

Crystal structures of new pyrovanadates A2MnV2O7 (A = Rb, K)

Hamdi Ben Yahia, Etienne Gaudin, Jacques Darriet

► To cite this version:

Hamdi Ben Yahia, Etienne Gaudin, Jacques Darriet. Crystal structures of new pyrovanadates A2MnV2O7 (A = Rb, K). Zeitschrift fur Naturforschung B, 2007, 62 (7), pp.873-880. 10.1515/znb-2007-0701 . hal-00174187

HAL Id: hal-00174187 https://hal.science/hal-00174187

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Crystal Structures of New Pyrovanadates A_2 MnV₂O₇ (A =Rb, K)

Hamdi Ben Yahia, Etienne Gaudin, and Jacques Darriet

Institut de Chimie de la Matière Condensée de Bordeaux-CNRS, Université Bordeaux 1, 87 avenue du docteur A. Schweitzer, 33608 Pessac Cedex, France

Reprint requests to Dr. E. Gaudin. Fax: (+33)540002761. E-mail: gaudin@icmcb-bordeaux.cnrs.fr

Z. Naturforsch. 2007, 62b, 873-880; received March 3, 2007

Dedicated to Dr. Bernard Chevalier on the occasion of his 60th birthday

The new compounds A_2 MnV₂O₇ (A = K, Rb) with structures related to the melilite-type have been synthesized by a solid state reaction route. The crystal structures of K₂MnV₂O₇, Rb₂MnV₂O₇ and KRbMnV₂O₇ have been determined using X-ray single crystal diffraction data. The compound K₂MnV₂O₇ crystallizes with a melilite-type structure with tetragonal unit cell parameters a =8.609(3), c = 5.538(4) Å and space group $P\bar{4}_2_1m$. The structures of Rb₂MnV₂O₇ and KRbMnV₂O₇ are derived from the melilite-type structure with space group $P4_2/mnm$ and unit cell parameters a =8.577(6), c = 11.809(6) Å, and a = 8.530(6), c = 11.466(5) Å, respectively. The three structures consist of [MnV₂O₇]²⁻ layers perpendicular to the c axis separated by A^+ layers. The [MnV₂O₇]²⁻ layers feature corner-sharing MnO₄ tetrahedra and V₂O₇ pyrovanadate units, the linkage leading to rings of five tetrahedra. The doubling of the c parameter for Rb₂MnV₂O₇ or RbKMnV₂O₇ is explained by the existence of a mirror plane perpendicular to the [001] direction between two [MnV₂O₇]²⁻ layers. The A^+ alkali cations occupy distorted square antiprisms of oxygen atoms in K₂MnV₂O₇ and distorted square prisms of oxygen atoms in Rb₂MnV₂O₇ and RbKMnV₂O₇.

Key words: Vanadate, Melilite, Crystal Chemistry, Single Crystal X-Ray Diffraction, Oxides

Introduction

Most of the minerals of the melilite group are silicates with the general formula ${}^{[8]}A_2^{[4]}B^{[4]}Si_2O_7$ ([N] =coordination number). Among them, one can find the akermanite Ca2MgSi2O7 [1], the gehlenite $Ca_2Al(AlSi)O_7$ [2], the okayamalite $Ca_2B(BSi)O_7$ [3] the hardystonite Ca₂ZnSi₂O₇ [4], the gugiaite Ca₂-BeSi₂O₇ [5], and the melilite (Ca,Na)₂(Mg,Fe,Al)- $(AlSi)O_7$ [6]. Many melilite-type compounds have been synthezised with a wide range of chemical compositions, the general formula becoming $A_2BC_2X_7$ where A is a large cation such as Ca, Sr, Ba, Na, K, Y, lanthanides (La-Er), Pb, Bi; B is a small four coordinated cation such as Be, Mg, Mn, Fe, Co, Cu, Zn, Cd, Al, Ga, Si; C = Cr, Al, Ga, Si, Ge, B, V, and X =O, F, S, N. The melilite-type structure was first determined by Warren (1930) [1]. The structure has a tetragonal symmetry, space group $P\bar{4}2_1m$, and consists of BC_2O_7 layers parallel to (001) made of corner-sharing BO_4 and CO_4 tetrahedra. The cations A are lying between these layers in distorted square antiprisms of oxygen atoms. Recently, Tyutyunnik et al. have synthesized $Na_2ZnV_2O_7$, the first vanadate crystallizing in the melilite-type structure [7].

