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Analyticity and regularity for a class of second order evolution equations.

Introduction and notation

This paper is mainly devoted to a detailed study of the regularity conservation as well as the smoothing effect for the equation (1. 1)

u ′′ + Au + cA α u ′ = 0
where A is a positive selfadjoint operator on a real Hilbert space H and α ≥ 0, c > 0. Throughout the text we assume A ≥ ηI, η > 0.

In particular the operator A s is well defined and bounded H → H for all s ≤ 0. We identify H with its topological dual and we therefore have

D(A) ⊂ V = D(A 1/2 ) ⊂ H = H ′ ⊂ V ′ ⊂ D(A) ′ .
More generally we define a monotone nonincreasing one-parameter family of Hilbert spaces by the formula

H s = D(A s/2 ) if s ≥ 0 (D(A -s/2 )) ′ if s < 0.
We are interested in the smoothing effect and the conservation of regularity for the evolution equation (1.1). The plan of the paper is as follows: Section 2 is devoted to well-posedness of (1.1) considered as a first order system in V × H. Section 3 deals with compactness properties of the resolvent and the semi-group associated to (1.1). Sections 4 and 5 are devoted to the study of time and spatial smoothing properties and especially to a simple direct proof of analyticity for α ≥ 1/2. A more general result, motivated by a conjecture of Chen & Russell [START_REF] Chen | A mathematical model for linear elastic systems with structural damping[END_REF] can be found in [START_REF] Chen | Proof of extension of two conjectures on structural damping for elastic systems: The case 1 2 ≤ α ≤ 1, Pacific[END_REF] but their proof is quite involved, relying on a stationary type of argument involving complex resolvent. Here we give a pure real and dynamical argument based only on elementary tools such as inner products and integration with respect to t. In Section 6 we investigate some regularity conservation properties which are specific to (1.1) with c > 0 since the conservative problem corresponding to c = 0 does not satisfy those properties anymore, cf. eg. [START_REF] Frisch | Wave propagation in random media[END_REF]. Finally Section 5 contains the basic examples of application.

The initial value problem

In this section we consider the equation (2. 1)

u ′′ + Au + Bu ′ = 0
where B = B * ≥ 0 on H and in addition for some constants C > c > 0

cA α ≤ B ≤ CA α . Theorem 2.1. Let (u 0 , u 1 ) ∈ V × H be given. For any T > 0 there is a unique u ∈ C([0, T ], V ) ∩ C 1 ([0, T ], H) such that, setting β = max{1, α} we have      u ′ ∈ L 2 (0, T ; H α ) u ′′ ∈ L 2 (0, T ; H -β ) u ′′ = -Au -Bu ′ in L 2 (0, T ; H -β ) u(0) = u 0 u ′ (0) = u 1 .
Moreover the function

E(t) := 1 2 {|u(t)| 2 V + |u ′ (t)| 2 H } is absolutely continuous with E ′ (t) = -< Bu ′ , u ′ > H -α ,H α
almost everywhere on (0, T ).

Proof. For the existence part we introduce J λ = (I + λA) -1 and K λ = J n λ for some integer n ≥ max{1, α}. Then we solve

u ′′ λ + Au λ + K λ BK λ u ′ λ = 0; u λ (0) = u 0 , u ′ λ (0) = u 1 . The identity T 0 (BK λ u ′ λ , K λ u ′ λ )dt + 1 2 { u ′ λ (T ) 2 H + u λ (T ) 2 V } = 1 2 { u 1 2 H + u 0 2 V }
allows to pass to the limit as λ → 0 along a suitable subsequence.

For the uniqueness part as well as the energy identity we start with a solution u ∈ L 2 (0, T ; V ) ∩ H 1 (0, T ; H) of

u ′′ + Au = f ∈ L 2 (0, T ; H -β ) We show that v λ = K λ u satisfies d dt 1 2 { v ′ λ (t) 2 H + v λ (t) 2 V } = (K λ f, K λ u ′ ) =< f, K 2 λ u ′ >
Then we integrate and let λ → 0. Finally we choose f = -Bu ′ . Uniqueness follows then by linearity from the energy identity applied with u 0 = u 1 = 0.

