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Mixing Audiovisual Speech Processing and Blind
Source Separation for the Extraction of Speech

Signals From Convolutive Mixtures
Bertrand Rivet, Laurent Girin, and Christian Jutten, Member, IEEE

Abstract—Looking at the speaker’s face can be useful to better
hear a speech signal in noisy environment and extract it from com-
peting sources before identification. This suggests that the visual
signals of speech (movements of visible articulators) could be used
in speech enhancement or extraction systems. In this paper, we
present a novel algorithm plugging audiovisual coherence of speech
signals, estimated by statistical tools, on audio blind source sepa-
ration (BSS) techniques. This algorithm is applied to the difficult
and realistic case of convolutive mixtures. The algorithm mainly
works in the frequency (transform) domain, where the convolutive
mixture becomes an additive mixture for each frequency channel.
Frequency by frequency separation is made by an audio BSS algo-
rithm. The audio and visual informations are modeled by a newly
proposed statistical model. This model is then used to solve the
standard source permutation and scale factor ambiguities encoun-
tered for each frequency after the audio blind separation stage. The
proposed method is shown to be efficient in the case of 2 2 con-
volutive mixtures and offers promising perspectives for extracting
a particular speech source of interest from complex mixtures.

Index Terms—Audiovisual coherence, blind source separation,
convolutive mixture, speech enhancement, statistical modeling.

I. INTRODUCTION

FOR understanding speech, “two senses are better than one”
[1]: we know, since [2], that lip-reading improves speech

identification in noise since there exists an intrinsic coherence
between audition and vision for speech perception. Indeed, they
are both consequences of the articulatory gestures. This coher-
ence can be exploited in adverse environments, where audio and
visual signals of speech are complementary [3]. Indeed, acoustic
speech features that are robust in noise are generally poorly vis-
ible (e.g., voicing/unvoicing). On the contrary, the phonetic con-
trasts less robust in noisy auditory perception are the most vis-
ible ones, both for consonants [3] and vowels [4]. Thus, visual
cues can compensate to a certain extent the deficiency of the au-
ditory ones. This explains that the fusion of auditory and visual
informations meets a great success in several speech applica-
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tions, mainly in speech recognition in noisy environments, from
the pioneer works of Petajan [5] to more recent studies, e.g., [6].

The recent discovery by Grant and Seitz [7], confirmed in [8]
and [9], that vision of the speaker’s face intervenes in the audio
detection of speech in noise, suggests that for hearing speech
also, two senses are better than one. On this basis, Schwartz et
al. [10] attempted to show that vision may enhance audio speech
in noise and, therefore, provide what they called a “very early”
contribution to speech intelligibility, different and complemen-
tary to the classical lip-reading effect. In parallel, Girin et al. de-
veloped in [11] a technological counterpart of this idea: a first
audiovisual system for automatically enhancing audio speech
embedded in white noise by using filters whose parameters were
partly estimated from the video input. Deligne et al. [12] and
Goecke et al. [13] provided an extension of this work using more
powerful techniques. Also, their audio-visual speech enhance-
ment system was applied to speech recognition in adverse envi-
ronments.

The extension of the speech enhancement problem to the
separation of multiple simultaneous speech/audio sources is
a major issue of interest in the speech/audio processing area.
This problem is sometimes referred to as the “cocktail-party”
problem. It is a quite difficult problem to address, even when
several sensors are used, since both the signals and the recorded
mixtures are complex: e.g., signals are nonstationary in time
and space, mixtures are convolutive since signals are reflected
and attenuated along the way to the sensors. To deal with this
problem in the case of speech signals, Girin et al. [14] and then
Sodoyer et al. [15], [16] have extended the previous work of
[11] to a more general and hopefully more powerful approach.
They began to explore the link between two signal processing
streams that were completely separated: sensor fusion in
audio-visual speech processing and blind source separation
(BSS) techniques.

The problem generally labeled under the denomination
“source separation” consists in recovering signals , also
called sources, from mixtures of them , typically signals
recorded by a sensor array. In the blind context, both the sources

and the mixing process are unknown: this situation is
called the blind source separation (BSS) [17]–[19]

(1)

The lack of prior knowledge about the sources and the mixing
process is generally overcame by a statistically strong assump-
tion: the independence between the sources. Hence, the method

1558-7916/$20.00 © 2006 IEEE
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Fig. 1. BSS principle.

