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Summary . In this article we study asymptotic properties of weighted samples produced by the
auxiliary particle filter (APF) proposed by Pitt and Shephard (1999a). Besides establishing a
central limit theorem (CLT) for smoothed particle estimates, we also derive bounds on the L

p

error and bias of the same for a finite particle sample size. By examining the recursive formula
for the asymptotic variance of the CLT we identify first-stage importance weights for which the
increase of asymptotic variance at a single iteration of the algorithm is minimal. In the light of
these findings, we discuss and demonstrate on several examples how the APF algorithm can
be improved.

1. Introduction

In this paper we consider a state space model where a sequence Y , {Yk}∞k=0 is modeled
as a noisy observation of a Markov chain X , {Xk}∞k=0, called the state sequence, which is
hidden. The observed values of Y are conditionally independent given the hidden states X
and the corresponding conditional distribution of Yk depends on Xk only. When operating
on a model of this form the joint smoothing distribution, that is, the joint distribution of
(X0, . . . , Xn) given (Y0, . . . , Yn), and its marginals will be of interest. Of particular interest
is the filter distribution, defined as the marginal of this law with respect to the component Xn

is referred to. Computing these posterior distributions will be the key issue when filtering
the hidden states as well as performing inference on unknown model parameters. The
posterior distribution can be recursively updated as new observations become available—
making single-sweep processing of the data possible—by means of the so-called smoothing
recursion. However, in general this recursion cannot be applied directly since it involves
the evaluation of complicated high-dimensional integrals. In fact, closed form solutions
are obtainable only for linear/Gaussian models (where the solutions are acquired using the
disturbance smoother) and models where the state space of the latent Markov chain is finite.

Sequential Monte Carlo (SMC) methods, often alternatively termed particle filters, pro-
vide a helpful tool for computing approximate solutions to the smoothing recursion for
general state space models, and the field has seen a drastic increase in interest over recent
years. These methods are based on the principle of, recursively in time, approximating the
smoothing distribution with the empirical measure associated with a weighted sample of
particles. At present time there are various techniques for producing and updating such a
particle sample (see Fearnhead, 1998; Doucet et al., 2001; Liu, 2001). For a comprehensive
treatment of the theoretical aspects of SMC methods we refer to the work by Del Moral
(2004).

In this article we analyse the auxiliary particle filter (APF) proposed by Pitt and Shep-
hard (1999a), which has proved to be one of the most useful and widely adopted implemen-
tations of the SMC methodology. Unlike the traditional bootstrap particle filter (Gordon et
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al., 1993), the APF enables the user to affect the particle sample allocation by designing
freely a set of first-stage importance weights involved in the selection procedure. Preva-
lently, this has been used for assigning large weight to particles whose offsprings are likely
to land up in zones of the state space having high posterior probability. Despite its obvious
appeal, it is however not clear how to optimally exploit this additional degree of freedom.

In order to better understand this issue, we present an asymptotical analysis (being a
continuation of (Olsson et al., 2006) and based on recent results by (Chopin, 2004; Künsch,
2005; Douc and Moulines, 2005) on weighted systems of particles) of the algorithm. More
specifically, we establish CLTs (Theorems 3.1 and 3.2), with explicit expressions of the
asymptotic variances, for two different versions (differentiated by the absence/presence of a
concluding resampling pass at the end of each loop) of the algorithm under general model
specifications. The convergence bear upon an increasing number of particles, and a recent
result in the same spirit has, independently of (Olsson et al., 2006), been stated in the
manuscript (Doucet and Johansen, 2007). Using these results, we also—and this is the main
contribution of the paper—identify first-stage importance weights which are asymptotically
most efficient. This result provides important insights in optimal sample allocation for
particle filters in general, and we also give an interpretation of the finding in terms of
variance reduction for stratified sampling.

In addition, we prove (utilising a decomposition of the Monte Carlo error proposed
by Del Moral (2004) and refined by Olsson et al. (2005)) time uniform convergence in Lp

(Theorem 3.3) under more stringent assumptions of ergodicity of the conditional hidden
chain. With support of this stability result and the asymptotic analysis we conclude that
inserting a final selection step at the end of each loop is—at least as long as the number
of particles used in the two stages agree—superfluous, since such an operation exclusively
increases the asymptotic variance.

Finally, in the implementation section (Section 5) several heuristics, derived from the ob-
tained results, for designing efficient first-stage weights are discussed, and the improvement
implied by approximating the asymptotically optimal first-stage weights is demonstrated
on several examples.

2. Notation and basic concepts

2.1. Model description
We denote by (X,X ), Q, and ν the state space, transition kernel, and initial distribution of
X , respectively, and assume that all random variables are defined on a common probability
space (Ω, P,A). In addition we denote by (Y,Y) the state space of Y and suppose that
there exists a measure λ and, for all x ∈ X, a non-negative function y 7→ g(y|x) such that,
for k ≥ 0, P (Yk ∈ A|Xk = x) =

∫

A
g(y|x)λ(dy), A ∈ Y. Introduce, for i ≤ j, the vector

notation Xi:j , (Xi, . . . , Xj); similar notation will be used for other quantities. The joint
smoothing distribution of denoted by

φn(A) , P (X0:n ∈ A|Y0:n = y0:n) , A ∈ X⊗(n+1) ,

and a straightforward application of Bayes’s formula shows that

φk+1(A) =

∫

A g(yk+1|xk+1)Q(xk, dxk+1)φk(dx0:k)
∫

Xk+2 g(yk+1|x′
k+1)Q(x′

k, dx′
k+1)φk(dx′

0:k)
, (2.1)
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for sets A ∈ X⊗(k+2). We will throughout this paper assume that we are given a sequence
{yk; k ≥ 0} of fixed observations, and write, for x ∈ X, gk(x) , g(yk|x). Moreover, from
now on we let the dependence on these observations of all other quantities be implicit, and
denote, since the coming analysis is made exclusively conditionally on the given observed
record, by P and E the conditional probability measure and expectation with respect to
these observations.

2.2. The auxiliary particle filter
Let us recall the APF algorithm by Pitt and Shephard (1999a). Assume that we at time k

have a particle sample {(ξN,i
0:k , ωN,i

k )}N
i=1 (each random variable ξN,i

0:k taking values in Xk+1)

providing an approximation
∑N

i=1 ωN,i
k δξN,i

0:k

/ΩN
k of the joint smoothing distribution φk,

where ΩN
k ,

∑N
i=1 ωN,i

k and ωN,i
k ≥ 0, 1 ≤ i ≤ N . Then, when the observation yk+1

becomes available, an approximation of φk+1 is obtained by plugging the empirical measure
φN

k into the recursion (2.1), yielding, for A ∈ X⊗(k+1),

φ̄N
k+1(A) ,

N
∑

i=1

ωN,i
k Hu

k (ξN,i
0:k , Xk+2)

∑N
j=1 ωN,j

k Hu
k (ξN,j

0:k , Xk+2)
Hk(ξN,i

0:k , A) , A ∈ X⊗(n+1) .

Here we have introduced, for x0:k ∈ Xk+1 and A ∈ X⊗(k+1), the unnormalised kernels

Hu
k (x0:k, A) ,

∫

A

gk+1(x
′
k+1) δx0:k

(dx′
0:k)Q(x′

k, dx′
k+1)

and Hk(x0:k, A) , Hu
k (x0:k, A)/Hu

k (x0:k, Xk+2). Simulating from Hk(x0:k, A) consists in
extending the trajectory x0:k ∈ Xk+1 with an additional component being distributed ac-
cording to the optimal kernel, that is, the distribution of Xk+1 conditional on Xk = xk

and the observation Yk+1 = yk+1. Now, since we want to form a new weighted sample
approximating φk+1, we need to find a convenient mechanism for sampling from φ̄N

k+1

given {(ξN,i
0:k , ωN,i

k )}N
i=1. In most cases cases it is possible—but generally computation-

ally expensive—to simulate from φ̄N
k+1 directly using auxiliary accept-reject sampling (see

Hürzeler and Künsch, 1998; Künsch, 2005). A computationally cheaper (see Künsch, 2005,
p. 1988, for a discussion of the acceptance probability associated with the auxiliary accept-
reject sampling approach) solution consists in producing a weighted sample approximating
φ̄N

k+1 by sampling from the importance sampling distribution

ρN
k+1(A) ,

N
∑

i=1

ωN,i
k τN,i

k
∑N

j=1 ωN,j
k τN,j

k

Rp
k(ξN,i

0:k , A) , A ∈ X⊗(k+2) .