In the past only few vanadate compounds having structures closely related to the melilte-type have been prepared. The compounds (NH₄)₂VOV₂O₇ [8], K₂VO-V₂O₇ [9], Rb₂VOV₂O₇ [10], and KBaCuClV₂O₇ [11] crystallize in the fresnoite-type structure which is very similar to the melilite-type, except that the V₂O₇ pyrogroups all point in the same direction and the V⁴⁺ and Cu^{2+} coordination polyhedra are square pyramids instead of the usual tetrahedra. They all have tetragonal cell parameters with space group P4bm and with a ranging from 8.8581(13) to 8.9229(10) Å and c ranging from 5.215(5) to 5.5640(5) Å. A different variation of the melilite-type structure is observed for K₂Mg-V₂O₇ [12], which crystallizes in space group P4₂/mnm with cell parameters a = 8.38(2) and c = 11.36(2) Å. The main difference between the $K_2MgV_2O_7$ and the melilite-type structures is the doubling of the lattice constant c explained by the existence of a mirror plane perpendicular to the [001] direction between two MgV₂O₇ layers. This induces a change from $P\bar{4}2_1m$ to $P4_2/mnm$ symmetry. This structural variation is only

0932-0776 / 07 / 0700-0873 \$ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

observed for phosphates and vanadates [12-15]. Notably, $P\bar{4}2_1m$ and $P4_2/mnm$ are both subgroups of space group P4/mbm. No compound of the melilite group crystallizes in this space group.

Crystals of the new phase $K_2MnV_2O_7$ were obtained during fast melting of a vanadate powder with the composition KMnVO₄. In a recent paper the crystal structure of KMnVO₄ has been solved and shown to be an oxygen-deficient perovskite [16].

The aim of this work is to discuss the structural effects of the partial or complete substitution of K^+ for Rb⁺ on the *A* positions of the compounds of general formula A_2 MnV₂O₇, in order to contribute to a better insight into the crystal chemistry of the divanadates $A_2BV_2O_7$.

Experimental Section

K₂MnV₂O₇ was prepared by solid state reaction from a stoichiometric mixture of KVO3 and MnO. KVO3 was obtained by heating a 1:1 mixture of K₂CO₃ and V₂O₅ at 550 °C for 6 h. The mixture was put in a gold tube which was sealed under vacuum in a silica tube and then heated at 450 °C for 24 h and at 500 °C for 12 h. After grinding a further heating of the mixture at 500 °C for 18 h led to a mixture of three phases: K₂MnV₂O₇, KVO₃, and MnO. Different treatments (time and temperature) did not improve the results. As KVO3 is soluble in water, the powder sample was washed to obtain K₂MnV₂O₇ as major phase (Fig. 1). Attempts to prepare single crystals of K₂MnV₂O₇ by melting the sample powder were unsuccessful. Subsequently, a 1:1 mixture of KVO3 and MnO was prepared. By fast heating of this starting mixture at 950 °C followed by slowly decreasing the temperature at the rate of 5 $^{\circ}$ C h⁻¹ to r.t., a mix-

Fig. 1. Final observed, calculated and difference plots for the XRPD profile refinement of $K_2MnV_2O_7$ (peaks marked with an asterisk indicate impurities).

ture of yellow, orange and green crystals corresponding to $KMnVO_4$, $K_2MnV_2O_7$, and MnO, respectively, was obtained.

 $Rb_2MnV_2O_7$ powder and crystals were prepared exactly in the same way as $K_2MnV_2O_7$. We used $RbVO_3$ instead of KVO_3 . $RbVO_3$ was obtained by heating a 1:1 mixture of Rb_2CO_3 and V_2O_5 at 700 °C for 10 h.

KRbMnV₂O₇ was prepared by solid state reaction from a stoichiometric mixture of KVO₃, RbVO₃ and MnO. The mixture was put in a gold tube which was sealed under vacuum in a silica tube and then heated at 500 °C for 48 h with intermittent grinding. This led to a mixture of KRbMnV₂O₇, K_{1-x}Rb_xVO₃, and MnO. The heating of this mixture at 950 °C for 2 h and the slow cooling at the rate of 5 °C h⁻¹ to 700 °C and at 10 °C h⁻¹ to r. t. enabled us to obtain several crystals of KRbMnV₂O₇.

