗

∫ 1

0
F 2 (ψj∗,k) (t)dt = C2−2δj∗

∫ 1

0
ψ2

j∗,k(x)dx

=C2−2δj∗ .

We deduce that

∫ (
dPf1

dPf0

)2

dPf0
≤

2j∗−1∏

k=0

exp
(
Cn2γ4

j∗2
−4δj∗

)
= exp

(
Cn2γ4

j∗2
(1−4δ)j∗

)
.

Thanks to the definitions of j∗ and γj∗ , we have

n2γ4
j∗2

(1−4δ)j∗ ≤ Cn22−j∗(4s+2)2(1−4δ)j∗ ≤ Cn22−j∗(4s+1+4δ) ≤ C.

It follows the existence of a constant C > 0 such that

χ2(Pf1
,Pf0

) =
∫ (

dPf1

dPf0

)2

dPf0
− 1 ≤ C <∞.

Theorem 2.12 (iii) of Tsybakov (2004) yields

inf
Q̃n

sup
f∈Bs

2,∞
(M)

E

((
Q̃n − ‖f‖2

2

)2
)
≥ cκ2

n = cn−4s/(2s+2δ+1) = cϕ∗
n. (6.29)

Putting (6.26) and (6.29) together, we prove the existence of a constant c > 0
such that, for any s > 0, we have

inf
Q̃n

sup
f∈Bs

2,∞
(M)

E

((
Q̃n − ‖f‖2

2

)2
)
≥ cϕ∗

n,

where ϕ∗
n = max

(
n−1, n−4s/(2s+2δ+1/2)

)
.

Theorem 5.2 is proved.
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