Here τN,i
k , 1 ≤ i ≤ N , are positive numbers referred to as first-stage weights (Pitt and

Shephard, 1999a, use the term adjustment multiplier weights) and in this article we consider
first-stage weights of type

τN,i
k = tk(ξN,i

0:k ) (2.1)

for some function tk : X
k+1 → R

+. Moreover, the pathwise proposal kernel Rp
k is, for

x0:k ∈ Xk+1 and A ∈ X⊗(k+2), of form

Rp
k(x0:k, A) =

∫

A

δx0:k
(dx′

0:k)Rk(x′
k, dx′

k+1)
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with Rk being such that Q(x, ·) ≪ Rk(x, ·) for all x ∈ X. Thus, a draw from Rp
k(x0:k, ·) is

produced by extending the trajectory x0:k ∈ Xk+1 with an additional component obtained
by simulating from Rk(xk, ·). It is easily checked that for x0:k+1 ∈ X

k+2,

dφ̄N
k+1

dρN
k+1

(x0:k+1) ∝ wk+1(x0:k+1) ,

N
∑

i=1

1ξN,i

0:k

(x0:k)
gk+1(xk+1)

τN,i
k

dQ(xk, ·)
dRk(xk, ·) (xk+1) . (2.2)

An updated weighted particle sample {(ξ̃N,i
0:k+1, ω̃

N,i
k+1)}MN

i=1 targeting φ̄N
k+1 is hence generated

by simulating MN particles ξ̃N,i
0:k+1, 1 ≤ i ≤ MN , from the proposal ρN

k+1 and associating

with these particles the second-stage weights ω̃N,i
k+1 , wk+1(ξ̃

N,i
0:k+1), 1 ≤ i ≤ MN . By the

identity function in (2.2), only a single term of the sum will contribute to the second-stage
weight of a particle.

Finally, in an optional second-stage resampling pass a uniformly weighted particle sam-
ple {(ξ̃N,i

0:k+1, 1)}N
i=1, still targeting φ̄N

k+1, is obtained by resampling N of the particles ξ̃N,i
0:k+1,

1 ≤ i ≤ MN , according to the normalised second-stage weights. Note that the number of
particles in the last two samples, MN and N , may be different. The procedure is now re-
peated recursively (with ωN,i

k+1 ≡ 1, 1 ≤ i ≤ N) and is initialised by drawing ξN,i
0 , 1 ≤ i ≤ N ,

independently from ς, where ν ≪ ς, yielding ωN,i
0 = w0(ξ

N,i
0 ) with w0(x) , g0(x) dν/dς(x),

x ∈ X. To summarise, we obtain, depending on whether second-stage resampling is per-
formed or not, the procedures described in Algorithms 1 and 2.

Algorithm 1 Two-Stage Sampling Particle Filter (TSSPF)

Ensure: {(ξN,i
0:k , ωN,i

k )}N
i=1 approximates φk.

1: for i = 1, . . . , MN do ⊲ First stage
2: draw indices IN,i

k from the set {1, . . . , N} multinomially with respect to the nor-

malised weights ωN,j
k τN,j

k /
∑N

ℓ=1 ωN,ℓ
k τN,ℓ

k , 1 ≤ j ≤ N ;

3: simulate ξ̃N,i
0:k+1(k + 1) ∼ Rk[ξ

N,IN,i

k

0:k (k), ·], and

4: set ξ̃N,i
0:k+1 , [ξ

N,IN,i

k

0:k , ξ̃N,i
0:k+1(k + 1)] and ω̃N,i

k+1 , wk+1(ξ̃
N,i
0:k+1).

5: end for
6: for i = 1, . . . , N do ⊲ Second stage
7: draw indices JN,i

k+1 from the set {1, . . . , MN} multinomially with respect to the nor-

malised weights ω̃N,j
k+1/

∑N
ℓ=1 ω̃N,ℓ

k+1, 1 ≤ j ≤ N , and

8: set ξN,i
0:k+1 , ξ̃

N,JN,i

k+1

0:k+1 .

9: Finally, reset the weights: ωN,i
k+1 = 1.

10: end for
11: Take {(ξN,i

0:k+1, 1)}N
i=1 as an approximation of φk+1.

We will use the term APF as a family name for both these algorithms and refer to them
separately as two-stage sampling particle filter (TSSPF) and single-stage auxiliary particle

filter (SSAPF). Note that we by letting τN,i
k ≡ 1, 1 ≤ i ≤ N , in Algorithm 2 obtain the

bootstrap particle filter suggested by Gordon et al. (1993).
The resampling steps of the APF can of course be implemented using techniques (e.g.,

residual or systematic resampling) different from multinomial resampling, leading to straight-
forward adaptions not discussed here. We believe however that the results of the coming
analysis are generally applicable and extendable to a large class of selection schemes.
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Algorithm 2 Single-Stage Auxiliary Particle Filter (SSAPF)

Ensure: {(ξN,i
0:k , ωN,i

k )}N
i=1 approximates φk.

1: for i = 1, . . . , N do
2: draw indices IN,i

k from the set {1, . . . , N} multinomially with respect to the nor-

malised weights ωN,j
k τN,j

k /
∑N

ℓ=1 ωN,ℓ
k τN,ℓ

k , 1 ≤ j ≤ N ;

3: simulate ξ̃N,i
0:k+1(k + 1) ∼ Rk[ξ

N,IN,i

k

0:k (k), ·], and

4: set ξ̃N,i
0:k+1 , [ξ

N,IN,i

k

0:k , ξ̃N,i
0:k+1(k + 1)] and ω̃N,i

k+1 , wk+1(ξ̃
N,i
0:k+1).

5: end for
6: Take {(ξ̃N,i

0:k+1, ω̃
N,i
k+1)}N

i=1 as an approximation of φk+1.

The issue whether second-stage resampling should be performed or not has been treated
by several authors, and the theoretical results on the particle approximation stability and
asymptotic variance presented in the next section will indicate that the second-stage se-
lection pass should, at least for the case MN = N , be canceled, since this exclusively
increases the sampling variance. Thus, the idea that the second-stage resampling pass is
necessary for preventing the particle approximation from degenerating does not apparently
hold. Recently, a similar conclusion was reached in the manuscript (Doucet and Johansen,
2007).

The advantages of the APF not possessed by standard SMC methods is the possibility
of, firstly, choosing the first-stage weights τN,i

k arbitrarily and, secondly, letting N and MN

be different (TSSPF only). Appealing to common sense, SMC methods work efficiently
when the particle weights are well-balanced, and Pitt and Shephard (1999a) propose several
strategies for achieving this by adapting the first-stage weights. In some cases it is possible
to fully adapt the filter to the model (see Section 5), providing exactly equal importance
weights; otherwise, Pitt and Shephard (1999a) suggest, in the case Rk ≡ Q and X = R

d, the
generic first-stage importance weight function tP&S

k (x0:k) , gk+1[
∫

Rd x′ Q(xk, dx′)], x0:k ∈
R

k+1. The analysis that follows will however show that this way of adapting the first-
stage weights is not necessarily good in terms of asymptotic (as N tends to infinity) sample
variance; indeed, using first-stage weights given by tP&S

k can be even detrimental for some
models.

3. Bounds and asymptotics for produced approximations

3.1. Asymptotic properties.
Introduce, for any probability measure µ on some measurable space (E, E) and µ-measurable
function f satisfying

∫

E
|f(x)|µ(dx) < ∞, the notation µf ,

∫

E
f(x)µ(dx). Moreover,

for any two transition kernels K and T from (E1, E1) to (E2, E2) and (E2, E2) to (E3, E3),
respectively, we define the product transition kernel KT (x, A) ,

∫

E2
T (z, A)K(x, dz), for

x ∈ E1 and A ∈ E3. A set C of real-valued functions on Xm is said to be proper if the
following conditions hold: i) C is a linear space; ii) if g ∈ C and f is measurable with
|f | ≤ |g|, then |f | ∈ C; iii) for all c ∈ R, the constant function f ≡ c belongs to C.

From (Douc and Moulines, 2005) we adapt the following definitions.

Definition 3.1 (Consistency). A weighted sample {(ξN,i
0:m, ωN,i

m )}MN

i=1 on Xm+1 is said
to be consistent for the probability measure µ and the (proper) set C ⊆ L1(Xm+1, µ) if, for
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any f ∈ C, as N → ∞,

(ΩN
m)−1

MN
∑

i=1

ωN,i
m f(ξN,i

0:m)
P−→ µf ,

(ΩN
m)−1 max

1≤i≤MN

ωN,i
m

P−→ 0 .

Definition 3.2 (Asymptotic normality). A weighted sample {(ξN,i
0:m, ωN,i

m )}MN

i=1 on
Xm+1 is called asymptotically normal (abbreviated a.n.) for (µ, A, W, σ, γ, {aN}∞N=1) if, as
N → ∞,

aN (ΩN
m)−1

MN
∑

i=1

ωN,i
m [f(ξN,i

0:m) − µf ]
D−→ N [0, σ2(f)] for any f ∈ A ,

a2
N (ΩN

m)−1
MN
∑

i=1

(ωN,i
m )2f(ξN,i

0:m)
P−→ γf for any f ∈ W ,

aN (ΩN
m)−1 max

1≤i≤MN

ωN,i
m

P−→ 0 .

The main contribution of this section is the following results, which establish consistency and
asymptotic normality of weighted samples produced by the TSSPF and SSAPF algorithms.
For all k ≥ 0, we define a transformation Φk on the set of φk-integrable functions by

Φk[f ](x0:k) , f(x0:k) − φkf , x0:k ∈ X
k+1 . (3.1)

In addition, we impose the following assumptions.