X-Ray diffraction measurements

Crystals of the title compounds suitable for single crystal X-ray diffraction were selected on the basis of the size and the sharpness of the diffraction spots. In the case of Rb₂MnV₂O₇, the quality of the single crystals was really poor, and this explains the high internal *R* value (see Table 1). A similar problem was encountered for KRbMnV₂O₇. The data collections were carried out on an Enraf-Nonius Kappa CCD diffractometer using MoK_α radiation. Data processing and all refinements were performed with the JANA2000 program package [17]. A Gaussian-type absorption correction was applied, and the shapes were determined with the video microscope of the Kappa CCD. Details of data collection are summarized in Table 1.

Structure refinement

The extinction conditions observed for K₂MnV₂O₇ agree with the space group $P\bar{4}2_1m$. Most of the atomic positions were found by Direct Methods using SIR97 [18]. With anisotropic displacement parameters, the final residual factors converged to R(F) = 0.025 and $wR(F^2) = 0.055$ for 34 refined parameters, 832 observed reflections and difference-Fourier residues in the range between -0.33 and +0.32 e Å⁻³. The Flack parameter refined to 0.01(4).

The lattice of Rb₂MnV₂O₇ has tetragonal geometry. The observed systematic extinctions agree with space group $P4_2/mnm$. The structure was solved by Direct Methods using SHELXS-97 [19], which revealed the heavy atom positions. Several difference-Fourier syntheses allowed us to localize the oxygen atom positions. This refinement led to the residual factors R(F) = 0.042 and $wR(F^2) = 0.088$ for 36 refined parameters, 455 observed reflections and difference-Fourier residues in the range between -1.06 and +1.43 e Å⁻³.

The extinction conditions observed for $RbKMnV_2O_7$ agree with the space group $P4_2/mnm$ already used for the

Formula		K ₂ MnV ₂ C	D ₇ I	Rb ₂ MnV ₂ O ₇	RbKMnV2O7	
Crystals		orange blo	ock y	ellow block	yellow block	
MW, g mol ⁻¹		347	-	439.7	393.4	
Crystal system				tetragonal		
space group		$P\bar{4}2_1m$		P4 ₂ /mnm	P42/mnm	
a = b, Å		8.609(3)	8	8.577(6)	8.530(6)	
а – с. Å		5.538(4) 1		11.809(6)	11.466(5)	
$V, Å^3$		410.4(4) 8		368.7(10)	834.3(9)	
Ζ.		2 4		4	4	
Density calc, g cn	n ⁻³	2.81	3.36		3.13	
Temperature, K		293(1)				
Diffractometer		Enraf-Nonius KappaCCD				
Monochromator			O	riented graphite		
Radiation; λ , Å		$MoK_{\alpha}: 0.71069$				
Scan mode		CCD scan				
h k l range		-13 < h < 13		-12 < h < 11	-12 < h < 12	
e		-12 < k <	< 13 -	-12 < k < 12	-12 < k < 12	
		-8 < l < 1	8 -	-17 < l < 17	-17 < l < 16	
$\theta_{\rm min}/\theta_{\rm max}$, deg		3.35/34.9	9 2	2.94/31.95	4.78/2.02	
Linear absorption coeff. (mm^{-1})		4.8		14.7	10.0	
Absorption correction		Gaussian				
$T_{\rm min} / T_{\rm max}$		0.477/0.716		0.499/0.816	0.379/0.837	
No. of reflections		8856		14505	12515	
Rint		0.067 (0.176	0.140	
No. of independent reflections		976 8		349	819	
Reflections used $[I > 3\sigma(I)]$		832 455		455	540	
Refinement $r \ge 50(r)$		F^2				
<i>F</i> (000), e		330		304	732	
No. of refined par	ameters	34 36		36	37	
R factors $R(F)/wR(F^2)$		0.025/0.055 0.042/0.08		0.042/0.088	0.044/0.100	
r (Flack)		0.01(4)		-	_	
g o f		1.09 1.23		1.52		
Weighting scheme $w = 1/(\sigma^2(I) + 0.0009I^2)$				1102		
Diff. Fourier residues, e $Å^{-3}$		-0.33/+0	0.32	(0 (1) + 0.000)1	$-0.76/\pm0.85$	
Dinitir ounior reord		01007 1	0.02	11007 1110	01707 0100	
Atoms Occup	ancy Site	x	v	7	U_{eq} (Å ²)	
K2MnV2O7			J	Ň	- 4 (**)	
K 1	4e	0.83871(5)	1/2 + x	0.50737(14)	0.02491(13)	
Mn 1	2a	0	0	0	0.01567(12)	
V 1	4e	0.14046(4)	0.35954(4	0.05876(8)	0.01252(8)	
01 1	8 f	0.0876(2)	0.18543(1	8) 0.1802(3)	0.0215(4)	
02 1	2c	0	1/2	0.1610(6)	0.0188(6)	
03 1	4e	0.1452(2)	0.3548(2)	0.7616(4)	0.0283(5)	

