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We modify the deformation method from [9] in order to construct further examples of Kobayashi hyperbolic surfaces in P 3 of any even degree d ≥ 8.

Given a hypersurface X d = f * d (0) in P n of degree d, we say that a (very) general small deformation of X d is hyperbolic if for any (very) general degree d hypersurface X ∞ = g * d (0) and for all sufficiently small ε ∈ C \ {0} (depending on X ∞ ) the hypersurface X d,ε = (f d + εg d ) * (0) is Kobayashi hyperbolic. With this definition let us formulate the following version of the Kobayashi Conjecture.

Weak Kobayashi Conjecture. For every hypersurface X d in P n of degree d ≥ 2n -1, a (very) general small deformation of X d is Kobayashi hyperbolic.

The original Kobayashi Conjecture claims, in particular, that a (very) general surface X d of degree d ≥ 5 in P 3 is Kobayashi hyperbolic. This is known to hold indeed for a very general surface of degree at least 21 (see McQuillan [START_REF] Mcquillan | Holomorphic curves on hyperplane sections of 3-folds[END_REF] and Demailly-El Goul [START_REF] Demailly | Hyperbolicity of generic surfaces of high degree in projective 3-space[END_REF]). By Brody's Theorem, a compact complex space X is hyperbolic if and only if any holomorphic map C → X is constant. Hence the proof of hyperbolicity reduces to a certain degeneration principle for entire curves in X. The Green-Griffiths' proof of Bloch's Conjecture [START_REF] Green | Two applications of algebraic geometry to entire holomorphic mappings[END_REF] provides a kind of such degeneration principle. According to this principle, every entire curve ϕ : C → X in a very general surface X ⊆ P 3 of degree d ≥ 21 satisfies an algebraic differential equation [START_REF] Demailly | Hyperbolicity of generic surfaces of high degree in projective 3-space[END_REF][START_REF] Mcquillan | Holomorphic curves on hyperplane sections of 3-folds[END_REF]. See also [START_REF] Rousseau | Equation différentielles sur les hypersurfaces de P 4[END_REF][START_REF] Siu | Hyperbolicity in Complex Geometry[END_REF] for recent advances in higher dimensions.

The deformation method showed to be quite effective to construct examples of low degree hyperbolic surfaces in P 3 . A nice construction due to J. Duval [START_REF] Duval | Une sextique hyperbolique dans P 3 (C)[END_REF] of a hyperbolic sextic X ε ⊆ P 3 uses this method iteratively in 5 steps, so that ε = (ε 1 , . . . , ε 5 ) has 5 subsequently small enough components. Hence X ε belongs to a 5-dimensional linear system; however the deformation of X 0 to X ε neither is linear nor very generic.

In [START_REF] Shiffman | New examples of Kobayashi hyperbolic surfaces in CP 3 . (Russian) Funktsional[END_REF] we exhibited examples of some special surfaces X d in P 3 of any given degree d ≥ 8 such that a general small deformation of X d is Kobayashi hyperbolic. In these examples

X d = X ′ d ′ ∪ X ′′ d ′′ , where d = d ′ + d ′′
, is a union of two cones in P 3 with distinct vertices over plane hyperbolic curves in general position.

Let us indicate briefly the deformation method used in [START_REF] Shiffman | New examples of Kobayashi hyperbolic surfaces in CP 3 . (Russian) Funktsional[END_REF] (see also the references in [START_REF] Shiffman | New examples of Kobayashi hyperbolic surfaces in CP 3 . (Russian) Funktsional[END_REF][START_REF] Shiffman | Constructing low degree hyperbolic surfaces in P 3 . Special issue for S. S. Chern[END_REF]). Given two hypersurfaces X d,0 and X d,∞ in P n of the same degree d, we consider the pencil of hypersurfaces {X d,ε } ε∈C generated by X d,0 and X d,∞ . Assuming that for a sequence ε n → 0, the hypersurfaces X d,εn are not hyperbolic, there exists a sequence of Brody entire curves ϕ n : C → X d,εn which converges to a (non-constant) Brody curve ϕ : C → X d,0 . Suppose in addition that the hypersurface X d,0 admits a rational map to a hyperbolic variety π : X d,0

Y 0 (to a curve Y 0 of genus ≥ 2 in case where dim X d,0 = 2). Then necessarily π • ϕ = cst, provided that the composition π • ϕ is well defined. Anyhow, the limiting Brody curve ϕ : C → X d,0 degenerates.

