

Laboratoire Liquides Ioniques et Interfaces Chargées Unité mixte 7612 CNRS / Université Paris 6 Équipe Colloïdes Inorganiques 4 place Jussieu, case 63 – 75252 Paris cedex 05

Ferrofluides et Polymères:

Ferrogels, Microgels et Polymérosomes Magnétiques

Olivier Sandre

Séminaire externe Collège de France, 17 juin 2004

Intro: Ferrofluides, caractéristiques, stabilité

1. Ferrogels :

- préparation, nature chimique
- élasticité, magnéto-élasticité
- interactions, structures, dynamique à l'échelle chaînes / particules
 - vers des thermogels magnétiques

2. Microgels :

- préparation, tailles
- gonflement
- instabilité de mouillage
- 3. Polymérosomes :
 - auto-assemblage
 - déformation sous champ

Qu'est- ce qu'un « vrai » ferrofluide?

Ferrofluide: suspension de nano-particules magnétiques (solution colloïdale) stable quelle que soit l'intensité du champ magnétique

- pas d'attraction des particules par un gradient de champ B, ni de chaînage des particules par interaction dipolaire
- mais orientation progressive des particules, selon lois de Langevin:

Ferrofluides ioniques

« Procédé Massart »:

Co-précipitation alcaline de FeCl_2 et FeCl_3 \rightarrow nano-particules de magnétite Fe_3O_4 suivie d'une oxydation complète par $\text{Fe}(\text{NO}_3)_3$ \rightarrow nano-particules de maghémite γ -Fe₂O₃, en milieu acide (HNO3)

R. Massart IEEE Trans. Magn. 17 1247 (1981)

- Charges électrostatiques de surface (PCN≈7)
- Polydispersité des tailles: 5nm < d < 14nm</p>
- Tri reposant sur des démixtions successives :

R. Massart, E. Dubois, V. Cabuil, E. Hasmonay *J. Magn. Magn. Mater.* **149** 1 (1995)

Plusieurs traitements de surface qui assurent la stabilité colloïdale :

- surfactants (acide oléique, di-ester phosporique,...) pour les solvants organiques (alcanes, chlorés,...)
- citrate de sodium en milieu aqueux neutre (pH=7.2)

Forme des nano-particules

Spectromètre PACE (LLB), expérience n°6899 (2003): O. Sandre, F. Chécot, S. Lecommandoux R. Perzynski & J. Oberdisse

Polymères répulsifs

Démixtion d'un ferrofluide "surfacté" dans le cyclohexane par ajout de poly(diméthylsiloxane)

Adsorption de polymères

1. "Grafting on"

• Adsorption de Poly(acrylate) de sodium = poly-anion de M_w =2,100 sur particules acides: pH=1.2, ζ = +27 mV \rightarrow pH=7.6 et ζ = -32 mV après adsorption rapide de PAS (greffage)

• Adsorption de Poly(chlorométhylstyrène) = poly-cation de M_w =9,000 sur particules citratées: pH=7.2, ζ = -30 mV Tailles : d₀=6 nm σ =0.2 initialement d_h: 7-8 nm \approx d₀*exp(7 σ ²) \rightarrow d_h passe à 19 nm après adsorption lente de PCMS (dialyse)

2. "Grafting from"

Projet « Enrobage de NANOPARTICULES MAGNETIQUES par des POLYMERES et insertion dans des MATRICES POLYMERES pour l'obtention et l'étude de FILMS MAGNETO-OPTIQUES » LCP - LI2C – LMDH – DIOM - UIL

Ferrogels = association de nanoparticules magnétiques et d'un hydrogel

Zrínyi M., Barsi L., Büki, A, *J. Chem. Phys.* **1996** 104, 8750

Niveau macroscopique :

- Comportement magnétique?
- Renforcement mécanique?
- Couplage magnéto-élastique?

PVA / GDA / Fe₃O₄

Structure et dynamique à l'échelle "méso" :

- Blocage des nanoparticules?
- Perturbation de la maille?
- Etat d'agrégation des particules?