Fig. 2. BSS using audiovisual bimodality of speech.

for solving BSS using independence is called the independent
component analysis (ICA) [20]. In this case, a demixing process

is estimated so that the reconstructed sources are as in-
dependent as possible (Fig. 1)

(2)

Introduced first by Hérault and Jutten [21], [22] in the middle
of the 1980s, the BSS became an attractive field of signal pro-
cessing due to the few prior knowledge and its wide range of ap-
plications. In the 1990s, many efficient algorithms have been de-
veloped, especially JADE [23], FAST-ICA [24], Infomax [25],
and the theoretical statistical frameworks of ICA and BSS have
been proposed especially by Cardoso [17] and Comon [20].
Consequently, a large number of application fields exploited the
BSS model: in biomedical signal processing (e.g., extraction of
the fetal ECG [26], [27]), communication, audio (see [19] for
more references).

Recently, as mentioned above, Sodoyer et al. have pro-
posed in [15] and [16] to introduce the audiovisual bimodality
of speech in BSS in order to improve the separation of the
acoustic signal thanks to visual information (Fig. 2). The prin-
ciple of their study was the following. Instead of estimating the
demixing process using a criterion based on the independence
of the source, they proposed to use a criterion based on the
audiovisual (AV) coherence: one speech source of interest is
extracted using the visual information simultaneously recorded
from the speaker’s face by video processing. The proposed
system was shown to efficiently estimate the separating ma-
trix in the case of a simple instantaneous additive mixture.
Later, Dansereau [28] and Rajaram et al. [29] also proposed
an audiovisual speech source separation system, respectively,
plugging the visual information in a 2 2 decorrelation system
with first-order filters and in the Bayesian framework for a
2 2 linear mixture. Unfortunately, as mentioned above, real
speech/audio mixtures are generally more complex, and better

described in terms of convolutive mixtures. Therefore, the
aim of this paper is to explore the audiovisual speech source
separation problem in the more realistic case of convolutive
mixtures.

In this paper, we address the problem in the dual frequency
domain, as already proposed in [30]–[33] for the classical
acoustic convolutive mixture problem. However, the audio-
visual coherence is not used directly to estimate demixing
matrices (this task is achieved by using pure audio techniques),
but to solve the indeterminacies1generally encountered by
separation techniques based on the independence assumption:
permutation and scale ambiguities that are described in the
following. The preliminary works [34] and [35], in which we
showed how audiovisual processing could be used to estimate
the indeterminacies, are the basis of this study. In these papers,
we only exploited a limited number of power audio parameters
whereas in the present study, we extend the AV model to
the log-modulus of the coefficients of the short-time Fourier
transform, and to all the frequency bins, using the statistical
modeling [36]. Moreover, we present a new AV process to
estimate the scale indeterminacy, as well as a new bootstrap
algorithm to improve both the scale and permutation cancella-
tion. Finally, we show that the new AV model is efficient.

This paper is organized as follows. Section II introduces the
BSS problem for speech convolutive mixtures. In Section III, we
present the audiovisual model that is plugged into the presented
BSS system, together with the audiovisual data that feed this
model. Section IV presents how this audiovisual model is used
to solve the permutation and scale indeterminacies. Experiments
on speech signals are presented in Section V, and the results and
possible extensions of this work are discussed in Section VI.

II. BSS OF CONVOLUTIVE MIXTURES

In the case of a stationary convolutive mixing process [31],
[37], is a linear filter matrix. Thus, the observations

are the sum of the contributions of the
sources , each of them being filtered
by a row of ( is the transpose operator)

(3)

where the entries of the mixing filter matrix2 are the fil-
ters which model the impulse response between the
source and the th sensor. So rewriting (3) using matrix
form, leads to

(4)

1Typically, for instantaneous linear mixtures, H and G are modeled by ma-
trices and there are two indeterminacies, permutation and scale, which are easy
to understand. In fact, each sensor observes a mixture x (t) = h s (t),
and it is possible to observe the same mixture with different sources (new am-
plitude and new order): x (t) = (h =a )(a s (t)).