For a union X d,0 = X ′ d ′ ,0 ∪ X ′′ d ′′ ,0 of two cones in general position in P 3 as in [START_REF] Shiffman | New examples of Kobayashi hyperbolic surfaces in CP 3 . (Russian) Funktsional[END_REF], there is a further degeneration principle. It prohibits to the image ϕ(C) to meet the double curve

D = X ′ d ′ ,0 ∩ X ′′ d ′′ ,0 outside the points of D ∩ X d,∞ .
Using the assumptions that d ′ , d ′′ ≥ 4 and X d,∞ is general this forces ϕ to be constant, contrary to our construction.

This applies in particular to the union of two quartic cones X ′ 4,0 ∪ X ′′ 4,0 in P 3 in general position. Modifying the construction in [START_REF] Shiffman | New examples of Kobayashi hyperbolic surfaces in CP 3 . (Russian) Funktsional[END_REF], in the present note we establish, in particular, hyperbolicity of a general deformation of a double quartic cone in P 3 , see Example 2.3 below.

The author is grateful to the referee for indicating a flow in the first draft of the paper.

Some technical lemmas

Here we expose some preliminary facts that will be used in the next section. We let ∆ denote the unit disc in C, B n the unit ball in C n and Hol(B n ) the space of all holomorphic functions on B n . For two complex spaces X and Y , Hol(X, Y ) stands for the space of all holomorphic maps X → Y with the usual topology.

Lemma 1.1. Let f 0 , f ∞ ∈ Hol(B n ) be such that f 0 (0) = f ∞ (0) = 0 and the divisors X 0 = f * 0 (0) and X ∞ = f * ∞ (0) have no common component passing through 0. Let Γ = X 0 ∩ X ∞ and X ε = f -1 ε (0), where f ε = f 0 + εf ∞ .
We assume that ▽f 0 | Γ = 0. Let further ϕ n ∈ Hol(∆, X εn ), where ε n -→ 0, be a sequence of holomorphic discs which converges to ϕ ∈ Hol(∆, X 0 ) with ϕ(0) = 0. Then necessarily dϕ(0) ∈ T 0 X ∞ .

Proof. The assertion is clearly true in the case where ϕ(∆) ⊆ Γ. So we will assume further that ϕ(∆) ⊆ Γ. Claim 1. Under the assumptions as above ϕ n (t n ) ∈ Γ for some sequence t n -→ 0. Proof of Claim 1. Let us consider the holomorphic map

F : B n → C 2 , z -→ (f 0 (z), f ∞ (z)) .
It is easily seen that F possesses the following properties:

• F (0) = 0; • F -1 (0) = Γ; • F (X εn ) ⊆ l n , where l n := {x + ε n y = 0} ⊆ C 2 ; • F (X 0 ) ⊆ l 0 := {x = 0}; • F • ϕ n (∆) ⊆ l n ; • F • ϕ(∆) ⊆ l 0 , F • ϕ(0) = 0, F • ϕ ≡ 0. We let F • ϕ n = (x n (t), y n (t)) and F • ϕ = (0, y(t)). Thus x n -→ 0 and y n -→ y as n -→ ∞.
Since y(0) = 0 and y ≡ 0, we have y n ≡ 0. By Rouché's Theorem there exists a sequence t n -→ 0 such that y n (t n ) = 0, so also

x n (t n ) = -ε n y n (t n ) = 0. Hence ϕ n (t n ) ∈ Γ = X 0 ∩X ∞ , as claimed.
It will be convenient for the rest of the proof to replace the given sequence (ϕ n ) by a new one (ψ n ). We let ψ n (t) = ϕ n (a n t + t n ) with (t n ) as in Claim 1 and

a n := 1 -|t n | -→ 1. Then ψ n ∈ Hol(∆, X εn ) and ψ n -→ ϕ as n -→ ∞. Moreover p n := ψ n (0) = ϕ n (t n ) ∈ Γ ∀n ≥ 1 and v n := dψ n (0) -→ v := dϕ(0) when n -→ ∞. Now the assertion follows immediately from the next claim. Claim 2. v n ∈ T pn X ∞ ∀n ≥ 1.
Proof of Claim 2. We have:

ψ n (t) = p n + tv n + HOT(t) and f εn (x) = ▽f εn (p n ), x -p n + HOT(x -p n ) ,
where HOT means "the higher order terms". Hence

(1)

f εn • ψ n (t) = ▽f εn (p n ), v n • t + HOT(t) .
Using (1) and the identity

f εn • ψ n ≡ 0 we obtain 0 = ▽f εn (p n ), v n = ▽f 0 (p n ), v n + ε n ▽f ∞ (p n ), v n = ε n ▽f ∞ (p n ), v n .
Indeed, by our assumption ▽f 0 | Γ = 0, in particular ▽f 0 (p n ) = 0 ∀n ≥ 1. This proves the claim.

Consider, for instance, a pencil of degree d hypersurfaces

X ε = (f 0 + εf ∞ ) * (0) in P n+1 generated by X 0 = X ′ 0 ∪ X ′′ 0 = f * 0 (0) and X ∞ = f * ∞ (0) . Assume that D := X ′ 0 ∩ X ′′ 0 ⊆ X ∞ .
Then for any sequence of entire curves ϕ n : C → X εn which converges to ϕ : C → X ′ 0 we have by Lemma 1.1:

dϕ(t) ∈ T P X ′ 0 ∩ T P X ∞ ∀P = ϕ(t) ∈ D .
Next we study an enumeration problem, which deals with the intersection of a general hypersurface and generators of a given cone in P n+1 . Proposition 1.2. We let Y ⊆ P n+1 be a cone over a variety Y ⊆ P n . We consider also a general hypersurface X ⊆ P n+1 of degree e ≥ 2 dim Y . Then X meets every generator l = (P Q) of Y , where P is the vertex of the cone and Q runs over Y , in at least k = e -2 dim Y points transversally.

Proof. We use below the following notation. For a pair (n, e) ∈ N 2 we let F(n + 1, e) denote the vector space of all homogeneous forms in n + 2 variables of degree e and P(n + 1, e) its projectivization. We let CY denote the affine cone over Y and CY * = CY \{0} the same cone with the vertex deleted. Let us fix coordinates in P n+1 in such a way that P = (0 : . . . : 0 : 1) and

Y ⊆ {z n+1 = 0}. If Q = (z 0 : . . . : z n : 0) = (z ′ : 0) ∈ Y then (P Q) = {(z ′ : z n+1 ) | z n+1 ∈ C} ∪ {P } .
For a hypersurface X in P n+1 of degree e its defining equation f = 0 can be written in the form

(2) f (z ′ , z n+1 ) = e i=0 a i (z ′ )z e-i n+1 = 0 ,
where a i is a homogeneous form in z ′ of degree i. Assuming that P / ∈ X i.e., a 0 = 0, we can normalize the equation so that a 0 = 1. Fixing z ′ ∈ A n+1 we specialize f to a monic polynomial f z ′ ∈ C[z n+1 ] of degree e. In these terms the proposition asserts that for k = e -2 dim Y and for a general f ∈ F(n + 1, e), the specialization f z ′ has at least k simple roots whatever is the choice of z ′ ∈ CY * ⊆ A n+1 .

The affine chart U = P(n + 1, e) \ {a 0 = 0} can be identified with the affine space of all sequences of homogeneous forms a = (a 1 , . . . , a e ) with deg

a i = i. The specialization (f, z ′ ) -→ f z ′ defines a morphism ρ : U × CY → Poly e ,
where Poly e stands for the affine variety of all monic polynomials of degree e. In turn Poly e can be identified with Symm e (A 1 ) ∼ = A e .

Let us consider further the Vieta map

ν : A e → Poly e , (λ 1 , . . . , λ e ) -→ p(z) = e i=1 (z -λ i ) .
This is a ramified covering of degree e!. For a multi-index n = (n 1 , . . . , n s ) with s i=1 n i = e we let Σ ′ n = ν(D n) ⊆ Poly e , where D n is the linear subspace of A e given by equations

λ 1 = . . . = λ n 1 , λ n 1 +1 = . . . = λ n 1 +n 2 , . . . , λ n 1 +...+n s-1 +1 = . . . = λ e .
Clearly both D n and Σ ′ n have pure dimension s.