 $Rb_2MnV_2O_7\\$ Rb1

KRbMnV₂O₇ K1

Rb2

Mn

V

01

O2

O3

Rb1

K2

Rb2

Mn

V

01

02

03

1

1

1

1

1

1

1

0.572(7)

0.428

0.428

0.572

1

1

1

1

1

4g

4f

4d

8 j

16k

4e

8*j*

4g

4g4f

4f

4d

8 j

4e

8*j*

16k

0.32119(10)

0.85079(10)

0.63961(11)

0.31980(13)

0.85335(11)

0.64028(9)

0.5888(4)

0.6410(4)

0.5881(5)

1/2

1/2

0.6411

0.3198

0.8534

1/2

1/2

х

-x0

-x

1/2

-x

х

х

-x

-x0

-x

1/2

-x

0.1815(3)

0.1826(5)

1/2

1/2

1/4

1/2

1/2

1/2

1/2

1/4

0.28842(10)

0.3446(3)

0.3432(6)

0.1458(4)

0.28601(15)

0.3395(5)

0.3380(4)

0.1472(7)

0.0375(3)

0.0310(3)

0.0245(4)

0.0224(3)

0.0299(16)

0.0268(13)

0.034(2)

0.0342(5)

0.0271(4)

0.0161(3)

0.0136(2)

0.0201(9)

0.0191(15)

0.0266(12)

0.0342

0.0271

Table 1. Crystallographic data and structure refinement for $K_2MnV_2O_7$, $Rb_2MnV_2O_7$, and RbKMnV₂O₇.

Table 2. Atom positions and isotopic displacement parameters for $K_2MnV_2O_7$, $Rb_2MnV_2O_7$, and $\overline{KRbMnV_2O_7}$.

Atoms	<i>U</i> ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
K_2MnV_2	07					
Κ	0.0267(2)	U_{11}	0.0213(3)	-0.0081(2)	0.00382(16)	0.00382(16)
Mn	0.01199(15)	U_{11}	0.0230(3)	0	0	0
V	0.01164(11)	U_{11}	0.01428(19)	0.00102(14)	0.00057(11)	-0.00057(11)
01	0.0236(8)	0.0128(6)	0.0282(9)	-0.0043(6)	-0.0038(6)	-0.0006(6)
O2	0.0184(8)	U_{11}	0.0195(15)	0.0080(11)	0	0
O3	0.0343(8)	U_{11}	0.0161(9)	0.0080(13)	0.0025(7)	-0.0025(7)
Rb ₂ MnV	$_2O_7$					
Rb1	0.0409(5)	U_{11}	0.0307(7)	-0.0150(6)	0	0
Rb2	0.0314(4)	U_{11}	0.0302(7)	0.0057(5)	0	0
Mn	0.0215(6)	U_{11}	0.0306(10)	0	0	0
V	0.0214(5)	U_{11}	0.0244(7)	-0.0003(5)	0.0007(4)	-0.0007(4)
01	0.032(2)	0.020(2)	0.038(4)	-0.006(3)	0.0003(19)	0.0041(19)
O2	0.027(2)	U_{11}	0.027(3)	0.0060(19)	0	0
O3	0.041(3)	U_{11}	0.021(5)	0.009(4)	0.002764	-0.002764
KRbMn\	V_2O_7					
K1/Rb1	0.0374(7)	U_{11}	0.0279(9)	-0.0175(7)	0	0
K2/Rb2	0.0269(5)	U_{11}	0.0275(8)	0.0050(5)	0	0
Mn	0.0121(4)	U_{11}	0.0242(7)	0	0	0
V	0.0118(3)	U_{11}	0.0172(5)	0.0009(4)	0.0000(3)	0.0000(3)
01	0.0217(17)	0.0115(17)	0.027(3)	-0.004(2)	-0.0037(15)	0.0009(15)
O2	0.0173(16)	U_{11}	0.0226(19)	0.0027(14)	0	0
03	0.0297(19)	U_{11}	0.021(3)	0.003(3)	0.002149	-0.002149