2In this paper, fa(b)g denotes the set of elements a(b), for all b.
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In the convolutive case, the demixing process is chosen as a
linear filter matrix with entries , so that we have

(5)

The demixing filters of are estimated so that the components
of the output signal vector are as
mutually independent as possible. Rewriting (5) in a matrix
form leads to

(6)

Several authors [30]–[33] have proposed to consider the
problem in the dual frequency domain where convolutions
become multiplications. Indeed, the mixing process (4) leads to

(7)

and the demixing process (6) leads to

(8)

where , , and are the time-varying
power spectrum density (psd) matrices of the sources , the
observations , and the output , respectively. and

are the frequency response matrices of the mixing and
demixing filter matrices ( denoting the conjugated transpose).
Since the mixing process is assumed to be stationary,
and are not time-dependent, although the signals (i.e.,
sources, mixtures) may be nonstationary. If we assume that the
sources are mutually independent (or at least decorrelated), for
all frequency bins , is a diagonal matrix and thus an
efficient separation must lead to a diagonal matrix .
Therefore, a basic criterion for BSS is to adjust the matrices

so that is as diagonal as possible for every fre-
quency [31], [33]. This can be done by the joint diagonalization
method described in [38] that exploits the nonstationarity of
signals: at each frequency bin , is the matrix that jointly
diagonalizes a set of psd matrices for several time
indexes .

Now, any blind source separation based on the independence
assumption between sources is faced with two crucial limita-
tions. Indeed, since the order and the amplitude of the estimated
sources do not influence their mutual independence, an indepen-
dence-based criterion can only provide the estimated sources up
to a scale factor and a permutation. In frequency domain sepa-
ration, these limitations are encountered for each frequency bin.
In other words, can only be estimated up to a scale factor
and a permutation between the estimated sources, and the scale
and permutation can be different for each frequency bin. There-
fore, in the specific square case, where there are as many sources
as observations , the separating filter matrices can be
expressed as

(9)

where (resp. ) is the arbitrary diagonal (resp. per-
mutation) matrix which represents the scale (resp. permutation)
indeterminacy. As a result, even if the separation matrices
are well estimated for each frequency bin (i.e., are di-
agonal), this does not ensure that the estimated sources

are well reconstructed due to the permutation
and diagonal matrices. In order to have a good reconstruc-
tion of the sources, it is necessary to have the same scale factor
and the same permutation for all frequency bins

(10a)
(10b)

These two equations have distinct influence on the quality of
the reconstructed sources. First, (10a) ensures that there is no
interference between the estimated sources . Thus, each es-
timated source is obtained from only one source: ,

(without any loss of general information, we suppose
that is the identity matrix). Second, (10b) ensures that the
shape of the power spectrum density of the estimated sources
across frequency bins is correct. So, verifying (10a) without
(10b) only provides the sources up to a filter.

Among the numerous methods proposed to control the per-
mutation indeterminacy, Pham et al. [33] proposed to equalize
the permutation matrices across frequency bins by exploiting
the continuity between consecutive frequency bins of :
they select the permutation that provides a smooth reconstruc-
tion of the frequency response. The method presents a major
drawback: it selects the permutation at the frequency bin
based on the value of . Thus, if a wrong decision is done
at a frequency bin, then the following frequency bins are also
wrong unless another “lucky” wrong decision eventually cor-
rects the process. Moreover, in this study, Pham et al. do not
solve the scale factor ambiguity. Other proposed methods (e.g.,
[39]) ensure that the estimated sources do not depend on the
rescaling of the separation matrices. However, they do not en-
sure that these estimated sources are the original ones (i.e., (10b)
is not satisfied, which means that the sources can be estimated
up to a nonflat filter).

In this paper, we propose a method, which exploits the coher-
ence between the acoustic speech signal and the speaker’s lips,
to solve both the permutation (10a) and the scale factor (10b)
ambiguities.

III. AUDIOVISUAL MODEL

In this section, we explain the audiovisual model used for
modeling the relationship between audio and visual speech sig-
nals. We first give the description of the video and audio parame-
ters used in this study, then we present the statistical audiovisual
model.

A. Video Parameters

At each time index , the video signal consists of a vector
of basic lip shape parameters: internal width and height of the
lips (Fig. 3). Indeed, several studies have shown that the basic fa-
cial lip edge parameters contain most of the visual information,
according to both intelligibility criterion [40], [41] and statis-
tical analysis: the internal width and height represent 85% of
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Fig. 3. Video parameters: internal width w and internal height h.

the variance of the visual data used in [42]. The video vector is
then

(11)

where (resp. ) refers to the internal width (resp. height). The
video signal is sampled at 50 Hz and then the video parameters
are automatically extracted every 20 ms by a device and an al-
gorithm developed at the ICP [43].