Poly-électrolyte: Alginate

Gelled alginate

 $\Box^{Ca^{2+}}$

Gel physique :

Addition of Ca⁺⁺ ions

Liquid alginate

- **G** = Unité guluronate
- **M** = Unité mannuronate

Addition directe de Ca²⁺:
gélification instantanée

Polymère neutre: Poly(acrylamide) NH_2 $\mathbf{C} - \mathbf{NH} - \mathbf{CH}_2 - \mathbf{NH}$ τ੍ = 70°C $(NH_4)_2S_2O_8$ 0.1 mol% Acrylamide, AM N,N 'méthylène-bis-acrylamide, BA Monomère Réticulant CH-CH2 HÇ [AM]=0.5 mol/L $C_x = [BA] / [AM]$ Ċ-NH₂ O Ç=O ŅH = 0.5 - 2 mol% CH_2 Co-monomères: HN 0=C HC₃ CH₃ HC⁻ ONa n Acrylate de sodium, AS N – isopropyl acrylamide, NIPAM Thermosensible Chargé négativement

Renforcement mécanique des ferrogels PAM

2000

1600

1200

800

Tension o, Pa

400 20 40 60 Etirement ε , % $16x10^{3}$ Module E: 0 Module de Young $\stackrel{\text{in } Pa}{\xrightarrow{}} 15x10_3$ $8x10_3$ $4x10_3$ 1000 - 16000 Pa 00 0 \cap 3 2

Ferrogels de PAM, C_x =1mol% et Φ variable

Fraction volumique en particules dans le ferrogel gonflé Φ , %

Ramollisement des ferrogels d'alginate avec Ca²⁺

Gonflement et relargage: définitions

Ferrofluide aqueux à pH7 (citrate ou PAS 2,100)

Gonflement et relargage: ferrogels PAM

Na₃Cit 8.10⁻³mol/L, C_x=1mol% et Φ^0 variable:

Équation de conservation : $\Phi_{equ} = \Phi^0 (1-R) G^0/G$

Gonflement des ferrogels de PAM: effets de sel

Interaction forte polymère-particules

Modèle de gonflement (Flory – Rehner)

HYDROGEL

Estimation des Π^0 de gonflement

Cinétique de gonflement

Particules / longues chaînes libres

Conclusion sur l'interaction particules - chaînes

Chaînes décorées par des nanoparticules

Dynamique de rotation

Dynamique de rotation dans les complexes avec PAM

Dynamique de rotation dans les alginates

Temps caractéristique de rotation des particules (biréfringence magnéto-optique en champs B ac) :

Φ_{FF} = 0,03%

 Φ_A % (concentration massique en g/mL de l'alginate)

Collaboration : R. Perzynski (LMDH, Paris 6), P. Licinio (Brésil, Bel Horizonte)

Structures possibles dans les ferrogels

Structure d'un ferrogel peu perturbé

Coexistence de poches liquides (B) et de chaînes décorées (C)

Structure d'un ferrogel très perturbé

Thermogels

Poly(NIPAM) réticulé BA : transition de volume à $T_c=32$ °C (LCST) Applications bios: drug delivery contrôlé par ΔT + champs magnétique Mais le réseau de NIPAM ne retient pas les nanoparticules magnétiques !

Réseaux mixtes NIPAM / PAM

Thermogels magnétiques

Réseaux interpénétrés:

Laboratoire Liquides Ioniques et Interfaces Chargées Unité mixte 7612 CNRS / Université Paris 6 Équipe Colloïdes Inorganiques 4 place Jussieu, case 63 – 75252 Paris cedex 05

2. Microgels et Minigels Magnétiques

Nombreux types de billes magnétiques commerciales :

- Dynal (procédé Ugelstad)
- Ademtech (procédé Bibette)

Recherche sur de nouveaux vecteurs magnétiques: distribution + / - homogène de nanoparticules magnétiques à l'intérieur de microgels polymères Landfester K, *Adv. Mater.* 2001 **13** 765

Polymérisation en émulsion inverse

Microgels: 1 à 50 μ m γ -Fe₂O₃: de 34% m/m (C_x=1.25mol%) à 64% m/m (C_x=2.5mol%)

C. Ménager, O. Sandre, J. Mangili, V. Cabuil, *Polymer* 2004 **45** 2475 Minigels: d ₀=65nm σ =0.25 (comptage) γ-Fe₂O₃: 69% m/m (C_x=2.5mol%)