Table 3. Final displacement parameters for $K_2MnV_2O_7$, $Rb_2MnV_2O_7$, and $KRbMnV_2O_7$.

Fig. 2. Projection of the crystal structure of $K_2MnV_2O_7$ (a) onto the *ac* plane and (b) onto the *ab* plane.

refinement of the homologous compound Rb₂MnV₂O₇. The atomic positions of the latter were used as a starting model for the refinement. The rubidium atom in the 4*f* position was replaced by a potassium atom to get the correct formula RbKMnV₂O₇. At this stage the refinement led to residual factors of R(F) = 0.194 and $wR(F^2) = 0.430$ with large negative displacement parameters for Rb (0.067 Å²) and K, respectively. Attempts to solve the structure with fully ordered sites failed; therefore the structure was refined with introduction of K/Rb disorder on the 4*g* and 4*f* positions. With anisotropic displacement parameters, the final residual factors converged to R(F) = 0.044 and $wR(F^2) = 0.100$ for 37 refined parameters, 540 observed reflections and difference-Fourier residues in the range between -0.76 and +0.85 e Å⁻³. The refined

atomic positions and anisotropic displacement parameters (ADPs) of the different phases are given in Tables 2 and 3, respectively.

Further details may be obtained from: Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), by quoting the Registry No's. CSD–417890 (Rb₂MnV₂O₇), CSD–417891 (KRbMnV₂O₇), and CSD– 417892 (K₂MnV₂O₇).

Results and Discussion

The crystal structure of $K_2MnV_2O_7$ is isotypic to the melilite-type structure consisting of alternating MnV_2O_7 and K layers (Fig. 2a). The MnV_2O_7 lay-

K ₂ MnV ₂ O ₇		Rb ₂ MnV ₂ O ₇		KRbMnV ₂ O ₇	
distance		distance		distance	
Mn–O1 (×4)	2.0279(17)	Mn–O1 (×4)	2.035(4)	Mn–O1 (×4)	2.036(3)
V-O3 V-O1 (×2) V-O2	1.646(2) 1.7047(17) 1.8014(11) ⟨1.7142⟩	V-O3 V-O1 (×2) V-O2	1.640(7) 1.709(4) 1.801(3) ⟨1.714⟩	V-O3 V-O1 (×2) V-O2	1.635(5) 1.709(3) 1.805(2) ⟨1.714⟩
K-O2 K-O1 (×2) K-O3 K-O3 (×2) K-O1 (×2)	2.745(2) 2.7770(19) 2.787(2) 2.994(2) 3.1008(18)	Rb1–O3 (×2) Rb1–O2 (×2) Rb1–O1 (×4)	2.791(5) 2.892(5) 3.201(5) (3.021)	K1/Rb1–O3 (×2) K1/Rb1–O2 (×2) K1/Rb1–O1 (×4)	2.729(4) 2.821(4) 3.136(3) (2.955)
	(2.9094)	Rb2–O1 (×4) Rb2–O3 (×4)	2.958(4) 3.037(5) (2.997)	K2/Rb2–O1 (×4) K2/Rb2–O3 (×4)	2.891(3) 2.969(4) (2.930)
angle		angle		angle	
01–Mn–O1 (×4) 01–Mn–O1 (×2)	104.01(7) 121.05(7) (109.69)	01-Mn-O1 (×4) 01-Mn-O1 (×2)	105.66(17) 117.4(2) (109.57)	01-Mn-O1 (×4) 01-Mn-O1 (×2)	106.48(15) 115.63(19) (109.53)
01-V-02 (×2) 01-V-01 02-V-03 01-V-03 (×2)	106.67(8) 108.30(9) 110.35(12) 112.26(9) (109.41)	01-V-02 (×2) 01-V-01 02-V-03 01-V-03 (×2)	107.16(18) 108.9(2) 110.59(15) 111.4(2) (109.43)	01-V-O2 (×2) 01-V-O1 02-V-O3 01-V-O3 (×2)	106.76(15) 108.41(19) 110.66(12) 111.99(17) (109.42)
V–O2–V V–O1–Mn	143.3(2) 126.68(10)	V–O2–V V–O1–Mn	140.1(3) 126.2(4)	V–O2–V V–O1–Mn	139.3(3) 124.9(3)
BVS	2.10	BVS	2.04	BVS	2.07
Mn V K	2.10 5.14 1.05	Mn V Rb1 Pb2	2.06 5.14 1.16	Min V K1/Rb1 K2/Rb2	2.06 5.16 1.02
		1.02	1.10	N2/NU2	1.1.3