(A1) For all k ≥ 1, tk ∈ L2(Xk+1, φk) and wk ∈ L1(Xk+1, φk), where tk and wk are defined
in (2.1) and (2.2), respectively.

(A2) i) A0 ⊆ L1(X, φ0) is a proper set and σ0 : A0 → R
+ is a function satisfying, for all

f ∈ A0 and a ∈ R, σ0(af) = |a|σ0(f).

ii) The initial sample {(ξN,i
0 , 1)}N

i=1 is consistent for [L1(X, φ0), φ0] and a.n. for
[φ0, A0, W0, σ0, γ0, {

√
N}∞N=1].

Theorem 3.1. Assume (A1) and (A2) with (W0, γ0) = [L1(X, φ0), φ0]. In the setting
of Algorithm 1, suppose that the limit β , limN→∞ N/MN exists, where β ∈ [0, 1]. Define
recursively the family {Ak}∞k=1 by

Ak+1 ,

{

f ∈ L
2(Xk+2, φk+1) : Rp

k(·, wk+1|f |)Hu
k (·, |f |) ∈ L

1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ak ∩ L

2(Xk+1, φk), wk+1f
2 ∈ L

1(Xk+2, φk+1)
}

. (3.2)

Furthermore, define recursively the family {σk}∞k=1 of functionals σk : Ak → R
+ by

σ2
k+1(f) , φk+1Φ

2
k+1[f ]+

σ2
k{Hu

k (·, Φk+1[f ])} + βφk{tkRp
k(·, w2

k+1Φ
2
k+1[f ])}φktk

[φkHu
k (Xk+2)]2

. (3.3)

Then each Ak is a proper set for all k ≥ 1. Moreover, each sample {(ξN,i
0:k , 1)}N

i=1 pro-
duced by Algorithm 1 is consistent for [L1(Xk+1, φk), φk] and asymptotically normal for
[φk, Ak, L1(Xk+1, φk), σk, φk, {

√
N}∞N=1].
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The proof is found in Appendix A, and as a by-product a similar result for the SSAPF
(Algorithm 2) is obtained.

Theorem 3.2. Assume (A1) and (A2). Define the families {W̃k}∞k=0 and {Ãk}∞k=0 by

W̃k ,

{

f ∈ L
1(Xk+1, φk) : wk+1f ∈ L

1(Xk+1, φk)
}

, W̃0 , W0 ,

and, with Ã0 , A0,

Ãk+1 ,

{

f ∈ L
1(Xk+2, φk+1) : Rp

k(·, wk+1|f |)Hu
k (·, |f |) ∈ L

1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ãk, [Hu

k (·, |f |)]2 ∈ W̃k, wk+1f
2 ∈ L

1(Xk+2, φk+1)
}

. (3.4)

Furthermore, define recursively the family {σ̃k}∞k=0 of functionals σ̃k : Ak → R
+ by

σ̃2
k+1(f) ,

σ̃2
k{Hu

k (·, Φk+1[f ])} + φk{tkRp
k(·, w2

k+1Φ
2
k+1[f ])}φktk

[φkHu
k (Xk+2)]2

, σ̃0 , σ0 , (3.5)

and the measures {γ̃k}∞k=1 by

γ̃k+1f ,
φk+1(wk+1f)φktk

φkHu
k (Xk+2)

, f ∈ W̃k+1 .

Then each Ãk is a proper set for all k ≥ 1. Moreover, each sample {(ξ̃N,i
0:k , ω̃N,i

k )}N
i=1 pro-

duced by Algorithm 2 is consistent for [L1(Xk+1, φk), φk] and asymptotically normal for
[φk, Ãk, W̃k, σ̃k, γ̃k, {

√
N}∞N=1].

Under the assumption of bounded likelihood and second-stage importance weight func-
tions gk and wk, one can show that the CLTs stated in Theorems 3.1 and 3.2 indeed include
any functions having finite second moments with respect to the joint smoothing distribu-
tions; that is, under these assumptions the supplementary constraints on the sets (3.2) and
(3.4) are automatically fulfilled. This is the contents of the statement below.

(A3) For all k ≥ 0, ‖gk‖X,∞ < ∞ and ‖wk‖Xk+1,∞ < ∞.

Corollary 3.1. Assume (A3) and let {Ak}∞k=0 and {Ãk}∞k=0 be defined by (3.2) and

(3.4), respectively, with Ã0 = A0 , L2(X, φ0). Then, for all k ≥ 1, Ak = L2(Xk+1, φk) and
L2(Xk+1, φk) ⊆ Ãk.

For a proof, see Section A.2.
Interestingly, the expressions of σ̃2

k+1(f) and σ2
k+1(f) differ, for β = 1, only on the

additive term φk+1Φ
2
k+1[f ], that is, the variance of f under φk+1. This quantity represents

the cost of introducing the second-stage resampling pass, which was proposed as a mean
for preventing the particle approximation from degenerating. In the coming Section 3.2 we
will however show that the approximations produced by the SSAPF are already stable for
a finite time horizon, and that additional resampling is superfluous. Thus, there are indeed
reasons for strongly questioning whether second-stage resampling should be performed at
all, at least when the same number of particles are used in the two stages.
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3.2. Bounds on Lp error and bias
In this part we examine, under suitable regularity conditions and for a finite particle popula-
tion, the errors of the approximations obtained by the APF in terms Lp bounds and bounds
on the bias. We preface our main result with some definitions and assumptions. Denote by
Bb(X

m) space of bounded measurable functions on Xm furnished with the supremum norm
‖f‖Xm,∞ , supx∈Xm |f(x)|. Let, for f ∈ Bb(Xm), the oscillation semi-norm (alternatively

termed the global modus of continuity) be defined by osc(f) , sup(x,x′)∈Xm×Xm |f(x)−f(x′)|.
Furthermore, the Lp norm of a stochastic variable X is denoted by ‖X‖p , E

1/p[|X |p].
When considering sums, we will make use of the standard convention

∑b
k=a ck = 0 if b < a.

In the following we will assume that all measures Q(x, ·), x ∈ X, have densities q(x, ·)
with respect to a common dominating measure µ on (X, X ). Moreover, we suppose that
the following holds.

(A4) i) ǫ− , inf(x,x′)∈X2 q(x, x′) > 0, ǫ+ , sup(x,x′)∈X2 q(x, x′) < ∞.

ii) For all y ∈ Y,
∫

X
g(y|x)µ(dx) > 0.

Under (A4) we define

ρ , 1 − ǫ−
ǫ+

. (3.6)

(A5) For all k ≥ 0, ‖tk‖Xk+1,∞ < ∞.

Assumption (A4) is now standard and is often satisfied when the state space X is compact
and implies that the hidden chain, when evolving conditionally on the observations, is
geometrical ergodic with a mixing rate given by ρ < 1. For comprehensive treatments of
such stability properties within the framework of state space models we refer to Del Moral
(2004). Finally, let Ci(X

n+1) be the set of bounded measurable functions f on Xn+1 of type
f(x0:n) = f̄(xi:n) for some function f̄ : Xn−i+1 → R. In this setting we have the following
result, which is proved in Section A.3.

Theorem 3.3. Assume (A3), (A4), (A5), and let f ∈ Ci(X
n+1) for 0 ≤ i ≤ n. Let

{(ξ̃N,i
0:k , ω̃N,i

k )}RN (r)
i=1 be a weighted particle sample produced by Algorithm r, r = {1, 2}, with

RN (r) , 1{r = 1}MN + 1{r = 2}N . Then the following holds true for all N ≥ 1 and
r = {1, 2}.

i) For all p ≥ 2,

∥

∥

∥

∥

∥

∥

(Ω̃N
n )−1

RN (r)
∑

j=1

ω̃N,j
n fi(ξ̃

N,j
0:n ) − φnfi

∥

∥

∥

∥

∥

∥

p

≤ Bp
osc(fi)

1 − ρ

[

1

ǫ−
√

RN (r)

n
∑

k=1

‖wk‖Xk+1,∞ ‖tk−1‖Xk,∞

µgk
ρ0∨(i−k)

+
1{r = 1}√

N

(

ρ

1 − ρ
+ n − i

)

+
‖w0‖X,∞

νg0

√
N

ρi

]

,
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ii)

∣

∣

∣

∣

∣

∣

E



(Ω̃N
n )−1

RN (r)
∑

j=1

ω̃N,j
n fi(ξ̃

N,j
0:n )



 − φnfi

∣

∣

∣

∣

∣

∣

≤ B
osc(fi)

(1 − ρ)2

[

1

RN (r)ǫ2−

n
∑

k=1

‖wk‖2
Xk+1,∞ ‖tk−1‖2

Xk,∞

(µgk)2
ρ0∨(i−k)

+
1{r = 1}

N

(

ρ

1 − ρ
+ n − i

)

+
‖w0‖2

X,∞

N(νg0)2
ρi

]

.

Here ρ is defined in (3.6), and Bp and B are universal constants such that Bp depends on
p only.