Compactness of the resolvent

In this section we assume B = cA α , c > 0. Setting v = u ′ , U = (u, v) ∈ V ×H = H, and denoting by B the unique extension to L(V, H 1-2α ) of B ∈ L(D(B), H), we find that the equation (2.1) becomes

U ′ + AU = 0 where D(A) = {(u, v) ∈ V × V, Au + Bv ∈ H} and A(u, v) = (-v, Au + Bv) so that A(u, v) H ∼ v V + Au + Bv H Theorem 3.1. a) If α < 1, then D(A) ⊂ H γ × V with γ = min{2, 3 -2α}. As a consequence if the imbedding V → H is compact, then so is (I + A) -1 : H → H. b)If α ≥ 1, then we have ∀z ∈ V, U (z) =: (cz, -A 1-α z) ∈ D(A) with U (z) H + AU (z) H ≤ K z V .
In particular if dim H = ∞, (I + A) -1 : H → H is not compact. Hence in this case the semi-group S(t) generated on H by A is never compact.

Proof. a) If U ∈ D(A), then v ∈ V and Au + Bv ∈ H, hence u ∈ D(A) + A -1 ( BV ) = H 2 + A α-1 (H 1 ) = H γ . If V → H is compact and α < 1, then H γ → V is compact, therefore since (I + A) -1 ∈ L(H, H γ × V) the result is now obvious. b) Assume now α ≥ 1. Then clearly ∀z ∈ V, U (z) =: (cz, -A 1-α z) ∈ D(A) because both cz and -A 1-α z are in V and in addition A(cz) + cA α (-A 1-α z) = 0 ∈ H.

Moreover we have

U (z) H ≤ cz V + A 1-α z H ≤ c z V + C ′ z H ≤ C ′′ z V and AU (z) H ≤ A 1-α z V + A(cz)+cA α (-A 1-α z) H = A 1-α z V ≤ C ′′′ z V . Hence U (z) H + AU (z) H ≤ K z V with K := C ′′ + C ′′′ . Finally when z ∈ V varies in the unit ball { z V ≤ 1}
the first projection of U (z) covers the entire ball of radius c in V , therefore (I + A) -1 : H → H is not compact 4. Analytic type time smoothing effect.

In this section we give a new and short proof of a result previously obtained by Chen & Triggiani [START_REF] Chen | Proof of extension of two conjectures on structural damping for elastic systems: The case 1 2 ≤ α ≤ 1, Pacific[END_REF]. However our proof seems to be limited to the case B = cA α , c > 0 or at least to require that B commutes with A.

Theorem 4.1. For any α ≥ 1/2, the semi-group S(t) generated on H by A is analytic, more precisely

∀t > 0, S(t)U 0 ∈ D(A) and (4. 1) ∀t > 0, AS(t)U 0 H ≤ C t U 0 H .
Proof. We set

E := 1 2 |u ′ (0)| 2 + |A 1/2 u(0)| 2 = 1 2 U 0 2 H . Multiplying the equation by u ′ we have immediately (4. 2) ∀t ≥ 0, t 0 (Bu ′ , u ′ )ds ≤ E.
In particular, with

C = 1/c (4. 3) ∀t ≥ 0, t 0 |A α 2 u ′ (s)| 2 ds ≤ CE.
Taking the inner product in H of (2.1) by A 1-α u(s) and integrating, we find

t 0 |A 1-α 2 u(s)| 2 ds = - t 0 (u ′′ + Bu ′ , A 1-α u)ds. Now we have t 0 (Bu ′ , A 1-α u)ds = c t 0 (A α u ′ , A 1-α u)ds = c t 0 (Au, u ′ )ds = c 2 (|A 1/2 u(t)| 2 -|A 1/2 u(0)| 2 ) ≥ -cE.
Next , integrating by parts we find