B. Audio Parameters

Let denote the corresponding acoustic speech signal.
The vector of audio parameters must contain local spectral
characteristics of the speech signal (Fig. 4). Thus, is
divided into consecutive frames, synchronous with the video
signal. The space between two audio frames is 20 ms since the
statistical model aims at associating each spectrum with one set
of video parameters. Each audio frame is centered, normalized,
and multiplied by a Hamming window, and we calculate its
short-term Fourier transform .
These audio parameter are complex, , and can be
seen as zero-mean circular complex Gaussian random variables
[44], [45]. In [46], the diagonal elements of the covariance
matrix are interpreted as the power spectrum density. In speech
processing, taking into account perceptual properties of human
hearing, it is usual to consider the log-modulus of discrete
Fourier transform (DFT) coefficients, so we define another
audio vector such that

(12)

where denotes here the component-wise decimal log-
arithm. These coefficients were shown to follow a
Log–Rayleigh distribution [36] (see also Appendix I).

C. Audiovisual Model

In the audiovisual speech processing community, it is usual
to consider that the relationship between the audio and video
parameters is complex and can be expressed in statistical term
[15], [47]. So we choose to model the audiovisual data by a
mixture of kernels

(13)

where is the parameter set {weight, mean
value vector, covariance matrix} of the th kernel, and is the
number of kernels. In this model, we choose, for each kernel, a
separable model3 with diagonal covariance matrices

(14)

where denotes the value of the Gaussian distribution
of given the mean value vector and the covariance matrix

and denotes the Log–Rayleigh probability density
function (42) given the localization parameter . Moreover

and

with

where denotes the diagonal matrix whose diagonal ele-
ments are its arguments.

The sets of parameters have
to be estimated from training data in a previous stage. By using
the penalized version [48], [49] of the widely used expectation-
maximization (EM) algorithm [50] (see Appendix II), we obtain
the results on the audiovisual model presented in Section V-A.

IV. SOLVING INDETERMINACY PROBLEMS

In this section, we propose an approach to the indeterminacy
problems (see Section II) exploiting the audiovisual coherence
of speech signals through the AV model presented in Section III.
We explain how to estimate first the permutations (IV-B), then
the scale factors (IV-C), and finally in IV-D we show how to
plug together the scale factor estimation and the permutation
cancellation.

In this paper, we want to extract only one particular speech
source of interest, say , from the mixture . For this
purpose, we exploit additional observations, which consist in
the video signal extracted from the speaker’s face. In the
following, we suppose, without any loss of general information,
that is the first component of .

A. Notations

The sources can be seen as a three-dimensional
array: (index of the th source time frequency bin ).

3Note that, even if each audiovisual kernel (14) models the audiovisual in-
formation in an independent way, the global audiovisual model (13) does not,
since it is a sum of several kernels.
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Fig. 4. Audio parameters. (a) Speech signal and the frame. (b) Spectrum of the frame.

Thus, first, let denote the audio column vector of the
th source at time .
Second, let denote

the estimated audio column vector provided by the demixing
process (9) at time and frequency . So, this vector
is equal to up to the
permutation and the scale factor

(15)

Moreover, let denote the
component-wise log-modulus of :

(16)

Note that, if is a permutation matrix and a vector, then

(17)

Finally, for sake of simplicity, let (resp. ) denote the permu-
tation (resp. diagonal) matrices set (resp. ).

B. Permutation Ambiguity

Now, regularizing the permutation problem (10a) in fre-
quency domain BSS, consists in searching a permutation set

such that

(18)

where are the estimated audio coefficients of
up to the permutation set

(19)

where is the th component of vector .

To estimate , we propose to minimize the audiovisual crite-
rion between the audio spectrum output on channel
1 and the visual information

(20)

with

(21)

Note that, even if the optimal solution would be
for all , since the criterion (20) only considers

channel 1 (i.e., ), it provides at best
for all , leaving the other terms of unspecified.
In other words, this means that, at best, the proposed method
will only ensure that the components actually cor-
respond to the source of interest, without any constraint on
the other estimated sources. This is not a problem because we
are only interested in extracting using . Extracting
other sources with our method would require additional video
information about the other sources to extract.