Especially, applying, under the assumption that all fractions ‖wk‖Xk+1,∞‖tk−1‖Xk,∞/µgk

are uniformly bounded in k, Theorem 3.3 for i = n, yields error bounds on the approximate
filter distribution which are uniformly bounded in n. From this it is obvious that the
first-stage resampling pass is enough to preserve the sample stability. Indeed, by avoiding
second-stage selection according to Algorithm 2 we can, since the middle terms in the
bounds above cancel in this case, obtain even tighter control of the Lp error for a fixed
number of particles.

4. Identifying asymptotically optimal first-stage weights

The formulas (3.3) and (3.5) for the asymptotic variances of the TSSPF and SSAPF may
look complicated at a first sight, but by carefully examining the same we will obtain im-
portant knowledge of how to choose the first-stage importance weight functions tk in order
to robustify the APF .

Assume that we have run the APF up to time k and are about to design suitable first-
stage weights for the next iteration. In this setting, we call a first-stage weight function
t′k[f ], possibly depending on the target function f ∈ Ak+1 and satisfying (A1), optimal (at
time k) if it provides a minimal increase of asymptotic variance at a single iteration of the
APF algorithm, that is, if σ2

k+1{t′k[f ]}(f) ≤ σ2
k+1{t}(f) (or σ̃2

k+1{t′k[f ]}(f) ≤ σ̃2
k+1{t}(f))

for all other measurable and positive weight functions t. Here we let σ2
k+1{t}(f) denote the

asymptotic variance induced by t. Define, for x0:k ∈ Xk+1,

t∗k[f ](x0:k) ,

√

∫

X

g2
k+1(xk+1)

[

dQ(xk, ·)
dRk(xk, ·) (xk+1)

]2

Φ2
k+1[f ](x0:k+1)Rk(xk, dxk+1) , (4.1)

and let w∗
k+1[f ] denote the second-stage importance weight function induced by t∗k[f ] ac-

cording to (2.2). We are now ready to state the main result of this section. The proof is
found in Section A.4.

Theorem 4.1. Let k ≥ 0 and define t∗k by (4.1). Then the following is valid.

i) Let the assumptions of Theorem 3.1 hold and suppose that f ∈ {f ′ ∈ Ak+1 : t∗k[f ′] ∈
L2(Xk+1, φk), w∗

k+1[f
′] ∈ L1(Xk+2, φk+1)}. Then t∗k is optimal for Algorithm 1 and the
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corresponding minimal variance is given by

σ2
k+1{t∗k}(f) = φk+1Φ

2
k+1[f ] +

σ2
k[Hu

k (·, Φk+1[f ])] + β(φkt∗k[f ])2

[φkHu
k (Xk+2)]2

.

ii) Let the assumptions of Theorem 3.2 hold and suppose that f ∈ {f ′ ∈ Ãk+1 : t∗k[f ′] ∈
L2(Xk+1, φk), w∗

k+1[f
′] ∈ L1(Xk+2, φk+1)}. Then t∗k is optimal for Algorithm 2 and the

corresponding minimal variance is given by

σ̃2
k+1{t∗k}(f) =

σ̃2
k[Hu

k (·, Φk+1[f ])] + (φkt∗k[f ])2

[φkHu
k (Xk+2)]2

.

The functions t∗k have a natural interpretation in terms of optimal sample allocation for

stratified sampling. Consider the mixture π =
∑d

i=1 wiµi, each µi being a measure on some

measurable space (E, E) and
∑d

i=1 wi = 1, and the problem of estimating, for some given
π-integrable target function f , the expectation πf . In order to relate this to the particle
filtering paradigm, we will make use of Algorithm 3. In other words, we perform Monte

Algorithm 3 Stratified importance sampling

1: for i = 1, . . . , N do
2: draw an index Ji multinomially with respect to τj , 1 ≤ j ≤ d,

∑d
j=1 τj = 1;

3: simulate ξi ∼ νJi
, and

4: compute the weights ωi ,
wj

τj

dµj

dνj

∣

∣

∣

j=Ji

5: end for
6: Take {(ξi, ωi)}N

i=1 as an approximation of π.

Carlo estimation of πf by means of sampling from some proposal mixture
∑d

j=1 τjνj and
forming a self-normalised estimate—cf. the technique applied in Section 2.2 for sampling
from φ̄N

k+1. In this setting, the following CLT can be established under weak assumptions:

√
N

[

N
∑

i=1

ωi
∑N

ℓ=1 ωℓ

f(ξi) − πf

]

D−→ N



0,

d
∑

j=1

w2
j αj(f)

τj



 ,

with, for x ∈ E,

αi(f) ,

∫

E

[

dµi

dνi
(x)

]2

Π2[f ](x) νi(dx) and Π[f ](x) , f(x) − πf .

Minimising the asymptotic variance
∑d

i=1[w
2
i αi(f)/τi] with respect to τi, 1 ≤ i ≤ d, e.g.,

by means of the Lagrange multiplicator method (the details are simple), yields the optimal
weights

τ∗
i ∝ wi

√

αi(f) = wi

√

∫

E

[

dµi

dνi
(x)

]2

Π2[f ](x) νi(dx) ,

and the similarity between this expression and that of the optimal first-stage importance
weight functions t∗k is striking. This strongly supports the idea of interpreting optimal
sample allocation for particle filters in terms of variance reduction for stratified sampling.
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5. Implementations

As shown in the previous section, the utilisation of the optimal weights (4.1) provides,
for a given sequence {Rk}∞k=0 of proposal kernels, the most efficient of all particle filters
belonging to the large class covered by Algorithm 2 (including the standard bootstrap
filter and any fully adapted particle filter). However, exact computation of the optimal
weights is in general infeasible by two reasons: firstly, they depend (via Φk+1[f ]) on the
expectation φk+1f , that is, the quantity that we aim to estimate, and, secondly, they involve
the evaluation of a complicated integral. A comprehensive treatment of the important issue
of how to approximate the optimal weights is beyond the scope of this paper, but in the
following three examples we discuss some possible heuristics for doing this.

5.1. Nonlinear Gaussian model
In order to form an initial idea of the performance of the optimal SSAPF in practice, we
apply the method to a first order (possibly nonlinear) autoregressive model observed in
noise:

Xk+1 = m(Xk) + σw(Xk)Wk+1 ,

Yk = Xk + σvVk ,
(5.1)

with {Wk}∞k=1 and {Vk}∞k=0 being mutually independent sets of standard normal distributed
variables such that Wk+1 is independent of (Xi, Yi), 0 ≤ i ≤ k, and Vk is independent of Xk,
(Xi, Yi), 0 ≤ i ≤ k − 1. Here the functions σw : R → R

+ and m : R → R are measurable,
and X = R. As observed by Pitt and Shephard (1999a), it is, for all models of form (5.1),
possible to propose new particle using the optimal kernel directly, yielding Rp

k = Hk and,
for (x, x′) ∈ R

2,

rk(x, x′) =
1

σ̃k(x)
√

2π
exp

{

− [x′ − m̃k(x)]2

2σ̃2
k(x)

}

, (5.2)

with rk denoting the density of Rk with respect to the Lebesque measure, and

m̃k(x) ,

[

yk+1

σ2
v

+
mk(x)

σ2
w(x)

]

σ̃2
k(x) , σ̃2

k(x) ,
σ2

vσ2
w(x)

σ2
v + σ2

w(x)
. (5.3)

For the proposal (5.2) it is, for xk:k+1 ∈ R
2, valid that

gk+1(xk+1)
dQ(xk, ·)
dRk(xk, ·) (xk+1) ∝ hk(xk) ,

σ̃k(xk)

σw(xk)
exp

[

m̃2
k(xk)

2σ̃2
k(xk)

− m2(xk)

2σ2
w(xk)

]

, (5.4)

and since the right hand side does not depend on xk+1 we can, by letting tk(x0:k) =
hk(xk), x0:k ∈ R

k+1, obtain second-stage weights being indeed unity (providing a sample
of genuinely φ̄N

k+1-distributed particles). When this is achieved, Pitt and Shephard (1999a)
call the particle filter fully adapted. There is however nothing in the previous theoretical
analysis that supports the idea that aiming at evenly distributed second-stage weights is
always convenient, and this will also be illustrated in the simulations below. On the other
hand, it is possible to find cases when the fully adapted particle filter is very close to being
optimal; see again the following discussion.

In this part we will study the following two special cases of (5.1):
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• m(Xk) ≡ φXk and σw(Xk) ≡ σ

For a linear/Gaussian model of this kind, exact expressions of the optimal weights can
be obtained using the Kalman filter. We set φ = 0.9 and let the latent chain be put
at stationarity from the beginning, that is, X0 ∼ N [0, σ2/(1 − φ2)]. In this setting,
we simulated, for σ = σv = 0.1, a record y0:10 of observations and estimated the
filter posterior means (corresponding to projection target functions πk(x0:k) , xk,
x0:k ∈ R

k+1) along this trajectory by applying (1) SSAPF based on true optimal
weights, (2) SSAPF based on the generic weights tP&S

k of Pitt and Shephard (1999a),
and (3) the standard bootstrap particle filter (that is, SSAPF with tk ≡ 1). In this
first experiment, the prior kernel Q was taken as proposal in all cases, and since
the optimal weights are derived using asymptotic arguments we used as many as
100,000 particles for all algorithms. The result is displayed in Figure 1(a), and it is
clear that operating with true optimal allocation weights improves—as expected—the
MSE performance in comparison with the other methods.

