

Laboratoire Liquides Ioniques et Interfaces Chargées Unité mixte 7612 CNRS / Université Paris 6 / ESPCI Équipe Colloïdes Inorganiques 4 place Jussieu, case 63 – 75252 Paris cedex 05 FRANCE

Olivier Sandre

Auto-assemblage de nanoparticules magnétiques et de copolymères:

Gels, Minigels, Vésicules et Coacervats Magnétiques

• en plus: tensioactif, adjuvant, solvant, ...

Exemple industriel (Sustech Darmstadt)

Exemple de « concept » biotechnologique

Multifunctionalized Magnetic Nanoparticle

P. Gould « Nanoparticles probe Biosystems » Materials Today (2004)

Magnetic resonance fluorescence

•Detection

- Diagnosis
- Therapy *Magnetically guided Drug delivery Hyperthermia*

Ferrogels = magnetic nanoparticles trapped in hydrogels

Zrínyi M, Barsi L, Büki, A, *J. Chem. Phys.* **1996** 104, 8750

Mitsumata T, Ikeda K, Gong J-P, Osada Y, Szabó D, Zrínyi M, *J. Appl. Phys.* **1999** 85, 8451

Macroscopic ferrogels : soft magneto-elastic actuators Hydrogel: PVA / GDA, PAM / MBA, ...

 γFe_2O_3 or Fe_3O_4 nanoparticles

Structure & dynamics at "meso" scale:

- Blocking of nanoparticles?
- Perturbation of mesh size?
- Aggregation state of nanoparticles?

Différentes mises en forme: Biogels Magnétiques d'Alginate

Films emballage biodégradables, tests mécaniques Billes millimétriques

Traitement d'eau contaminée par des métaux toxiques par séparation magnétique

Différentes mises en forme: Ferrogels polyacrylamide & dérivés

• cinétique de gonflement de type diffusive ($\tau \sim D / L^2$)

Matériau de départ : ferrofluide « vrai »

Ferrofluide: suspension de nano-particules magnétiques (solution colloïdale) stable quelle que soit l'intensité du champ magnétique

- pas d'attraction des particules par un gradient de champ B, ni de chaînage des particules par interaction dipolaire
- mais orientation progressive des particules, selon lois de Langevin:

Forme des nano-particules

Spectromètre PACE (LLB), expérience n°6899 (2003): O. Sandre, F. Chécot, S. Lecommandoux R. Perzynski & J. Oberdisse

Ferrofluides ioniques

« Procédé Massart »:

Co-précipitation alcaline de FeCl_2 et FeCl_3 \rightarrow nano-particules de magnétite Fe_3O_4 suivie d'une oxydation complète par $\text{Fe}(\text{NO}_3)_3$ \rightarrow nano-particules de maghémite γ -Fe₂O₃, en milieu acide (HNO3)

R. Massart IEEE Trans. Magn. 17 1247 (1981)

- Charges électrostatiques de surface (PCN≈7)
- Polydispersité des tailles: 5nm < d < 14nm</p>
- Tri reposant sur des démixtions successives :

R. Massart, E. Dubois, V. Cabuil, E. Hasmonay *J. Magn. Magn. Mater.* **149** 1 (1995)

Plusieurs traitements de surface qui assurent la stabilité colloïdale :

- surfactants (acide oléique, di-ester phosporique,...) pour les solvants organiques (alcanes, chlorés,...)
- citrate de sodium en milieu aqueux neutre (pH=7.2)

Poly(acrylamide) et dérivés

Propriétés comparées des Ferrogels & des Hydrogels

Swelling pressure of PAM Ferrogels

Competition between citrate desorption and PAM adsorption

- \cdot Slow and fast relaxation times both increase when [Na_3Cit] decreases
- About 40% of nanoparticles are hampered in their rotation (below 50 mM)

low salinity: [Na₃Cit] ≤ 8 mM
Intrinsic Viscosity ∝ d_h³
Chains decorated by nanoparticles
high salinity: [Na₃Cit] > 8 mM

Chains weakly interacting with nanoparticles

Structures internes possibles des ferrogels

Structure d'un ferrogel peu perturbé

Coexistence de poches liquides (B) et de chaînes décorées (C)

Structure d'un ferrogel très perturbé

Thermogels

Poly(NIPAM) réticulé BA : transition de volume à $T_c=32$ °C (LCST) Applications bios: drug delivery contrôlé par ΔT + champs magnétique Mais le réseau de NIPAM ne retient pas les nanoparticules magnétiques !

Réseaux mixtes NIPAM / PAM

Thermogels magnétiques: gonflement

Magnetic thermosensitive microgels

First encouraging results ! (Delphine El kharrat's thesis)

Suivi de la transition par DNPA