^a BV = $e^{(r_0-r)/b}$ with the following parameters [23]: b = 0.37 and r_0 (Mn^{II}–O) = 1.790, r_0 (V^V–O) = 1.803, r_0 (K–O) = 2.132 and r_0 (Rb–O) = 2.263 Å.

Fig. 3. Perspective view of the square antiprismatic environment of the potassium atoms in $K_2MnV_2O_7$ (left) and a projection of the crystal structure along [001] (right).

ers contain corner-sharing MnO₄ tetrahedra and V₂O₇ pyrovanadate units (two corner-sharing VO₄ tetrahedra) that form rings of five tetrahedra (Fig. 2b). The eight-coordinated cations K are positioned between these layers. The interatomic distances for the MnO₄, VO₄ and KO₈ polyhedra are listed in Table 4. The MnO₄ tetrahedra contain four regular Mn–O bonds of 2.028(2) Å very close to the value of 2.04 Å estimated from the effective ionic radii of Mn²⁺ and O²⁻ [20]. A comparable Mn–O distance has been reported for the analogous silicate Sr₂MnSi₂O₇ [21]. The

large O-Mn-O angles of 121.05(7)° indicate that the MnO₄ tetrahedron is flattened along the [001] direction. Two neighboring VO₄ units share an O2 atom to form the pyrovanadate unit $[V_2O_7]^{4-}$. This induces an elongated V-O2 distance of 1.8014(11) Å, typical of divanadate entities in which the longer distance characterizes the V-O-V bridge [7-12]. In the VO₄ tetrahedron the average V–O distance of 1.714 Å is slightly lower than the value of 1.735 Å expected from the sum of the effective ionic radii. No significant deviation from the ideal tetrahedral angle of 109.5° is observed. The O-V-O angles range from 106.67(17) to $112.26(9)^{\circ}$ with an average value of 109.4°. The O-V-O angles and the V-O distances are nearly equal to those found in Na₂ZnV₂O₇ (distances: 1.649(5), 1.725(4) (\times 2), and 1.802(3) Å; angles: 106.2(3), 107.0(2), 111.9(3), and 112.2(2)°) [7].

The coordination polyhedron around the A-site K atom is a distorted square antiprism (Fig. 3). There are four short K–O distances ranging from 2.745(2) to 2.787(2) Å and four stretched distances ranging from 2.994(2) to 3.101(2) Å, giving an average value of

Rb MnO₄ VO₄

2.909 Å consistent with the Shannon Table ($d_{\rm K-O}$ = 2.93 Å). The calculations of the bond valence sums (BVS) for Mn²⁺, V⁵⁺, K⁺ confirm the charge balance (*i. e.*, BVS = 2.10, 5.14 and 1.05 for Mn²⁺, V⁵⁺ and K⁺, respectively) [22, 23].