The main motivation of Pitt and Shephard (1999a) for introducing auxiliary parti-
cle filtering was to robustify the particle approximation to outliers. Thus, we mimic
Cappé et al. (2005, Example 7.2.3) and repeat the experiment above for the obser-
vation record y0:5 = (−0.652,−0.345,−0.676, 1.142, 0.721, 20), standard deviations
σv = 1, σ = 0.1, and the smaller particle sample size N = 10,000. Note the large
discrepancy of the last observation y5, which in this case is located at a distance of
20 standard deviations from the mean of the stationary distribution. The outcome is
plotted in Figure 1(b) from which it is evident that the particle filter based on the
optimal weights is the most efficient also in this case; moreover, the performance of
the standard auxiliary particle filter is improved in comparison with the bootstrap
filter. Figure 2 displays a plot of the weight functions t∗4 and tP&S

4 for the same ob-
servation record. It is clear that tP&S

4 is not too far away from the optimal weight
function (which is close to symmetric in this extreme situation) in this case, even
if the distance between the functions as measured with the supremum norm is still
significant.

Finally, we implement the fully adapted filter (with proposal kernels and first stage-
weights given by (5.2) and (5.4), respectively) and compare this with the SSAPF based
on the same proposal (5.4) and optimal first-stage weights, the latter being given by,
for x0:k ∈ R

k+1 and hk defined in (5.4),

t∗k[πk+1](x0:k) ∝ hk(xk)

√

∫

R

Φ2
k+1[πk+1](xk+1)Rk(xk, dxk+1)

= hk(xk)
√

σ̃2
k(xk) + m̃2

k(xk) − 2m̃k(xk)φk+1πk+1 + φ2
k+1πk+1

(5.5)

in this case. We note that hk, that is, the first-stage weight function for the fully
adapted filter, enters as a factor in the optimal weight function (5.5). Moreover,
recall the definitions (5.3) of m̃k and σ̃k; in the case of very informative observations,
corresponding to σv ≪ σ, it holds that σ̃k(x) ≈ σv and m̃k(x) ≈ yk+1 with good
precision for moderate values of x ∈ R (that is, values not too far away from the mean
of the stationary distribution of X). Thus, the factor beside hk in (5.5) is more or less
constant in this case, implying that the fully adapted and optimal first-stage weight
filters are close to equivalent. This observation is perfectly confirmed in Figure 3(a)
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Fig. 1. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF based
on optimal weights (�), and the SSAPF based on the generic weights t

P&S

k of Pitt and Shephard
(1999a) (◦). The MSE values are founded on 100,000 particles and 400 runs of each algorithm.
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Fig. 2. Plot of the first-stage importance weight functions t
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4 (dashed line)

in the presence of an outlier.
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Fig. 3. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF based
on optimal weights (�), the SSAPF based on the generic weights t

P&S

k (◦), and the fully adapted
SSAPF (×) for the Linear/Gaussian model in Section 5.1. The MSE values are computed using
10,000 particles and 400 runs of each algorithm.

which presents MSE performances for σv = 0.1, σ = 1, and N = 10,000. In the
same figure, the bootstrap filter and the standard auxiliary filter based on generic
weights are included for a comparison, and these (particularly the latter) are marred
with significantly larger Monte Carlo errors. On the contrary, in the case of non-
informative observations, that is, σv ≫ σ, we note that σ̃k(x) ≈ σ, m̃k(x) ≈ φx
and conclude that the optimal kernel is close the prior kernel Q. In addition, the
exponent of hk vanishes, implying uniform first-stage weights for the fully adapted
particle filter. Thus, the fully adapted filter will be close to the bootstrap filter in this
case, and Figure 3(b) seems to confirm this remark. Moreover, the optimal first-stage
weight filter does clearly better than the others in terms of MSE performance.

• m(Xk) ≡ 0 and σw(Xk) ≡
√

β0 + β1X2
k

Here we deal with the classical Gaussian autoregressive conditional heteroscedasticity
(ARCH) model (see Bollerslev et al., 1994) observed in noise. Since the nonlinear
state equation precludes exact computation of the filtered means, implementing the
optimal first-stage weight SSAPF is considerably more challenging in this case. The
problem can however be tackled by means of an introductory zero-stage simulation
pass, based on R ≪ N particles, in which a crude estimate of φk+1f is obtained.
For instance, this can be achieved by applying the standard bootstrap filter with
multinomial resampling. Using this approach, we computed again MSE values for
the bootstrap filter, the standard SSAPF based on generic weights, the fully adapted
SSAPF, and the (approximate) optimal first-stage weight SSAPF, the latter using
the optimal proposal kernel. Each algorithm used 10,000 particles and the number of
particles in the prefatory pass was set to R = N/10 = 1000, implying only a minor
additional computational work. An imitation of the true filter means was obtained
by running the bootstrap filter with as many as 500,000 particles. In compliance
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Fig. 4. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF based
on optimal weights (�), the SSAPF based on the generic weights t

P&S

k (◦), and the fully adapted
SSAPF (×) for the ARCH model in Section 5.1. The MSE values are computed using 10,000 particles
and 400 runs of each algorithm.

with the foregoing, we considered the case of informative (Figure 4(a)) as well as
non-informative (Figure 4(b)) observations, corresponding to (β0, β1, σv) = (9, 5, 1)
and (β0, β1, σv) = (0.1, 1, 3), respectively. Since σ̃k(x) ≈ σv, m̃k(x) ≈ yk+1 in the
latter case, we should, in accordance with the previous discussion, again expect the
fully adapted filter to be close to that based on optimal first-stage weights. This is
also confirmed in the plot. For the former parameter set, the fully adapted SSAPF
exhibits a MSE performance close to that of the bootstrap filter, while the optimal
first-stage weight SSAPF is clearly superior.

5.2. Stochastic volatility
As a final example we consider the canonical discrete-time stochastic volatility (SV) model
(Hull and White, 1987) given by

Xk+1 = φXk + σWk+1 ,

Yk = β exp(Xk/2)Vk ,

where X = R, and {Wk}∞k=1 and {Vk}∞k=0 are as in Example 5.1. Here X and Y are
log-volatility and log-returns, respectively, where the former are assumed to be stationary.
Also this model was treated by Pitt and Shephard (1999a), who discussed approximate
full adaptation of the particle filter by means of a second order Taylor approximation of
the concave function x′ 7→ log gk+1(x

′). More specifically, by multiplying the approxi-
mate observation density obtained in this way with q(x, x′), (x, x′) ∈ R

2, yielding a Gaus-
sian approximation of the optimal kernel density, nearly even second-stage weights can
be obtained. We proceed in the same spirit, approximating however directly the (log-
concave) function x′ 7→ gk+1(x

′)q(x, x′) by means of a second order Taylor expansion of
x′ 7→ log[gk+1(x

′)q(x, x′)] around the mode m̄k(x) (obtained using Newton iterations) of
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the same:

gk+1(x
′)q(x, x′) ≈ ru

k(x, x′) , gk+1[m̄k(x)]q[x, m̄k(x)] exp

{

− 1

2σ̄2
k(x)

[x′ − m̄k(x)]2
}

,

with (we refer to Cappé et al., 2005, pp. 225–228, for details) σ̄2
k(x) being the inverted

negative of the second order derivative, evaluated at m̄k(x), of x′ 7→ log[gk+1(x
′)q(x, x′)].

Thus, by letting, for (x, x′) ∈ R
2, rk(x, x′) = ru

k(x, x′)/
∫

R
ru
k(x, x′′) dx′′, we obtain

gk+1(xk+1)
dQ(xk, ·)
dRk(xk, ·) (xk+1) ≈

∫

R

ru
k(xk, x′) dx′ ∝ σ̄k(xk)gk+1[m̄k(xk)]q[x, m̄k(xk)] , (5.6)

and letting, for x0:k ∈ R
k+1, tk(x0:k) = σ̄k(xk)gk+1[m̄k(xk)]q[xk, m̄k(xk)] will imply a nearly

fully adapted particle filter. Moreover, by applying the approximate relation (5.6) to the
expression (4.1) of the optimal weights, we get (cf. (5.5))

t∗k[πk+1](x0:k) ≈
∫

R

ru
k(xk, x′) dx′

√

∫

R

Φ2
k+1[πk+1](x)Rk(xk, dx) ∝

σ̄k(xk)gk+1[m̄k(xk)]q[x, m̄k(xk)]
√

σ̄2
k(xk) + m̄2

k(xk) − 2m̄k(xk)φk+1πk+1 + φ2
k+1πk+1 .