In [15] and [16], it was shown that temporal integration is nec-
essary to efficiently exploit the audiovisual information, since
the audiovisual coherence is mainly expressed in the time-dy-
namic of speech. So to improve the criterion, we introduce the
possibility to cumulate the probabilities over time. For this pur-
pose, we assume that the values of audio and visual character-
istics at several consecutive time frames are independent from
each other and we define an integrated audiovisual criterion by

(22)

Since there are possible permutation matrices (if the
short-term Fourier transform is calculated over frequencies),
it is not possible to attempt an exhaustive research, because of
the huge computational load.
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Fig. 5. Marginal recursive scheme: at each step, test, with the marginal criterion (24), a permutation of audio parameters set decreased by a factor 2.

In [34], we already proposed an algorithm for minimizing cri-
terion (22). In this paper, this algorithm is used as a basis idea,
but as shown in the following, it had to be modified. To sim-
plify, we present our algorithm for two sources and two mix-
tures, but it can be easily extended to larger cases. First, we use
a dichotomic scheme during which we simplify criterion (22)
by marginalizing the audiovisual probability
regarding subsets of contiguous frequencies. Thus, let denote
an arbitrary subset of frequencies and the
marginal audiovisual probability regarding the frequency set

(23)

and the marginal form of (22) is

(24)

where

(25)

Now, exploiting this simplification, we use the following de-
scending dichotomic scheme, denoted marginal AV algorithm
(Fig. 5).

1) First, test the permutation (between the two estimated
sources) on all audio parameters, ,
which minimizes

where is the unitary antidiagonal matrix, and is the
identity matrix.4 means “do nothing” and means
“permute between the two estimated sources the audio co-
efficients for the frequencies set .”

2) Then, sharpen the estimation of the permutation matrices
set by testing separately with (24):
• permutation on the first half of the audio parameters set

4Remember that, for sake of clarity but without loss of generality, we only
consider two sources. There are then only two possible permutations: I (no
permutation) and J (permutation).

Fig. 6. Joint recursive scheme: at each step, test with the joint criterion (22), a
permutation of audio parameters set increased by a factor 2.

• a permutation on the second half of the audio parameters
set

3) continue with this dichotomic scheme on the next subsets
of frequencies.

This initialization scheme, using marginal criterion (24),
gives a good estimation of the permutations set , but we
observed that this result can be improved. This is not surprising
since the marginal AV probability (23) does not take into
account all the audiovisual coherence. Thus, we refine the esti-
mation by applying the joint criterion (22) with an ascending
recursive scheme, denoted joint AV algorithm (Fig. 6):

1) for all , test with (22) the permutation ma-
trices set that only permutes, between the two estimated
sources, the frequency leaving all the other frequencies

, unchanged

2) then, for all , similarly test the permutation
matrices set that permutes, between the two esti-
mated sources, the couple of frequencies
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3) continue with this dichotomic scheme until the permuta-
tion matrices set that permutes the whole frequency
set

4) loop at stage 1 if necessary.
Unfortunately, a very tricky problem appears when using cri-

teria (22) and (24): the scale indeterminacy, i.e., the matrices set
, can dramatically change the value of the probability in (21)

and (23). Therefore, it has to be estimated to improve the per-
mutation resolution. Moreover, using the frequency approach,
the scale factor estimation is a major challenge of BSS to im-
prove the quality of the reconstructed sources, as mentioned in
Section II. That is why we now propose a method to estimate
the scale factor set.

C. Scale Factor

Now, regularizing the scale factor ambiguity (10b) of fre-
quency domain BSS consists in searching a scale factor set
that assumes

(26)

where are the estimated audio coefficients up to the
scale factors set

so

Note that, even if the optimal solution would be
for all , since we are only interested in extracting , we
will only estimate . Thus, regularizing the scale
factors consists in searching, for each frequency bin , the pa-
rameter which leads to

(27)

To estimate , we proposed in [35] to exploit the audio
model achieved by marginalizing the audiovisual model (13)
regarding the video parameters5

(28)

5Note that a Log-Rayleigh distribution on A(t) is equivalent to a complex
Gaussian distribution with zero mean value on S(t). Thus, we return here to
this latter distribution since we need to characterize S(t).