Mise en évidence du gonflement

→ Tailles liées à la qualité du solvant

Magnétophorèse

Position d'une bille magnétique (μ m) en fonction du temps (s) : bille de rayon R = 8.4 μ m dans l'eau - courant I = 1020 et 520 mA

Cinétique de gonflement

Tanaka T, Fillmore DJ, J. Chem. Phys. 1979 70 1214

T. Tanaka (1987)

Volume 325 No.6107 26 February-4 March 1987 £1.90

PATTERNS IN SWELLING GELS

Microgel sur une surface

Joanny, Johner, Vilgis, *Eur. Phys. J.* E 6, 201 (2001)

L = S / G \approx 10⁻⁶ m si S \approx 10⁻² N/m et G \approx 10⁴ Pa

Extension =du pied: $x - R = L \log(\cot(R/2\xi_p) - 1)$

$C_{x} = 2.5 \text{ mol}\%$

Instabilité de mouillage

Instabilité de mouillage

Instabilité de mouillage

Instabilité de séchage

Cf. A. Lindner et al, 2000

Perspectives des micro- et mini-gels magnétiques

• Contrôle des tailles : dès le stade de l'émulsion

• Charges électrostatiques de surface (PAS?)

 pour applications bio : *in vitro* → monodisperse *in vivo* → tailles < 200 nm

minigels magnétiques et thermosensibles
PAM / NIPAM → tester les réseaux
interpénétrés et semi-interpénétrés

Laboratoire Liquides Ioniques et Interfaces Chargées Unité mixte 7612 CNRS / Université Paris 6 Équipe Colloïdes Inorganiques 4 place Jussieu, case 63 – 75252 Paris cedex 05

Laboratoire Milieux Désordonnés et Hétérogènes Unité mixte 7603 CNRS / Université Paris 6 4 place Jussieu, case 78 – 75252 Paris cedex 05

3. Polymérosomes Magnétiques

Laboratoire de Chimie des Polymères Organiques Unité mixte 5629 CNRS / Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux 16, avenue Pey Berland – 33607 Peyssac

UNIVERSITÉ BORDEAUX 1 Sciences Technologies

Copolymères di-blocs « rod-coil »

Transition de volume fonction du pH

• Le rayon hydrodynamique mesuré par diffusion dynamique de la lumière (DLS) varie avec le pH, et seulement dans une moindre mesure avec la salinité [NaCl]

• La variation d'épaisseur de la bicouche est liée à une transition conformationnelle propre à la structure peptidique et non à un effet électrostatique.

F. Chécot, S. Lecommandoux, Y. Gnanou, H.-A. Klok, *Angew. Chem. Int. Ed.*, 41, 1339 (2002).
F. Chécot, S. Lecommandoux, H.-A. Klok, Y. Gnanou, *Eurp. Phys. J. E*, 10, 25 (2003).

Micelles ou Vésicules?

Structure par diffusion des neutrons aux petits angles

DNPA avec un copolymère de structure 2 :

 $\mathsf{PB}_{48}\text{-}\mathsf{PGA}_{145}$

Spectromètre PACE (LLB), expérience n°6883 (2003): F. Chécot, A. Brûlet, Y. Gnanou, S. Lecommandoux. & J. Oberdisse DNPA avec un copolymère de structure 1 :

PB_{40} - PGA_{100}

variation d'épaisseur de la bicouche entre pH acide et basique

Spectromètre PACE (LLB), expérience n°6533 (2002): F. Chécot, A. Brûlet, Y. Gnanou, S. Lecommandoux.