t 0 (u ′′ , A 1-α u)ds = [(u ′ , A 1-α u)] t 0 - t 0 (u ′ , A 1-α u ′ )ds. Since α ≥ 1/2, we have 1 -α ≤ 1/2 and 1 -α ≤ α, hence - t 0 (u ′′ , A 1-α u)ds ≤ C 1 E therefore (4. 4) t 0 |A 1-α 2 u(s)| 2 ds ≤ (c + C 1 )E = C 2 E hence t 0 (|A 1-α 2 u(s)| 2 + |A α 2 u ′ (s)| 2 )ds ≤ C 3 E. Since 1-α 2 ≤ α 2 , we deduce (4. 5) t 0 (|A 1-α 2 u(s)| 2 + |A 1 2 -α 2 u ′ (s)| 2 )ds ≤ C 4 E.
We introduce now

w(t) = A 1 2 -α 2 u(t). The basic estimate (4.2) applied to w instead of u gives t s |A 1 2 u ′ (σ)| 2 dσ = t s |A α 2 w ′ (σ)| 2 dσ ≤ C 5 (|A 1-α 2 u(s)| 2 + |A 1 2 -α 2 u ′ (s)| 2 ).
By integrating on (0, t) and using (4.5) we obtain

t 0 t s |A 1 2 u ′ (σ)| 2 dσds ≤ C 5 C 4 E
which by Fubini's theorem reduces to

t 0 σ|A 1 2 u ′ (σ)| 2 dσ ≤ C 5 C 4 E.
Hence for some K > 0

(4. 6) ∀t > 0, t 0 s|A 1 2 u ′ (s)| 2 ds ≤ KE.
We shall in fact establish for some M > 0

(4. 7) ∀t > 0, t 0 s(|A 1 2 u ′ (s)| 2 + |u ′′ (s)| 2 )ds ≤ M E.
To this end, first we observe that as a consequence of (4.6)

inf t≤s≤2t s 2 |A 1 2 u ′ (s)| 2 ≤ 2t inf t≤s≤2t s|A 1 2 u ′ (s)| 2 ≤ 2KE.
Now we choose τ ∈ (t, 2t) for which u ′ (τ ) ∈ D(A 1/2 ) with

τ 2 |A 1 2 u ′ (τ )| 2 ≤ 2KE
and we integrate on (0, τ ) after taking the inner product by su ′′ (s). We find

τ 0 s|u ′′ | 2 ds = - τ 0 [s(Au, u ′′ ) + s(Bu ′ , u ′′ )]ds.
First we have

- τ 0 s(Bu ′ , u ′′ )ds = - 1 2 τ 0 s(Bu ′ , u ′ ) ′ ds = -[ s 2 (Bu ′ , u ′ )] τ 0 + τ 0 1 2 (Bu ′ , u ′ )ds ≤ 1 2 E.
Then

- τ 0 s(Au, u ′′ )ds = - τ 0 (sAu, (u ′ ) ′ )ds = -(sAu, u ′ ) τ 0 + τ 0 ((sAu) ′ , u ′ )ds ≤ τ |A 1 2 u(τ )||A 1 2 u ′ (τ )| + τ 0 (Au, u ′ )ds + τ 0 s|A 1 2 u ′ | 2 ds ≤ τ |A 1 2 u(τ )||A 1 2 u ′ (τ )| + 1 2 |A 1 2 u(τ )| 2 + τ 0 s|A 1 2 u ′ | 2 ds ≤ K ′ E.
By adding we find

τ 0 s|u ′′ | 2 ds ≤ K ′′ E
and together with (4.6) this provides (4.7) with t replaced by τ . Since t ≤ τ we obtain (4.7). Finally since the function

t → (|A 1 2 u ′ (t)| 2 + |u ′′ (t)| 2 )
is nonincreasing, we have

(4. 8) ∀t > 0, 2 t 0 s(|A 1 2 u ′ (s)| 2 + |u ′′ (s)| 2 )ds ≥ t 2 (|A 1 2 u ′ (t)| 2 + |u ′′ (t)| 2 ).
By combining (4.7) and (4.8), we obtain (4.1)

Theorem 4.2. For any α < 1/2, the semi-group S(t) generated on H by A satisfies ∀t > 0, S(t)U 0 ∈ D(A) and

(4. 9) ∀t > 0, AS(t)U 0 H ≤ C t β U 0 H with β = 1 2α .
In addition if A is unbounded with A -1 compact, (4.9) is not satisfied for any β > 1 2α . In particular in this case the semi-group S(t) is not analytic.