where is the weight of the th audio kernel derived from
the audiovisual one: . Since the variance of

verifies

(29)

where is the variance operator, and since the variance of
the marginal audio model verifies

(30)

then, we proposed to estimate thanks to

(31)

where is the th diagonal element of the covariance
matrix and is estimated by the classical vari-
ance estimator

(32)

Nevertheless, this idea can only work if the sampled variance
of target source is equal to the variance obtained
from the trained model (30). This may not be true since the
variance of the trained model is the averaged variance, which
can be quite different from the variance of a particular frame
of speech. That is why we propose in this study to use a new
audiovisual criterion to estimate the scale factor. In (30), the
variance of the audio model is the sum of the a priori probability

of the th kernel multiplied by the corresponding variance
: it does not take into account that some AV kernel

(i.e., some sounds) may not be pronounced. To overcome this,
we propose to use the video information by substituting the a
priori probability by the video a posteriori probability

(33)

where is the a posteriori probability of the th kernel
given the video vector

(34)

So, the new model variance verifies

(35)
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and finally, the scale factor is estimated thanks to

(36)

We will now explain how to plug the AV scale factor estimation
in the AV permutation cancellation algorithm.

D. Bootstrap Algorithm

In [35], we initially estimated the scale factors set after the
permutation cancellation algorithm. However, as we explained
previously, the unknown scale factors set can dramatically
change the value of the probabilities (21) and (23). Thus, in
order to have good performance, we now propose a new boot-
strap algorithm: at each stage of the AV marginal or AV joint
algorithms, if is chosen, then reestimate the scale factors
thanks to the AV process (36). If necessary, it is possible to loop
several times the joint AV algorithm.

So, this algorithm estimates and , and the estimated
sources are obtained thanks to

(37)

Finally, the reconstructed source of interest is the result of
the inverse short-time Fourier transform of .

Note that even if in this paper we only discussed the case of
one source of interest, it is easy to extend the criteria (22), (24),
and (36), and then to achieve the final estimation (37) to a more
significant number of sources of interest, if the corresponding
additional video signals are available.

V. NUMERICAL EXPERIMENTS

In this section, we present first the corpus used in the experi-
ments and the AV model configuration, and then we present the
results of the algorithm to cancel the ambiguities.

A. Corpus and Audiovisual Model Configuration

We use two types of corpora for assessing the separation: one
is the source of interest, and the second is the disturbing source.

The first corpus, used as the source of interest, consists of
French logatoms that are nonsense “V1-C-V2-C-V1” utter-
ances, where “V1” and “V2” are same or different vowels
within the set [a],[i],[y],[u], and “C” is a consonant within the
plosives set [p],[t],[k],[b],[d],[g] or no plosive [#]. The 112 se-
quences, representing around 50 s of speech, were pronounced
twice by the male speaker: the first time is used for training
the AV model and the second time for the test. This corpus is
interesting since it groups in a restricted set the basic problems
to be addressed by audiovisual studies (Fig. 7): it contains on
the first hand, similar lip shapes associated with distinct sounds
(such as [y] and [u]), and on the other hand sounds with similar
acoustic features and different lip shapes (such as [i] and [y]).
Since the video channel is sampled at 50 Hz, we choose the

Fig. 7. Illustration of the corpus. Figs. (a), (b), (c), (d) present the audio ker-
nels [(� (f )) ; . . . ; (� (f )) ] (in decibels) interpreted as the psd of four
French vowels [a], [i], [y], [u], respectively. (e) Corresponding video kernels.

length of the temporal block equal to 20 ms, and the audio
signals are sampled at 16 kHz. In this study, the number of the
audio parameters is, therefore, equal to 160 (the first half of
the 320 FFT coefficients). Thus, the training data set and the
testing data set contain around 2500 audiovisual vectors (two
video parameters (11) and 160 audio parameters (12) for each
vector).

The second corpus, used as the second source, consists of
phonetically well-balanced sentences in French of a female
speaker.

In this study, we choose, for the AV model kernels
which parameters are estimated
using the training data set with the EM algorithm (see the
update equations in Appendix II). The number of kernels (here
64) higher than the number of phonems (here 12) allows the
model to fit the AV transitions between the different sounds.
Fig. 7 shows several of the resulting AV kernels.