Letting Σ ′ k = n k ≥2 Σ ′ n ⊆ Poly e
denote the variety of all monic polynomials of degree e with at most k -1 simple roots, we have

dim Σ ′ k = max n k ≥2 {dim Σ ′ n} = k -1 + e -k + 1 2 .
If ek + 1 is even then the latter maximum is achieved for

n 1 = . . . = n k-1 = 1, n k = . . . = n s = 2 ,
and otherwise for This proves Claim 1.

n 1 = . . . = n k-2 = 1, n k-1 = . . . = n s = 2 . Anyhow codim (Σ ′ k , Poly e ) = 1 + e -k 2 

By virtue of

Claim 1, codim (ρ -1 (Σ ′ k ), U × CY * ) = codim (Σ ′ k , Poly e ) = 1 + e -k 2 . Since f λz ′ (z n+1 ) = λ.f z ′ (z n+1 ) = λ -e f z ′ (λz n+1 ) ∀λ ∈ C * , the subvariety ρ-1 (Σ ′ k ) of U ×CY * is stable under the natural C * -action on the second factor. Hence codim ρ-1 (Σ ′ k )/C * , U × Y = codim (ρ -1 (Σ ′ k ), U × CY * ) = 1 + e -k 2 .
Thus the general fibers of the projection

pr 2 : U × Y → U do not meet ρ-1 (Σ ′ k )/C * ⊆ U × Y provided that dim Y ≤ e -k 2 .
The latter inequality is equivalent to k ≤ e -2 dim Y , which fits our assumption. Now the proposition follows. Proof of Claim 1. Blowing up P n+1 with center at P yields a fiber bundle ξ : P n+1 → P n with fiber P 1 . We let Symm e (ξ) denote the eth symmetric power 1 of ξ over P n . Its fiber over a point Q ∈ P n consists of all effective divisors on ξ -1 (Q) ∼ = P 1 of degree e. Given a partition

e = k i=1 n i with 1 ≤ n 1 ≤ n 2 ≤ . . . ≤ n s
we let Σ n, where n = (n 1 , . . . , n s ), denote the closed subbundle of Symm e (ξ) whose fiber over Q consists of all effective divisors on ξ -1 (Q) of the form

s i=1 n i [p i ],
where

p i ∈ ξ -1 (Q) .
We also let

Σ k = n:n k ≥2 Σ n .
1 That is the eth Cartesian power factorized by the natural action of the symmetric group of degree e.

The restriction map

ρ : f -→ f * (0) • (P Q), Q ∈ Y ,
associates to f a section ρ(f ) of Symm e (ξ) over Y . It is easily seen that f ∈ F(n + 1, e) belongs to F(Y, e, k) if and only if ρ(f ) meets Σ k . We claim that the set, say, Γ e,k of all sections of Symm e (ξ)| Y meeting Σ k is a Zariski closed subset of Γ(Y, O(Symm e (ξ)| Y )). More generally, given projective varieties X and Y and a subvariety S ⊂ Y , the set M S of all morphisms f : X → Y such that the image f (X) meets S is a Zariski closed subset of Mor(X, Y ). Indeed, let us consider the incidence relation

I = {(f, x, y) ∈ Mor(X, Y ) × X × Y | f (x) = y} . Then M S = π 1 (π -1 3 (S) ∩ I) is Zariski closed, as claimed. Consequently, P(Y, e, k) is Zariski closed in P(n + 1, e), as stated. Claim 2. P(n + 1, e) \ P(Y, e, k) = ∅ if n = 3.
Indeed, it is easy to see that the union X ′ of e planes in P 3 in general position belongs to this complement.

Presumably the same holds in higher dimensions for unions of e hyperplanes in general position. However the latter is much less evident, so we've chosen above a different approach.

Examples

Theorem 2.1. Let Y 0 be a Kobayashi hyperbolic hypersurface in P n (n ≥ 2), where P n is realized as the hyperplane H = {z n+1 = 0} in P n+1 . Then a general small deformation X ε ⊆ P n+1 of the double cone X 0 = 2 Y 0 over Y 0 is Kobayashi hyperbolic.

Proof. Suppose the contrary. Then letting X ∞ be a general hypersurface of degree 2d = 2 deg Y 0 and (X t ) t∈P 1 the pencil generated by X 0 and X ∞ , we can find a sequence ε n -→ 0 and a sequence of Brody curves ϕ n : C → X εn such that ϕ n -→ ϕ, where ϕ : C → Y 0 is non-constant. We let π : Y 0 Y 0 be the cone projection. Since Y 0 is assumed to be hyperbolic we have π • ϕ = cst. In other words ϕ(C) ⊆ l, where l ∼ = P 1 is a generator of the cone Y 0 .