Proof. The beginning of proof of Theorem 4.1 applies until formula (4.3). Then taking the inner product in H of (2.1) by A α u(s) and integrating we find

t 0 |A 1+α 2 u(s)| 2 ds = - t 0 (u ′′ + Bu ′ , A α u)ds. Now we have since α ≤ 1/2 t 0 (Bu ′ , A α u)ds = c t 0 (A α u ′ , A α u)ds = c 2 (|A α/2 u(t)| 2 -|A α/2 u(0)| 2 ) ≥ -C 1 E.
Next , integrating by parts we find

t 0 (u ′′ , A α u)ds = [(u ′ , A α u)] t 0 - t 0 (u ′ , A α u ′ )ds
hence since α ≤ 1/2 and by using (4.3)

- t 0 (u ′′ , A α u)ds ≤ C 2 E therefore (4. 10) t 0 |A 1+α 2 u(s)| 2 ds ≤ (C 1 + C 2 ) = C 3 E.
Combining (4.10) with ( 4.3) we deduce (4. 11)

t 0 (|A 1 2 + α 2 u(s)| 2 + |A α 2 u ′ (s)| 2 )ds ≤ C 4 E
from which we deduce (4. 12) |A

1 2 + α 2 u(t)| + |A α 2 u ′ (t)| ≤ C √ t (|A 1 2 u(0)| + |A 0 u ′ (0)|).
Since time-translation and multiplication by A α commutates with the equation, replacing t by t n and iterating (4.12) n times we deduce easily (4. 13) |A

1 2 + nα 2 u(t)| + |A nα 2 u ′ (t)| ≤ C(n) ( √ t) n (|A 1 2 u(0)| + |A 0 u ′ (0)|).
Now (4.13) is valid for integer values of n and by interpolation, we extend it easily for all real n > 0. Finally choosing n = 1 α we obtain (4.9).

In order to prove the optimality result, we set p = 1 α , we select γ > 0 and for any λ > 0 with γλ p -λ 2 > 0 we set ω := γλ p -λ 2 ; y(t) = y λ (t) = e -λt cos ωt.

Then

y ′ (t) = -λe -λt cos ωt -ωe -λt sin ωt y ′′ (t) = λ 2 e -λt cos ωt + 2ωλe -λt sin ωt -ω 2 e -λt cos ωt and y ′′ (t) + 2λy ′ (t) = -(λ 2 + ω 2 )e -λt cos ωt so that y is a solution of (4. 14) y ′′ + γλ p y + 2λy ′ = 0 which satisfies

λ p y 2 (0) + y ′ 2 (0) = λ p + λ 2 .
We are interested in the behavior of the energy for large values of λ and small values of t when γ ≥ γ 0 > 0. We select

t := t(λ) = π [ ω λ ] + 1/2 ω where [ ω λ ] denotes the integer part of ω λ . As λ → ∞ we have t(λ) ∼ π λ and it follows λ p y ′ 2 (t(λ)) ∼ λ p ω 2 e -2π
t p (λ)λ p y ′ 2 (t(λ)) ∼ π p ω 2 e -2π ∼ π p e -2π γλ p In particular for any ε > 0 we have

lim λ→∞ (t(λ)) p-ε λ p y ′ λ 2 (t(λ)) + y ′′ λ 2 (t(λ)) λ p y 2 (0) + y ′ 2 (0) = ∞ uniformly for γ ≥ γ 0 > 0.
Finally let µ be a large eigenvalue of A with associated eigenfunction φ µ and set

γ = µ(c/2) -p ; λ = ( µ γ ) 1/p ⇐⇒ γλ p = µ.
Since y = y(λ) is a solution of

y ′′ + µy + 2γ -1/p µ 1/p y ′ = y ′′ + µy + cµ α y ′ = 0.
It is now easy to see that u(t) := y(t)φ µ is a solution of (2.1) which does not satisfy (4.4) for any β > 1 2α . Theorems 4.1 and 4.2 imply a stronger time-smoothing effect property. More precisely we have Theorem 4.3. For any α > 0, and for any solution u of

u ′′ + Au + cA α u ′ = 0 we have ∀δ > 0, u ∈ C ∞ ([δ, ∞), V ))
In addition the operator

(u(0), u ′ (0)) ∈ V × H → u (k) ∈ L ∞ [δ, ∞), V )
is bounded for each fixed value of k .