B. Scale Factor Results

In this experiment, we only study the performance of the scale
factor audio (31) and audiovisual (36) stages: no mixing or sep-
aration were performed.
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Fig. 8. Distortion (39) versus number of integration frames. Solid line: AV es-
timation (36) and dashed-dot line: audio estimation (31).

For this purpose, the signal of interest [obtained by
the Fourier transform of ] is arbitrary multiplied by a scale
factor randomly chosen at each frequency bin.

To quantify the performance, we defined the distorsion as

(38)

In the specific case of this experiment, where there is no permu-
tation, the distortion (38) no more depends on time and can be
expressed as

(39)

Fig. 8 shows the mean distortion versus the number of inte-
gration frames for both audio (31) and audiovisual (36) estima-
tions. Each simulation is repeated over 60 different logatoms.
Fortunately, for both estimations, the distortion decreases while
the number of integration frame increases. This is due to the
fact that the variance of a particular section of speech can be
different of the variance of the model: the more numerous the
integration frames are, the more robust the estimation is. More-
over, the AV estimation (36) is better than the audio one (31),
justifying our idea that the video parameters can efficiently im-
prove the estimation of the model variance corresponding of the
particular utterance of speech. Thus, for an arbitrary distortion,
the number of integration frames is smaller with an AV estima-
tion than with an audio one.

C. Permutation Results

To estimate the performance of our permutation cancellation
algorithm, we test permutation detection of blocks of consec-
utive frequencies. As in the previous section, no mixing or
separation were performed. We simply artificially permuted
some blocks of consecutive frequencies between the two
sources and obtained by the FFT of and

. Then, we applied our permutation cancellation algorithm

Fig. 9. Percentage of errors versus number of integration frames. Solid line:
permutation of 250-Hz bandwidth blocks, dashed-dot line: permutation of
100-Hz bandwidth blocks.

(Section IV-B) on these artificially modified signals. First,
we test the permutation of 250-Hz bandwidth blocks (corre-
sponding to five consecutive frequencies) for 1, 4, 8, 12, and
16 permuted blocks. In this case, the smallest bandwidth of the
block used in our algorithm is equal to 250 Hz. Second, we test
the permutation of 100-Hz bandwidth blocks (corresponding to
two consecutive frequencies) for 1, 10, 20, 30, and 40 permuted
blocks. In this case, the smallest bandwidth of the block used
in our algorithm is equal to 100 Hz.

We define the detection error as the sum of the unsolved per-
mutations (actual permutations undetected by our algorithm)
and the wrong permutations (bad decision of the algorithm).

For each experimental condition, the simulation is repeated
over 60 different logatoms which are randomly chosen but per-
fectly known. Fig. 9 shows the mean percentage of detection
error versus the number of integration frames for the two sim-
ulation cases (100- and 250-Hz bandwidth blocks). This figure
stresses the importance of integration for the criteria (22) and
(24). Indeed, if the number of integration frames is too small, the
percentage of errors significantly increases while the computa-
tional time decreases. Meanwhile, if the number of integration
frames increases, the number of errors decreases toward zero
while the computational time increases. It can be noted that,
for more than 40 integrated frames, the percentage of error is
smaller than 5% for all tested conditions. Also, the mean results
in the case of 250-Hz bandwidth block are better than the case
of 100-Hz bandwidth block. Thus, for an arbitrary percentage
of errors, the resolution of the algorithm can be increased at the
price of a larger number of integration frames.

D. Separation Results

In the following, we consider the case of two sources
[Fig. 10(a)] and two mixtures [Fig. 10(b)]. All mixing filters are
artificial finite impulse response filters up to 320 lags: they fit a
simplified acoustic model of a room impulse response (Fig. 11).
Even if we plot the sources over four seconds, we only used
the first 40 frames in order to estimate the permutation and the
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Fig. 10. Sources, mixtures, and estimated sources.

Fig. 11. Mixing filters: impulse response of the four mixing filters.

scale factor. This value is coherent with the results obtained in
the previous sections.

An indicator of the separation performance is the perfor-
mance index [33], defined as

(40)

where is the element of the global matrix filter
. For a good separation, the index (40) should be close

to 0 (or infinity if a permutation has occurred).
Fig. 12 plots and before and after ap-

plying our ambiguities detection. One can see that our method
corrects all the permutations except one error: the performance
index is always smaller than 1 except for one frequency. This
is confirmed by the spectrum of the four impulse responses of
the global filter (Fig. 13): for all the frequency bins
(except for the error), (resp. ) is much
smaller than (resp. ). This means that
the global filter is close to a diagonal filter.