Projection views onto the (010) and (001) planes of the $Rb_2MnV_2O_7$ structure are displayed in Fig 4. The unit cell parameter c of the Rb₂MnV₂O₇ structure is larger than that of melilite K₂MnV₂O₇ by a factor of approximately two. The addition of a symmetry element to the space group $P\bar{4}2_1m$ leads to space group $P4_2/mnm$. As a result, the unit cell of the rubidium manganese vanadate contains two layers of tetrahedral $[MnV_2O_7]^{2-}$, T and T' (Fig. 4, left), which are related by the mirror plane, instead of only one layer T in $K_2MnV_2O_7$ (Fig. 2a). The MnV_2O_7 layers are similar to those observed for K₂MnV₂O₇, consisting of corner-sharing MnO₄ and VO₄ tetrahedra, the latter forming V₂O₇ pyrogroups. The Rb⁺ cation layers are situated between the $[MnV_2O_7]^{2-}$ layers. As expected, when rubidium is substituted for potassium a slight increase of the interlayer space is observed with c/2 = 5.905 Å for Rb₂MnV₂O₇ and c = 5.538 Å for $K_2MnV_2O_7$. The main difference between the two compounds is found in the interlayer alkali cation environment. Indeed, in K₂MnV₂O₇ the potassium atoms occupy only one site (4e) with a square antiprismatic coordination (Fig. 3), whereas in Rb₂MnV₂O₇ the rubidium atoms occupy two different sites (4g and 4f for Rb1 and Rb2, respectively) with a distorted square prismatic coordination (Fig. 5). The Rb1 polyhedron is more distorted than that of Rb2. The distances Rb-O

Fig. 4. Projection of the crystal structure of $Rb_2MnV_2O_7$ onto the *ac* plane (left) and onto the *ab* plane (right).

Fig. 5. Perspective view of the distorted square prismatic environments of the Rb atoms in Rb₂MnV₂O₇.

range from 2.791(5) to 3.201(5) Å and from 2.958(4) to 3.037(5) Å giving an average distance of 3.02 and 3.00 Å and a bond valence sum of 1.16 and 1.10 for Rb1 and Rb2, respectively. This is in agreement with the sum of ionic radii of 3.03 Å and the charge balance of +1. The short distance Rb1–O3 of 2.791(5) Å is attributed to the fact that the O3 position is shared by the Rb1O₈ and VO₄ polyhedra. Indeed, in order to obtain an acceptable Rb–O3 distance the V–O3 distance is compressed along the [001] direction to a value of 1.646(2) Å. This steric strain is reflected by the relatively large anisotropic displacement parameters ($U_{11} = U_{22} = 0.041$ Å²) for the O3 position (Table 3).

As in K₂MnV₂O₇, in Rb₂MnV₂O₇ the MnO₄ and V₂O₇ units form rings of five tetrahedra (Fig. 6) with no significant changes in the V–O and Mn–O distances and in the V–O2–V and V–O1–Mn bridging angles (Table 4). The bond valence sums (BVS) of 2.06 and 5.14 are in agreement with the values expected for Mn²⁺ and V⁵⁺, respectively [22, 23].

Table 5. Compounds illustrating the effect of the substitution in the melilite-type structure.

Melilite- P421	type m	Derivative of melilite-type P4 ₂ /mnm		
K ₂ MnV ₂ O ₇	this work	$\begin{array}{c} K_2 Mg V_2 O_7 \\ K_2 Zn P_2 O_7 \\ KRb Mn V_2 O_7 \\ Rb_2 Mn V_2 O_7 \end{array}$	ref. [12] ref. [13] this work this work	
Na ₂ ZnV ₂ O ₇	ref. [7]	Na ₂ ZnP ₂ O ₇ Na ₂ CoP ₂ O ₇ Ag ₂ ZnP ₂ O ₇	ref. [13] ref. [14] ref. [15]	

Fig. 6. View of the five-membered rings built up by the MnO_4 and VO_4 tetrahedra in $Rb_2MnV_2O_7$.

These results indicate that there is no change in the dimension of the sheets of tetrahedra and accord-ingly no significant change in the lattice parameter *a* (Table 1).

The mixed potassium rubidium divanadate RbKMnV₂O₇ is isostructural to Rb₂MnV₂O₇. The

- [1] B. E. Warren, Z. Kristallogr. 1930, 74, 131–138.
- [2] F. Raaz, Mineralog. und Petrogr. Mitt. 1932, 42, 72– 78.
- [3] S. Matsubara, R. Miyawaki, A. Kato, K. Yokoyama, A. Okamoto, *Mineral. Mag.* **1998**, *62*, 703 – 706.
- [4] B.E. Warren, O.R. Trautz, Z. Kristallogr. 1930, 75, 525-528.
- [5] M. Kimata, H. Ohashi, Neues Jb. Miner. Monat. 1982, 143, 210–222.
- [6] V. I. Mokeeva, E. S. Makarov, *Geokhimiya* 1979, 10, 1541–1544.
- [7] A. P. Tyutyunnik, V. G. Zubkov, L. L. Surat, B. V. Slobodin, G. Svensson, *Powder Diffr.* 2005, 20, 189–192.
- [8] K.-J. Range, R. Zintl, Z. Naturforsch. 1988, B43, 309– 317.
- [9] J. Galy, A. Carpy, Acta Crystallogr. 1975, B31, 1794– 1795.
- [10] M.-L. Ha-Eierdanz, U. Müller, Z. Anorg. Allg. Chem.