Existence of a spatial smoothing effect

Combining the result of Theorem 4.3 and the inclusion D(A) ⊂ H γ × V obtained in Theorem 3.1 for 0 < α < 1, by an easy induction argument we obtain Theorem 5.1. Assuming α < 1, for any solution u of

u ′′ + Au + cA α u ′ = 0 we have ∀n ∈ N, ∀δ > 0, u ∈ C ∞ ([δ, ∞), D(A n ))
In addition the operator

(u(0), u ′ (0)) ∈ V × H → u (k) ∈ L ∞ ([δ, ∞), D(A n ))
is bounded for each fixed value of k and n.

Remark. If on the other hand α ≥ 1 there is no spatial smoothing effect anymore. For instance if we consider the special case Ω = (0, π) H = L 2 (Ω) V = H 1 0 (Ω) A = -∆, B = 2A we have special solutions of the form

u(t, x) = a n e -n 2 + √ n 2 (n 2 -1) t sin nx with u(0) = a n sin nx and u(0) 2 D(A s ) = n 4s a 2 n u(t) 2 D(A s ) = n 4s a 2 n e -n 2 + √ n 2 (n 2 -1) 2t . Since -n 2 + n 2 (n 2 -1) = -n 2 n 2 + n 2 (n 2 -1) ≥ -1 we find u(0) 2 D(A s ) ≤ u(t) 2 D(A s ) e 2t
This formal estimate can be easily worked out to show that if u(t) ∈ D(A s ) for some t > 0, we must have u(0) ∈ D(A s ). Hence there is no spatial smoothing effect whatsoever in such a situation.

Regularity: conservation properties

Let L = L * ≥ 0 on H and assume that there is a second Banach space X such that (6. 1)

n≥1 D(L n ) ⊂ X ⊂ H
with dense imbeddings. The norm in X is denoted by and we assume that exp(-tL) is a C 0 semigroup of bounded operators on X.

First we consider the problem (6. 2)

u ′′ + L 2 u + cLu ′ = 0
Then we have Theorem 6.1. Let c ≥ 2, and let L be coercive on X. Introducing D X (L) = {x ∈ D(L), Lx ∈ X} assume that the set {x ∈ D X (L), Lx ≤ 1} is closed in X and that exp(-tL) is an analytic semigroup of bounded operators on X. Let u be the unique solution of (6.2) satisfying

u(0) = u 0 ∈ D X (L), u ′ (0) = u 1 ∈ X whose existence is insured by Theorem 2.1 with A = L 2 and B = cL. Then we have ∀t > 0, u(t) ∈ D X (L), u ′ (t) ∈ X with (6. 3) sup t>0 { u(t) + Lu(t) + u ′ (t) } ≤ C( u 0 + Lu 0 + u 1 )
Proof. We start with

(u 0 , u 1 ) ∈ ( n≥1 D(L n )) 2
The main idea is to look for α, β > 0 such that

u ′′ + L 2 u + cLu ′ = (u ′ + αLu) ′ + βL(u ′ + αLu).
This identity reduces to the system α + β = c; αβ = 1 which has real solutions (α, β) as a consequence of the assumption c ≥ 2.