Fig. 12. Performance index r(f) [Eq. (40)] (dots) and its inverse (solid line)
truncated at 1, before (upper panel) and after (lower panel) our ambiguities can-
cellation versus the frequency.

Fig. 13. Global filter: spectrum of the four global filters estimated with our
ambiguities cancellation.
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Fig. 14. Global filter without scale factor estimation.

Finally, Fig. 14 shows the spectrum of the global filter where
we only made the permutation cancellation: we estimated the
permuted frequency bins with our ambiguities cancellation al-
gorithm (Section IV-D) and then the global filter is estimated
by (i.e., without scale factor cancellation). One
can see that is much closer to a constant with the
scale factor cancellation (Fig. 13) than without scale factor can-
cellation (Fig. 14). This provides a better estimation of the spec-
trum shape of the estimated source of interest. Moreover, note
that and are left unchanged since our
criteria only consider channel 1.

VI. CONCLUSION

The BSS problem of convolutive speech mixtures can be pro-
cessed by using a pure audio technique like a joint diagonal-
ization process in the time-frequency domain [30]–[33]. How-
ever, this only provides a solution up to a permutation and a
scale factor at each frequency bin. In this paper, we proposed
a new statistical AV model expressing the complex relationship
between two basic lip video parameters and acoustic speech pa-
rameters which consisted in the log-modulus of the coefficients
of the short-time Fourier transform. The series of experiments
presented in this paper, using our new AV model, confirm the in-
terest of using AV processing to solve these ambiguities. How-
ever, the method required integration over a large number of
frames to obtain a good estimation of the permutations. Thus,
our method is very efficient in order to estimate large blocks of
consecutive permuted frequencies (20 to 40 frames are enough
in this case). However, over 100 frames are generally necessary
to find isolated permuted frequency. Note that our presented
method uses criteria which only consider one source of interest.
If we extend the criteria to two sources of interest, the estimation
of permutation is quite more efficient. Indeed, if the models of
two distinct sources are known, then if a permutation is not de-
tected by one of them, the other may find the permutation. In this
paper, we are not only interested in the permutation problem, but

Fig. 15. Probability density function of a Log–Rayleigh of parameter � = 1.

also in the scale factor: doing this, we improve both the permu-
tation detection and the estimation of the sources.

It is already possible to assert that our AV method seems
useful and original to estimate the ambiguities in the difficult
and realistic problem of convolutive mixtures. Indeed, we use
an additional video information, which is intrinsically robust to
acoustic noise. A major strength of our method is that it can ex-
tract a speech source from any kind of corrupting signals.

Finally, since the dimension of the parameters vector is large,
a further step could be to search for other more efficient data
representations and/or associated algorithms. Of course, other
developments are still necessary for a complete demonstration
of the efficiency of the proposed method: a first step could be to
do experiments on a larger and more complex corpus, including
continuous speech material and multispeaker AV models. We
are currently working on this topic.

APPENDIX I
LOG–RAYLEIGH DISTRIBUTION

In this appendix, we briefly recall the definition of the
log–Rayleigh distribution (for more details refer to [36]).

Definition 1: Let denote a Log–Rayleigh random variable
with localization parameter . The prob-
ability density function of this variable is given by

(41)

This distribution is plotted in Fig. 15.
In the multidimensional case, for sake of simplicity, we note

the log–Rayleigh distribution where the parameter
is the diagonal matrix which is the

product of the monodimensional Log–Rayleigh distribution

(42)

APPENDIX II
LEARNING THE AUDIOVISUAL MODEL

In this appendix, we use the EM algorithm [50] in a penal-
ized version [48], [49] to obtain the update equations for the au-
diovisual model (13). The EM algorithm is a recursive method
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to estimate the parameter set
thanks to the maximum likelihood. There are two stages.

1) Expectation (E): calculation of the a posteriori probability

where refers to the parameters at the th iteration.
2) Maximization (M): update of the parameters

• weight

• video parameters

and for equal to or :

where and are the penalized parameters [48],
• the audio parameters, for all
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