(5.7)

In this setting, we conducted a numerical experiment where the two filters above were,
again together with the bootstrap filter and the auxiliary filter based on the generic weights
tP&S
k , run for the parameters (φ, β, σ) = (0.9702, 0.5992, 0.178) (estimated by Pitt and

Shephard, 1999b, from daily returns on the U. S. dollar against the U. K. pound stearling
from the first day of trading in 1997 and for the next 200 days). To make the filtering
problem more challenging, we used a simulated record y0:10 of observations arising from
the initial state x0 = 2.19, being above the 2% quantile of the stationary distribution of
X , implying a sequence of relatively impetuously fluctuating log-returns. The number of
particles was set to N = 5,000 for all filters, and the number of particles used in the prefatory
filtering pass (in which a rough approximation of φk+1πk+1 in (5.7) was computed using
the bootstrap filter) of the SSAPF filter based on optimal first-stage weights was set to
R = N/5 = 1000; thus, running the optimal first-stage weight filter is only marginally more
demanding than running the fully adapted filter. The outcome is displayed in Figure 5. It
is once more obvious that introducing approximate optimal first-stage weights significantly
improves the performance also for the the SV model, which is recognised as being specially
demanding as regards state estimation.

A. Proofs

A.1. Proof of Theorem 3.1
Let us recall the updating scheme described in Algorithm 1 and formulate it in the following
four isolated steps:

{(ξN,i
0:k , 1)}N

i=1

I: Weighting−−−−−−−−→ {(ξN,i
0:k , τN,i

k )}N
i=1

II: Resampling (1st stage)−−−−−−−−−−−−−−−−→ {(ξ̂N,i
0:k , 1)}MN

i=1 →
III: Mutation−−−−−−−−→ {(ξ̃N,i

0:k+1, ω̃
N,i
k+1)}MN

i=1

IV: Resampling (2nd stage)−−−−−−−−−−−−−−−−−→ {(ξN,i
0:k+1, 1)}N

i=1 , (A.1)
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Fig. 5. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF based
on optimal weights (�), the SSAPF based on the generic weights t

P&S

k (◦), and the fully adapted
SSAPF (×) for the SV model in Section 5.2. The MSE values are computed using 5,000 particles
and 400 runs of each algorithm.

where we have set ξ̂N,i
0:k , ξ

N,IN,i

k

0:k , 1 ≤ i ≤ MN . Now, the asymptotic properties stated
in Theorem 3.1 are established by a chain of applications of (Douc and Moulines, 2005,
Theorems 1–4). We will proceed by induction: assume that the uniformly weighted par-

ticle sample {(ξN,i
0:k , 1)}N

i=1 is consistent for [L1(Xk+1, φk), φk] and asymptotically normal

for [φk, Ak, L1(Xk+1, φk), σk, φk, {
√

N}∞N=1], with Ak being a proper set and σk such that
σk(af) = |a|σk(f), f ∈ Ak, a ∈ R. We prove, by analysing each of the steps (I–IV), that
this property is preserved through one iteration of the algorithm.

(I). Define the measure

µk(A) ,
φk(tk1A)

φktk
, A ∈ X⊗(k+1) .

By applying (Douc and Moulines, 2005, Theorem 1) for R(x0:k, ·) = δx0:k
(·), L(x0:k, ·) =

tk(x0:k) δx0:k
(·), µ = µk, and ν = φk, we conclude that the weighted sample {(ξN,i

0:k , τN,i
k )}N

i=1

is consistent for [{f ∈ L1(Xk+1, µk) : tk|f | ∈ L1(Xk+1, φk)}, µk] = [L1(Xk+1, µk), µk]. Here
the equality is based on the fact that φk(tk|f |) = µk|f |φktk, where the second factor on
the right hand side is bounded by Assumption (A1). In addition, by applying (Douc and

Moulines, 2005, Theorem 1) we conclude that {(ξN,i
0:k , τN,i

k )}N
i=1 is asymptotically normal for

(µk, AI,k, WI,k, σI,k, γI,k, {
√

N}∞N=1), where

AI,k ,

{

f ∈ L
1(Xk+1, µk) : tk|f | ∈ Ak, tkf ∈ L

2(Xk+1, φk)
}

=
{

f ∈ L
1(Xk+1, µk) : tkf ∈ Ak ∩ L

2(Xk+1, φk)
}

,

WI,k ,

{

f ∈ L
1(Xk+1, µk) : t2k|f | ∈ L

1(Xk+1, φk)
}
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are proper sets, and

σ2
I,k(f) , σ2

k

[

tk(f − µkf)

φktk

]

=
σ2

k[tk(f − µkf)]

(φktk)2
, f ∈ AI,k ,

γI,kf ,
φk(t2kf)

(φktk)2
, f ∈ WI,k .

(II). By using (Douc and Moulines, 2005, Theorems 3 and 4) we deduce that {(ξ̂N,i
0:k , 1)}MN

i=1

is consistent for [L1(Xk+1, µk), µk] and a.n. for [µk, AII,k, L1(Xk+1, µk), σII,k, βµk, {
√

N}∞N=1],
where

AII,k ,

{

f ∈ AI,k : f ∈ L
2(Xk+1, µk)

}

=
{

f ∈ L
2(Xk+1, µk) : tkf ∈ Ak ∩ L

2(Xk+1, φk)
}

is a proper set, and

σ2
II,k(f) , βµk[(f − µkf)2] + σ2

I,k(f) = βµk[(f − µkf)2] +
σ2

k[tk(f − µkf)]

(φktk)2
, f ∈ AII,k .

(III). We argue as in step (I), but this time for ν = µk, R = Rp
k, and L(·, A) =

Rp
k(·, wk+11A), A ∈ X⊗(k+2), providing the target distribution

µ(A) =
µkRp

k(wk+11A)

µkRp
kwk+1

=
φkHu

k (A)

φkHu
k (Xk+2)

= φk+1(A) , A ∈ X⊗(k+2) . (A.2)

This yields, applying (Douc and Moulines, 2005, Theorems 1 and 2), that {(ξ̃N,i
k+1, ω̃

N,i
k+1)}MN

i=1

is consistent for

[{

f ∈ L
1(Xk+2, φk+1), R

p
k(·, wk+1|f |) ∈ L

1(Xk+1, µk)
}

, φk+1

]

=
[

L
1(Xk+2, φk+1), φk+1

]

, (A.3)

where (A.3) follows, since µkRp
k(wk+1|f |)φktk = φkHu

k (Xk+2)φk+1|f |, from (A1), and a.n.

for (φk+1, AIII,k+1, WIII,k+1, σIII,k+1, γIII,k+1, {
√

N}∞N=1). Here

AIII,k+1

,

{

f ∈ L
1(Xk+2, φk+1) : Rp

k(·, wk+1|f |) ∈ AII,k, Rp
k(·, w2

k+1f
2) ∈ L

1(Xk+1, µk)
}

=
{

f ∈ L
1(Xk+2, φk+1) : Rp

k(·, wk+1|f |) ∈ L
2(Xk+1, µk),

tkRp
k(·, wk+1|f |) ∈ Ak ∩ L

2(Xk+1, φk), Rp
k(·, w2

k+1f
2) ∈ L

1(Xk+1, µk)
}

=
{

f ∈ L
1(Xk+2, φk+1) : Rp

k(·, wk+1|f |)Hu
k (·, |f |) ∈ L

1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ak ∩ L

2(Xk+1, φk), wk+1f
2 ∈ L

1(Xk+2, φk+1)
}

and

WIII,k+1 ,

{

f ∈ L
1(Xk+2, φk+1) : Rp

k(·, w2
k+1|f |) ∈ L

1(Xk+1, µk)
}

=
{

f ∈ L
1(Xk+2, φk+1) : wk+1f ∈ L

1(Xk+2, φk+1)
}
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are proper sets. In addition, from the identity (A.2) we obtain that

µkRp
k(wk+1Φk+1[f ]) = 0 ,

where Φk+1 is defined in (3.1), yielding

σ2
III,k+1(f)

, σ2
II,k

{

Rp
k(·, wk+1Φk+1[f ])

µkRp
kwk+1

}

+
βµkRp

k({wk+1Φk+1[f ] − Rp
k(·, wk+1Φk+1[f ])}2)

(µkRp
kwk+1)2

=
βµk({Rp

k(wk+1Φk+1[f ])}2)

(µkRp
kwk+1)2

+
σ2

k{tkRp
k(·, wk+1Φk+1[f ])}

(φktk)2(µkRp
kwk+1)2

+
βµkRp

k({wk+1Φk+1[f ] − Rp
k(·, wk+1Φk+1[f ])}2)

(µkRp
kwk+1)2

, f ∈ AIII,k+1 .

Now, applying the equality

{Rp
k(·, wk+1Φk+1[f ])}2 + Rp

k(·, {wk+1Φk+1[f ] − Rp
k(·, wk+1Φk+1[f ])}2)

= Rp
k(·, w2

k+1Φ
2
k+1[f ]) ,

provides the variance

σ2
III,k+1(f) =

βφk{tkRp
k(·, w2

k+1Φ
2
k+1[f ])}φktk + σ2

k{Hu
k (·, Φk+1[f ])}

[φkHu
k (Xk+2)]2

, f ∈ AIII,k+1 .