Then since

v = u ′ + αLu is a solution of v ′ + βLv = 0
we have (cf. e.g. [START_REF] Pazy | Semi-groups of linear operators and applications to PDE[END_REF]) with

K = u 1 + α Lu 0 ∀t > 0, v(t) D X (L 1/2 ) ≤ C 1 t -1/2 u 1 + αLu 0 ≤ C 1 t -1/2 K.
Then we have u(t) = e -αLt u 0 + t 0 e -αL(t-s) v(s)ds

hence by [START_REF] Pazy | Semi-groups of linear operators and applications to PDE[END_REF] ∀t > 0, u

(t) D X (L) ≤ C 2 u 0 D X (L) + C 3 t 0 C 1 (t -s) -1/2 s -1/2 Kds.
This provides the bound on u(t) + Lu(t) . Finally since

∀t > 0, v(t) ≤ K and u ′ (t) = v(t) -αLu(t)
the estimate on u ′ (t) follows easily. Then the general case

(u 0 , u 1 ) ∈ D X (L) × X
follows by a density argument.

We next consider the problem (6. 4)

u ′′ + Lu + cLu ′ = 0.
We assume that exp(-tL) is a C 0 semigroup of bounded operators on X.

Then we have Theorem 6.2. Under the condition (6.1), Let u be the unique solution of (6.4) satisfying u(0) = u 0 ∈ X, u ′ (0) = u 1 ∈ X whose existence is insured by Theorem 2.1 with A = L and B = cL. Then we have ∀t > 0, u(t) ∈ X u ′ (t) ∈ X

If in addition we assume .

Proof. As before we consider first

(u 0 , u 1 ) ∈ ( n≥1 D(L n )) 2
The main idea is to introduce

v := u ′ + 1 c u so that v ′ + cLv = u ′′ + 1 c u ′ + cLu ′ + Lu = 1 c u ′ = 1 c (v - 1 c u)
Let J be any closed subinterval of [0, +∞). By setting u J,∞ := sup t∈J u(t)

and similarly v J,∞ := sup t∈J v(t)

from v ′ + cLv - 1 c v = - 1 c 2 u we obtain ∀t ∈ J, v(t) ≤ M exp( 1 c t) v 0 + M c 2 exp( 1 c t)|J| u J,∞ ≤ C( v 0 +|J| u J,∞ )
for |J| ≤ 1 and ∀t ∈ J, u(t) ≤ u 0 + c v J,∞

The result easily follows locally by selecting |J| small enough, for instance Cc|J| ≤ 1 2 and using a density argument. Then a simple induction argument concludes the proof, since the condition on |J| is independent of the initial data and the equation is autonomous.

(6. 5 )

 5 exp(-tL) L(X) ≤ M e -λt for some M > 1, λ > 0. such that(6. 6) c 2 λ > M + 1 then (u, u ′ ) is bounded for t ≥ 0 and (6. 7) sup t>0 { u(t) + u ′ (t) } ≤ C(c, M, λ)( u 0 + u 1 )
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When (6.5)-(6.6) are assumed, the same calculation for an arbitray J now gives

a condition equivalent to (6.6). Then the bound on u follows automatically. This bound is valid on each interval J = [0, T ] and the result (6.7) follows.

The general case is obtained by density.

Main examples

Example 7.1. Let Ω be a bounded open subset of R N . We consider the problem

We set

, u = 0 on ∂Ω} For any (u 0 , u 1 ) ∈ V × H, the unique mild solution u of (7.1) belongs to C ∞ ((0, ∞), V ). If in addition we assume (u 0 , u 1 ) ∈ X × X, then for all t ≥ 0 (u(t, .), u t (t, .)) ∈ X × X. For c large enough we have the stronger property u ∈ W 1,∞ ((0, ∞), X).The same result is also valid if X is replaced by X p = L p (Ω) for any p ∈ [2, ∞).

Example 7.2. Let Ω be a bounded open subset of R N . We consider the problem

For any (u 0 , u 1 ) ∈ We set

, u = 0 on ∂Ω} For any (u 0 , u 1 ) ∈ V × H, the unique mild solution u of (7.1) belongs to

If in addition we assume c ≥ 2 and (u 0 , u 1 ) ∈ X ×X, then u ∈ L ∞ ((0, ∞), X). Finally if c ≥ 2, (u 0 , u 1 ) ∈ X ×X and ∆ 2 u 0 ∈ X, then ∆ 2 u ∈ L ∞ ((0, ∞), X); u t ∈ L ∞ ((0, ∞), X). The same result is also valid if X is replaced by X p = L p (Ω) for any p ∈ [2, ∞).