Letting Y 0 = f * 0 (0), where f is a homogeneous form of degree d in z 0 , . . . , z n , we note that

▽f 2 0 | Y 0 = 0. If l and X ∞ meet transversally in a point ϕ(t) ∈ l ∩ X ∞ then dϕ(t) = 0 by virtue of Lemma 1.1.
Since Y 0 ⊆ P n is hyperbolic and n ≥ 2 we have d ≥ n + 2. In particular

deg X ∞ = 2d ≥ 2n + 4 ≥ 2 dim Y 0 + 5 .
By Proposition 1.2, l and X ∞ meet transversally in at least 5 points. Hence the nonconstant meromorphic function ϕ : C → l ∼ = P 1 possesses at least 5 multiple values. Since the defect of a multiple value is ≥ 1/2, this contradicts the Defect Relation.

Remark 2.2. Given a hyperbolic hypersurface Y ⊆ P n of degree d, Theorem 2.1 provides a hyperbolic hypersurface X ⊆ P n+1 of degree 2d. Iterating the construction yields hyperbolic hypersurfaces in P n ∀n ≥ 3. However, their degrees d(n) grow exponentially with n, whereas the best asymptotic achieved so far is d(n) = 4(n -1) 2 (see e.g., [START_REF] Shiffman | Hyperbolic hypersurfaces in P n of Fermat-Waring type[END_REF]).

Example 2.3. Let C ⊆ P2 be a hyperbolic curve of degree d ≥ 4, and let C ⊆ P 3 be a cone over C. Then a general small deformation of the double cone X 0 = 2 C is a Kobayashi hyperbolic surface in P 3 of even degree 2d ≥ 8.

The following degeneration principle can be proved along the same lines as Theorem 2.1.

Proposition 2.4. Let (X t ) t∈P 1 be a pencil of hypersurfaces in P n+1 generated by two hypersurfaces X 0 and X ∞ of the same degree d, where X 0 = kQ with k ≥ 2 for some hypersurface Q ⊆ P n+1 , and X ∞ = d i=1 H a i (a 1 , . . . , a d ∈ P 1 ) is the union of d ≥ 5 distinct hyperplanes from a pencil of hyperplanes (H a ) a∈P 1 . If a sequence of entire curves ϕ n : C → X εn , where ε n → 0, converges to an entire curve ϕ : C → X 0 , then ϕ(C) ⊆ X 0 ∩ H a for some a ∈ P 1 .

Examples 2.5. Given a pencil of planes (H a ) a∈P 1 in P 3 , using Proposition 2.4 one can deform

• X 0 = 5Q, where Q ⊆ P 3 is a plane,

• a triple quadric X 0 = 3Q ⊆ P 3 , or • a double cubic, quartic, etc. X 0 = 2Q ⊆ P 3 to an irreducible surface X ε ∈ X 0 , X ∞ of the same degree d, where as before X ∞ = d i=1 H a i , so that every limiting entire curve ϕ : C → X 0 is contained in a section X 0 ∩ H a for some a ∈ P 1 .

The famous Bogomolov-Green-Griffiths-Lang Conjecture on strong algebraic degeneracy (see e.g., [START_REF] Bogomolov | Hyperbolicity of nodal hypersurfaces[END_REF][START_REF] Green | Two applications of algebraic geometry to entire holomorphic mappings[END_REF]) suggests that every surface S of general type possesses only finite number of rational and elliptic curves and, moreover, the image of any nonconstant entire curve ϕ : C → S is contained in one of them. In particular, this should hold for any smooth surface S ⊆ P 3 of degree ≥ 5, which fits the Kobayashi Conjecture. Indeed, by Clemens-Xu-Voisin's Theorem, a general smooth surface S ⊆ P 3 of degree ≥ 5 does not contain rational or elliptic curves, hence it should be hyperbolic provided that the above conjecture holds indeed.

Anyhow, the deformation method leads to the following result, which is an immediate consequence of Proposition 2.4.