A: Micelles dans l'eau, remplies de nanoparticules hydrophobes

Copolymères 48-114 et 48-145 associés aux particules surfactées S2-CH₂Cl₂

Mesures DNPA donnant le facteur de structure des particules intra-agrégats S_{intra}(Q) qui renseigne sur le facteur de forme des agrégats [6,7] :

 $V_{agg} P_{agg}(q) = V_{part} P_{part}(q) \times S_{intra}(q)$

D. Espinat, Revue de l'Institut Français du Pétrole, **45** No.6 (1990)

J. Oberdisse, B. Demé, *Macromolecules* **35**, 4397 (2002)

Mesure par DQEL des diamètres hydrodynamiques des objets formés

d'après fit CONTIN des corrélogrammes obtenus sur un appareil de diffusion dynamique de la lumière Amtec Macrotron à différents angles de 20° à 160°

A: Micelles dans l'eau, remplies de nanoparticules hydrophobes

Copolymère 48-114 associé à 1éq de particules surfactées S2-CH₂Cl₂

 \Rightarrow D'après les hauteurs mesurées par AFM, les objets sont **3d**

- \Rightarrow IIs sont **remplis** avec des nanoparticules, visibles par TEM, **au contact**
- les unes des autres comme l'indique aussi le pic en DNPA
- \Rightarrow Microscopies et techniques de diffusion cohérentes pour les tailles
- \Rightarrow **Gonflement** du coeur hydrophobe par les naparticules :

B: Vésicules dans l'eau, associées aux nanoparticules hydrophobes

B: Vésicules dans l'eau, formant des coques magnétiques

 \Rightarrow Avec 1éq de ferrofluide surfacté, les objets sont **plats** et les nanoparticules **confinées** à l'intérieur d'une membrane 2d hydrophobe

 \Rightarrow Les **trous** montrent que les membranes se déchirent quand les vésicules s'adsorbent sur la surface (mica ou carbone)

B: Des coques fluides, qui se déforment sous champ B

E.L. Bizdoacaa, M. Spasovaa, M. Farlea, M. Hilgendorff., F., Caruso, *J. Mag. Mag. Mat.* **240** 44 (2002)

Coques magnétiques rigides décrites dans la littérature :

D. G. Shchuki, G. B. Sukhorukov, H. Möhwald, *Angew. Chem. Int. Ed.* à paraître

Celles-ci sont <u>molles</u>, et leur déformation par un champ magnétique peut être comparée aux prédictions théoriques

Membrane fluide: N. Kern, B. Fourcade, Europhys. Lett. 38 395 (1997)

Membrane <u>élastique:</u> Y. L. Raikher, O. V. Stolbov, ICMF10 Abstract, (August 2–6 2004, Guarujá, São Paulo, Brazil).

C: Vésicules dans le dichlorométhane, couplées aux nanoparticules acides

Copolymère PB48-PGA20 + 2 éq particules acides S1S-HNO₃ et S2-HNO₃ dispersés dans CH_2CI_2

D: Vésicules dans l'eau, encapsulant des nanoparticules citratées

Analogie avec les magnétoliposomes

S. Lesieur, C. Grabielle-Madelmont, C. Menager, V. Cabuil, D. Dadhi, P. Pierrot, K. Edwards, *J. Am. Chem. Soc.* **125**, 5266 (2003)

• **Φ=6.05%** est la fraction volumique moyenne

• Φ_{local}=11.1% à l'intérieur des vésicules d'après le pic de structure

La simple dilution diminue globalement la concentration des vésicules tandis que le **passage sur colonne** augmente la fraction de particules encapsulées par rapport à celle de particules libres

Vésicules de **PB40-PGA100** remplies de ferrofluide citraté observées en microscopie optique: sous un champ B=300G, des **chaînes** apparaissent et grandissent progressivement (a: après 5 min, b: après 20 min)

Conclusions, perspectives :

on a réussi à associer deux types d'objets mésoscopiques :

- copolymères organiques di-blocs « rod-coil »
- nanoparticules inorganiques magnétiques

les nanoparticules sont confinées dans les parties hydrophiles / hydrophobes des objets :

- *micelles directes* gonflées par des particules hydrophobes (A)

- vésicules avec une membrane magnétique dans l'eau (B) et peut-être aussi le dichlorométhane (C)

- *micelles inverses* gonflées par des particules hydrophiles (C)

- vésicules remplies de particules hydrophiles dans leur compartiment aqueux (D)

 manipes de DNPA anisotrope: déformation sous champ B des coques magnétiques molles (B), mais pas des vésicules magnétiques pleines (D)

 perspectives: drug delivery, chauffage par induction (radio-fréquence), agents de contraste IRM