(A.4)

Finally, for f ∈ WIII,k+1,

γIII,k+1f ,
βµkRp

k(w2
k+1f)

(µkRp
kwk+1)2

=
βφk+1(wk+1f)φktk

φkHu
k (Xk+2)

.

(IV). The consistency for [L1(Xk+2, φk+1), φk+1] of the uniformly weighted particle sam-

ple {(ξN,i
0:k+1, 1)}N

i=1 follows from (Douc and Moulines, 2005, Theorem 3). In addition, ap-
plying (Douc and Moulines, 2005, Theorem 4) yields that the same sample is a.n. for
[φk+1, AIV,k+1, L1(Xk+2, φk+1), σIV,k+1, φk+1, {

√
N}∞N=1], with

AIV,k+1 ,

{

f ∈ AIII,k+1 : f ∈ L
2(Xk+2, φk+1)

}

=
{

f ∈ L
2(Xk+2, φk+1) : Rp

k(·, wk+1|f |)Hu
k (·, |f |) ∈ L

1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ak ∩ L

2(Xk+1, φk), wk+1f
2 ∈ L

1(Xk+2, φk+1)
}

being proper set, and, for f ∈ AIV,k+1,

σ2
IV,k+1(f) , φk+1Φ

2
k+1[f ] + σ2

III,k+1(f) ,

with σ2
III,k+1(f) being defined by (A.4). This concludes the proof of the theorem.
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A.2. Proof of Corollary 3.1
We pick f ∈ L2(Xk+2, φk+1) and prove that the constraints of the set Ak+1 defined in (3.2)
are satisfied under Assumption (A3). Firstly, by Jensen’s inequality,

φk[Rp
k(·, wk+1|f |)Hu

k (·, |f |)]
= φk{tk[Rp

k(·, wk+1|f |)]2}
≤ φk[tkRp

k(·, w2
k+1f

2)]

= φkHu
k (wk+1f

2)

≤ ‖wk+1‖Xk+2,∞ φkHu
k (Xk+2)φk+1(f

2) < ∞ ,

and similarly,

φk{[Hu
k (·, |f |)]2} ≤ ‖gk+1‖X,∞ φkHu

k (Xk+2)φk+1(f
2) < ∞ .

From this, together with the bound

φk+1(wk+1f
2) ≤ ‖wk+1‖Xk+2,∞ φk+1(f

2) < ∞ ,

we conclude that Ak+1 = L2(Xk+2, φk+1).
To prove L

2(Xk+1, φk) ⊆ Ãk, note that assumption (A3) implies W̃k = L
1(Xk+1, φk)

and repeat the arguments above.

A.3. Proof of Theorem 3.3
Define, for r ∈ {1, 2} and RN (r) as defined in Theorem 3.3, the particle measures

φN
k (A) ,

1

N

N
∑

i=1

δξN,i

0:k

and φ̃N
k (A) ,

1

Ω̃N
k

RN (r)
∑

i=1

ω̃N,i
k δξ̃N,i

0:k

(A) , A ∈ X⊗(k+1) ,

playing the role of approximations of the smoothing distribution φk. Let F0 , σ(ξN,i
0 ; 1 ≤

i ≤ N); then the particle history up to the different steps of loop m + 1, m ≥ 0, of
Algorithm r, r ∈ {1, 2}, is modeled by the filtrations F̂m , Fm ∨ σ[IN,i

m ; 1 ≤ i ≤ RN (r)],

F̃m+1 , Fm ∨ σ[ξ̃N,i
0:m+1; 1 ≤ i ≤ RN (r)], and

Fm+1 ,

{

F̃m+1 ∨ σ(JN,i
m+1; 1 ≤ i ≤ N) , for r = 1 ,

F̃m+1 , for r = 2 .

respectively. In the coming proof we will describe one iteration of the APF algorithm by
the following two operations.

{(ξN,i
0:k , ωN,i

k )}N
i=1

Sampling from ϕN
k+1

−−−−−−−−−−−−−−−−→{(ξ̃N,i
0:k+1, ω̃

N,i
k+1)}

RN (r)
i=1 →

r = 1: Sampling from φ̃N
0:k+1

−−−−−−−−−−−−−−−−−−−−−−−→{(ξN,i
0:k+1, 1)}N

i=1 ,

where, for A ∈ X⊗(k+2),

ϕN
k+1(A) , P

(

ξ̃N,i0
0:k+1 ∈ A

∣

∣

∣
Fk

)

=
N

∑

j=1

ωN,j
k τN,j

k
∑N

ℓ=1 ωN,ℓ
k τN,ℓ

k

Rp
k(ξN,j

0:k , A) =
φN

k [tkRp
k(·, A)]

φN
k tk

,

(A.5)
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for some index i0 ∈ {1, . . . , RN (r)} (given Fk, the particles ξ̃N,i
0:k+1, 1 ≤ i ≤ RN (r), are i.i.d.).

Here the initial weights {ωN,i
k }N

i=1 are all equal to one for r = 1. The second operation is
valid since, for any i0 ∈ {1, . . . , N},

P

(

ξN,i0
0:k+1 ∈ A

∣

∣

∣
F̃k+1

)

=

RN (r)
∑

j=1

ω̃N,j
k+1

Ω̃N
k+1

δξ̃N,j

0:k+1

(A) = φ̃N
0:k+1(A) , A ∈ X⊗(k+2) .

The fact that the evolution of the particles can be described by two Monte Carlo opera-
tions involving conditionally i.i.d. variables makes it possible to analyse the error using the
Marcinkiewicz-Zygmund inequality (see Petrov, 1995, p. 62).

Using this, set, for 1 ≤ k ≤ n,

αN
k (A) ,

∫

A

dαN
k

dϕN
k

(x0:k)ϕN
k (dx0:k) , A ∈ X⊗(k+1) , (A.6)

with, for x0:k ∈ Xk+1,

dαN
k

dϕN
k

(x0:k) ,
wk(x0:k)Hu

k · · ·Hu
n−1(x0:k, Xn+1)φN

k−1tk−1

φN
k−1H

u
k−1 · · ·Hu

n−1(X
n+1)

.

Here we apply the standard convention Hu
ℓ · · ·Hu

m , Id if m < ℓ. For k = 0 we define

α0(A) ,

∫

A

dα0

dς
(x0) ς(dx0) , A ∈ X ,

with, for x0 ∈ X,

dα0

dς
(x0) ,

w0(x0)H
u
0 · · ·Hu

n−1(x0, X
n+1)

ν[g0Hu
0 · · ·Hu

n−1(·, Xn+1)]
.

Similarly, put, for 0 ≤ k ≤ n − 1,

βN
k (A) ,

∫

A

dβN
k

dφ̃N
k

(x0:k) φ̃N
k (dx0:k) , A ∈ X⊗(k+1) , (A.7)

where, for x0:k ∈ Xk+1,

dβN
k

dφ̃N
k

(x0:k) ,
Hu

k · · ·Hu
n−1(x0:k, Xn+1)

φ̃N
k Hu

k · · ·Hu
n−1(X

n+1)
.

The following powerful decomposition is an adaption of a similar one derived by Ols-
son et al. (2005, Lemma 7.2) (the standard SISR case), being in turn a refinement of a
decomposition originally presented by Del Moral (2004).

Lemma A.1. Let n ≥ 0. Then, for all f ∈ Bb(X
n+1), N ≥ 1, and r ∈ {1, 2},

φ̃N
0:nf − φnf =

n
∑

k=1

AN
k (f) + 1{r = 1}

n−1
∑

k=0

BN
k (f) + CN (f) , (A.8)
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where

AN
k (f) ,

∑RN (r)
i=1

dαN
k

dϕN
k

(ξ̃N,i
0:k )Ψk:n[f ](ξ̃N,i

0:k )

∑RN (r)
j=1

dαN
k

dϕN
k

(ξ̃N,j
0:k )

− αN
k Ψk:n[f ] ,

BN
k (f) ,

∑N
i=1

dβN
k

dφ̃N
k

(ξN,i
0:k )Ψk:n[f ](ξN,i

0:k )

∑N
j=1

dβN
k

dφ̃N
k

(ξN,j
0:k )

− βN
k Ψk:n[f ] ,

CN (f) ,

∑N
i=1

dβ0|n

dς (ξN,i
0 )Ψ0:n[f ](ξN,i

0 )
∑N

j=1
dβ0

dς (ξN,i
0 )

− φnΨ0:n[f ] ,

and the operators Ψk:n : Bb(X
n+1) → Bb(X

n+1), 0 ≤ k ≤ n, are, for some fixed points
x̂0:k ∈ Xk+1, defined by

Ψk:n[f ] : x0:k 7→ Hu
k · · ·Hu

n−1f(x0:k)

Hu
k · · ·Hu

n−1(x0:k, Xn+1)
− Hu

k · · ·Hu
n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)
.