Corollary 2.6. Let S ⊆ P 3 be a surface and Z ⊂ S be a curve such that the image of any nonconstant entire curve ϕ : C → S is contained in Z 2 . Let X ∞ be the union of d = 2 deg S planes from a general pencil of planes in P 3 . Then any small enough linear deformation X ε of X 0 = 2S in direction of X ∞ is hyperbolic.

Along the same lines, Proposition 2.4 can be applied in the following setting.

Example 2.7. Let us take for X 0 a double cone in P 3 over a plane hyperbolic curve of degree d ≥ 4, and for X ∞ the union of 2d distinct planes from a general pencil of planes (H a ) a∈P 1 . Then small deformations X ε of X 0 in direction of X ∞ provide examples of hyperbolic surfaces of any even degree 2d ≥ 8. In suitable coordinates in P 3 such a surface can be given by equation [START_REF] Duval | Une sextique hyperbolique dans P 3 (C)[END_REF] Q(X 0 , X 1 , X 2 ) 2 -P (X 2 , X 3 ) = 0 , where P, Q are generic homogeneous formes of degree d = 2k and k, respectively. The latter are actually the Duval-Fujimoto examples [4,[START_REF] Fujimoto | A family of hyperbolic hypersurfaces in the complex projective space. The Chuang special issue[END_REF].

Let us finally turn to the Kobayashi problem on hyperbolicity of complements of general hypersurfaces. By virtue of Kiernan-Kobayashi-M. Green's version of Borel's Lemma, the complement P n \ L of the union L = 2n+1 i=1 L i of 2n + 1 hyperplanes in P n in general position is Kobayashi hyperbolic. In particular, this applies to the union l of 5 lines in P 2 in general position. Moreover [START_REF] Zaidenberg | Stability of hyperbolic embeddedness and construction of examples[END_REF] l can be deformed to a smooth quintic curve with hyperbolic complement via a small deformation. This deformation proceeds in 5 steps and neither is linear nor very generic. So the following question arises.

2.8. Question. Let L (M) stands for the union of 2n + 1 (2n -1, respectively) hyperplanes in P n in general position. Is the complement of a general small linear deformation of L Kobayashi hyperbolic? Is a general small linear deformation of M Kobayashi hyperbolic? In particular, does the union of 5 lines in P 2 (of 5 planes in P 3 ) in general position admit a general small linear deformation to an irreducible quintic curve with hyperbolic complement (to a hyperbolic quintic surface, respectively)?

. Claim 1 .

 1 The restriction dρ| T U is surjective at every point (a, z ′ ) ∈ U × CY * . In particular dρ has maximal rank e at every such point. Proof of Claim 1. For a point (a, z ′ ) = (a 1 , . . . , a e , z 0 , . . . , z n ) ∈ U × CY * we leta 0 = (a 0 1 , . . . , a0e ) ∈ A e , where a 0 i = a i (z ′ ), i = 1, . . . , e . Since z ′ = 0, for an arbitrary tangent vector b 0 = (b 0 1 , . . . , b 0 e ) ∈ A e there exists a e-tuple of homogeneous forms b = (b 1 , . . . , b e ) with deg b i = i such that b(z ′ ) = b 0 . Therefore (a + tb)(z ′ ) = a 0 + tb 0 and so dρ(a 0 , z ′ )(b, 0) = b 0 .

Remark 1 . 3 .

 13 Let us indicate an alternative approach. Given a projective variety Y ⊆ P n and a cone X ⊆ P n+1 over Y with vertex P , for every k ≥ 1 we consider the subsetF(Y, e, k) ⊆ F(n + 1, e) of all forms f ∈ F(n + 1, e) such that the intersection divisor f * (0) • (P Q) has at most k -1 reduced points on at least one generator l = (P Q) (Q ∈ Y ) of X.We let P(Y, e, k) denote the projectivization of F(Y, e, k). Proposition 1.2 asserts that the complement P(n + 1, e) \ P(Y, e, k) is a nonempty Zariski open subset of P(n + 1, e) provided that e ≥ 2 dim Y + k. We divide this into two claims; the first one is proved in a general setting, while for the second one we provide a simple argument in dimension 3 only.Claim 1. P(Y, e, k) is a Zariski closed subset of P(n + 1, e).

The latter holds, for instance, if S is hyperbolic modulo Z.

This paper was written during a visit of the author the Max-Planck-Institute of Mathematics, Bonn.