difference between the two compounds is the appearance of K/Rb disorder in the Rb1 and Rb2 positions which induces a more relaxed structure. This is mainly reflected by the lower values of the anisotropic displacement parameters of all atoms in RbKMnV2O7 (Table 3). We can also see that the MnO₄ tetrahedra are less flattened in the [001] direction ($d_{Mn-O} = 2.036$ Å and O1–Mn–O1 = 115.63°) than in Rb₂MnV₂O₇ $(d_{Mn-O} = 2.035 \text{ Å and } O1-Mn-O1 = 117.4^{\circ})$ or in $K_2MnV_2O_7(d_{Mn-O} = 2.028 \text{ Å} \text{ and } O_1-Mn-O_1 =$ 121.05°) (Table 4). Bindi et al. reported the observation that the greater the size of the tetrahedral cations with respect to the cations A, the greater the structural misfit leading to the incommensurate structure is found [24]. We can then assume that the structural transition from the melilite-type (space group $P\bar{4}2_1m$) to the closely related structure of Rb₂MnV₂O₇ and KRbMnV₂O₇ (space grop $P4_2/mnm$) proceeds by an analogous mechanism. When the size of the tetrahedral cations for B and/or C decreases (with the same cation A) or the size of the cations A increases (no change in B and C sizes) a phase transition occurs. For example, in K₂MnV₂O₇ when Mg²⁺ ($r_{ionic} = 0.57$ Å [20]) is substituted for Mn²⁺ (0.66 Å), Zn²⁺ (0.60 Å) and P⁵⁺ (0.17 Å) for Mn²⁺ (0.66 Å) and V⁵⁺ (0.355 Å) or Rb⁺ (1.61 Å) for K⁺ (1.51 Å), this structural transition is observed (see Table 1). The same behavior is observed for Na₂ZnV₂O₇ when phosphorus is substituted for vanadium, the size of the other cations being almost constant (Table 5).

1992, *613*, 63–66.

- [11] F.-D. Martin, H. Müller-Buschbaum, Z. Naturforsch. 1994, B49, 355 – 359.
- [12] E. V. Murashova, Yu. A. Velikodnyi, V. K. Trunov, *Russ. J. Inorg. Chem.* **1988**, *33*, 904–905.
- [13] Yu. F. Shepelev, M. A. Petrova, A. S. Novikova, A. E. Lapshin, *Glass Phys. Chem.* **2002**, *28*, 317–321.
- [14] F. Sanz, C. Parada, J. M. Rojo, C. Ruiz-Valero, R. Saez-Puche, J. Solid State Chem. 1999, 145, 604– 611.
- [15] I. Belharouak, C. Parent, P. Gravereau, J.P. Chaminade, G. le Flem, B. Moine, J. Solid State Chem. 2000, 149, 284–291.
- [16] H. Ben Yahia, E. Gaudin, J. Darriet, M. Banks, M. H. Whangbo, *Chem. Mater*, in press.
- [17] V. Petřiček, M. Dušek, L. Palatinus, JANA2000, The Crystallographic Computing System, Institute of Physics, Praha (Czech Republic) 2000.

- [18] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, SIR97, *J. Appl. Crystallogr.* **1999**, *32*, 115–119.
- [19] G. M. Sheldrick, SHELXS-97, Universität Göttingen, Göttingen (Germany) **1997**.
- [20] R. D. Shannon, Acta Crystallogr. 1976, A32, 751-767.
- [21] M. Kimata, Neues Jb. Miner. Monat. 1985, 2, 83-96.
- [22] I. D. Brown, D. Altermatt, *Acta Crystallogr.* **1985**, *B41*, 244–247.
- [23] N. E. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B47, 192-197.
- [24] L. Bindi, M. Dusek, V. Petricek, P. Bonazzi, Acta Crystallogr. 2006, B62, 1031 – 1037.