Proof of Lemma A.1. Consider the decomposition

φ̃N
0:nf − φnf =

n
∑

k=1

[

φ̃N
k Hu

k · · ·Hu
n−1f

φ̃N
k Hu

k · · ·Hu
n−1(X

n+1)
− φN

k−1H
u
k−1 · · ·Hu

n−1f

φN
k−1H

u
k−1 · · ·Hu

n−1(X
n+1)

]

+ 1{r = 1}
n−1
∑

k=0

[

φN
k Hu

k · · ·Hu
n−1f

φN
k Hu

k · · ·Hu
n−1(X

n+1)
− φ̃N

k Hu
k · · ·Hu

n−1f

φ̃N
k Hu

k · · ·Hu
n−1(X

n+1)

]

+
φ̃N

0 Hu
0 · · ·Hu

n−1f

φ̃N
0 Hu

0 · · ·Hu
n−1(X

n+1)
− φnf .

We will show that the three parts of this decomposition are identical with the three parts
of (A.8). For k ≥ 1 it holds that, using the definitions (A.5) and (A.6) of ϕN

k and αN
k ,

respectively, and following the lines of Olsson et al. (2005, Lemma 7.2),

φN
k−1H

u
k−1 · · ·Hu

n−1H
u
n−1f

φN
k−1H

u
k−1 · · ·Hu

n−1(X
n+1)

= ϕN
k

[

wk(·)Hu
k · · ·Hu

n−1f(·)(φN
k−1tk−1)

φN
k−1H

u
k−1 · · ·Hu

n−1(X
n+1)

]

= ϕN
k

[

wk(·)Hu
k · · ·Hu

n−1(·, Xn+1)(φN
k−1tk−1)

φN
k−1H

u
k−1 · · ·Hu

n−1(X
n+1)

{

Ψk:n[f ](·) +
Hu

k · · ·Hu
n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)

}

]

= αN
k

[

Ψk:n[f ](·) +
Hu

k · · ·Hu
n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)

]

= αN
k Ψk:n[f ] +

Hu
k · · ·Hu

n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)
.
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Moreover, by definition,

φ̃N
k Hu

k · · ·Hu
n−1f

φ̃N
k Hu

k · · ·Hu
n−1(X

n+1)
=

∑RN (r)
i=1

dαN
k

dϕN
k

(ξ̃N,i
0:k )Ψk:n[f ](ξ̃N,i

0:k )

∑RN (r)
j=1

dαN
k

dϕN
k

(ξ̃N,j
0:k )

+
Hu

k · · ·Hu
n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)
,

yielding

φ̃N
k Hu

k · · ·Hu
n−1f

φ̃N
k Hu

k · · ·Hu
n−1(X

n+1)
− φN

k−1H
u
k−1 · · ·Hu

n−1f

φN
k−1H

u
k−1 · · ·Hu

n−1(X
n+1)

≡ AN
k (f) .

Similarly, for r = 1, using the definition (A.7) of βN
k ,

φ̃N
0:kHu

k−1 · · ·Hu
n−1f

φ̃N
0:kHu

k−1 · · ·Hu
n−1(X

n+1)
= βN

k

[

Hu
k · · ·Hu

n−1f(·)
Hu

k · · ·Hu
n−1(X

n+1)

]

= βN
k

[

Ψk:n[f ](·) +
Hu

k · · ·Hu
n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)

]

= βN
k Ψk:n[f ] +

Hu
k · · ·Hu

n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)
,

and applying the obvious relation

φN
k Hu

k · · ·Hu
n−1f

φN
k Hu

k · · ·Hu
n−1(X

n+1)
=

∑N
i=1

dβN
k

dφ̃N
k

(ξN,i
0:k )Ψk:n[f ](ξN,i

0:k )

∑N
j=1

dβN
k

dφ̃N
k

(ξN,j
0:k )

+
Hu

k · · ·Hu
n−1f(x̂0:k)

Hu
k · · ·Hu

n−1(x̂0:k, Xn+1)
,

we obtain the identity

φN
k Hu

k · · ·Hu
n−1f

φN
k Hu

k · · ·Hu
n−1(X

n+1)
− φ̃N

k Hu
k · · ·Hu

n−1f

φ̃N
k Hu

k · · ·Hu
n−1(X

n+1)
≡ BN

k (f) .

The equality

φ̃N
0 Hu

0 · · ·Hu
n−1f

φ̃N
0 Hu

0 · · ·Hu
n−1(X

n+1)
− φnf ≡ CN (f)

follows analogously. This completes the proof of the lemma. 2

Proof of Theorem 3.3. From here the proof is a straightforward extension of (Olsson et
al., 2005, Proposition 7.1). To establish part (i), observe that:

• A trivial adaption of (Olsson et al., 2005, Lemmas 7.3 and 7.4) gives that

‖Ψk:n[fi]‖Xk+1,∞ ≤ osc(fi)ρ
0∨(i−k) ,

∥

∥

∥

∥

dαN
k

dϕN
k

∥

∥

∥

∥

Xk+1,∞

≤
‖wk‖Xk+1,∞ ‖tk−1‖Xk,∞

µgk(1 − ρ)ǫ−
.

(A.9)
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• By mimicking the proof of (Olsson et al., 2005, Proposition 7.1(i)), that is, applying
the identity a/b − c = (a/b)(1 − b) + a − c to each AN

k (fi) and using twice the
Marcinkiewicz-Zygmund inequality together with the bounds (A.9), we obtain the
bound

√

RN (r)
∥

∥AN
k (fi)

∥

∥

p
≤ Bp

osc(fi) ‖wk‖Xk+1,∞ ‖tk−1‖Xk,∞

µgk(1 − ρ)ǫ−
ρ0∨(i−k) ,

where Bp is a constant depending on p only. We refer to (Olsson et al., 2005, Propo-
sition 7.1) for details.

• For r = 1, inspecting the proof of (Olsson et al., 2005, Lemma 7.4) yields immediately
∥

∥

∥

∥

∥

dβN
k

dφ̃N
k

∥

∥

∥

∥

∥

Xk+1,∞

≤ 1

1 − ρ
,

and repeating the arguments of the previous item for BN
k (fi) yields

√
N

∥

∥BN
k (fi)

∥

∥

p
≤ Bp

osc(fi)

1 − ρ
ρ0∨(i−k) .

• The arguments above apply directly to CN (fi), providing

√
N

∥

∥CN (fi)
∥

∥

p
≤ Bp

osc(fi) ‖w0‖X,∞

νg0(1 − ρ)
ρi .

We conclude the proof of (i) by summing up.
The proof of (ii) (which mimics the proof of (Olsson et al., 2005, Proposition 7.1(ii)))

follows analogous lines; indeed, repeating the arguments of (i) above for the decomposition
a/b − c = (a/b)(1 − b)2 + (a − c)(1 − b) + c(1 − b) + a − c gives us the bounds

RN (r)
∣

∣E
[

AN
k (fi)

]
∣

∣ ≤ B
osc(fi) ‖wk‖2

Xk+1,∞ ‖tk−1‖2
Xk,∞

(µgk)2(1 − ρ)2ǫ2−
ρ0∨(i−k) ,

N
∣

∣E
[

BN
k (fi)

]
∣

∣ ≤ B
osc(fi)

(1 − ρ)2
ρ0∨(i−k) ,

N
∣

∣E
[

CN (fi)
]∣

∣ ≤ B
osc(fi) ‖w0‖2

X,∞

(νg0)2(1 − ρ)2
ρi .

We again refer to (Olsson et al., 2005, Proposition 7.1(ii)) for details, and summing up
concludes the proof. 2

A.4. Proof of Theorem 4.1
The statement is a direct implication of Hölder’s inequality. Indeed, let tk be any first-stage
importance weight function and write

(φkt∗k[f ])2 = {φk(t
1/2
k t

−1/2
k t∗k[f ])}2

≤ φktk φk{t−1
k (t∗k[f ])2} .

(A.10)
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Now the result follows by the formula (3.3), the identity

φk{t−1
k (t∗k[f ])2} = φk{tkRp

k(·, w2
k+1Φ

2
k+1[f ])} ,

and the fact that we have equality in (A.10) for tk = t∗k[f ].
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Olsson, J., Douc, R., Moulines, É. (2006) Improving the two-stage sampling algorithm: a
statistical perspective. In On bounds and Asymptotics of Sequential Monte Carlo Methods
for Filtering, Smoothing, and Maximum Likelihood Estimation in State Space Models,
pp. 143–181. Doctorial Thesis, Lund University.

Petrov. V. V. (1995) Limit Theorems of Probability Theory. New York: Springer.

Pitt, M. K., and Shephard, N. (1999a) Filtering via simulation: Auxiliary particle filters.
J. Am. Statist. Assoc., 87, pp. 493–499.

Pitt, M. K., and Shephard, N. (1999b) Time varying covariances: A factor stochastic
volatility approach (with discussion). In Bayesian Statistics (eds. Bernardo, J. M., Berger,
J. O., Dawid, A. P., Smith, A. F. M.), 6. Oxford University Press: Oxford.


