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HYPERBOLICITY OF GENERAL DEFORMATIONS: PROOFS

MIKHAIL ZAIDENBERG

Abstract. We modify the deformation method from [9] in order to construct further ex-
amples of Kobayashi hyperbolic surfaces in P3 of any even degree d ≥ 8.

Given a hypersurface Xd = f ∗
d (0) in Pn of degree d, we say that a (very) general small

deformation of Xd is hyperbolic if for any (very) general degree d hypersurface X∞ = g∗d(0)
and for all sufficiently small ε ∈ C \ {0} (depending on X∞) the hypersurface Xd,ε =
(fd + εgd)

∗(0) is Kobayashi hyperbolic. With this definition let us formulate the following
version of the Kobayashi Conjecture.

Weak Kobayashi Conjecture. For every hypersurface Xd in Pn of degree d ≥ 2n− 1,
a (very) general small deformation of Xd is Kobayashi hyperbolic.

The original Kobayashi Conjecture claims, in particular, that a (very) general surface Xd

of degree d ≥ 5 in P3 is Kobayashi hyperbolic. This is known to hold indeed for a very
general surface of degree at least 21 (see McQuillan [7] and Demailly-El Goul [2]).

By Brody’s Theorem, a compact complex space X is hyperbolic if and only if any holo-
morphic map C → X is constant. Hence the proof of hyperbolicity reduces to a certain
degeneration principle for entire curves in X. The Green-Griffiths’ proof of Bloch’s Conjec-
ture [6] provides a kind of such degeneration principle. According to this principle, every
entire curve ϕ : C → X in a very general surface X ⊆ P3 of degree d ≥ 21 satisfies an alge-
braic differential equation [2, 7]. See also [8, 12] for recent advances in higher dimensions.

The deformation method showed to be quite effective to construct examples of low degree
hyperbolic surfaces in P

3. A nice construction due to J. Duval [3] of a hyperbolic sextic
Xε ⊆ P3 uses this method iteratively in 5 steps, so that ε = (ε1, . . . , ε5) has 5 subsequently
small enough components. Hence Xε belongs to a 5-dimensional linear system; however the
deformation of X0 to Xε neither is linear nor very generic.

In [9] we exhibited examples of some special surfaces Xd in P3 of any given degree d ≥ 8
such that a general small deformation of Xd is Kobayashi hyperbolic. In these examples
Xd = X ′

d′ ∪X
′′
d′′ , where d = d′ + d′′, is a union of two cones in P3 with distinct vertices over

plane hyperbolic curves in general position.
Let us indicate briefly the deformation method used in [9] (see also the references in

[9, 10]). Given two hypersurfaces Xd,0 and Xd,∞ in P
n of the same degree d, we consider the

pencil of hypersurfaces {Xd,ε}ε∈C generated by Xd,0 and Xd,∞. Assuming that for a sequence
εn → 0, the hypersurfaces Xd,εn

are not hyperbolic, there exists a sequence of Brody entire
curves ϕn : C → Xd,εn

which converges to a (non-constant) Brody curve ϕ : C → Xd,0.
Suppose in addition that the hypersurface Xd,0 admits a rational map to a hyperbolic variety
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2 MIKHAIL ZAIDENBERG

π : Xd,0 99K Y0 (to a curve Y0 of genus ≥ 2 in case where dimXd,0 = 2). Then necessarily
π ◦ϕ = cst, provided that the composition π ◦ϕ is well defined. Anyhow, the limiting Brody
curve ϕ : C → Xd,0 degenerates.

For a union Xd,0 = X ′
d′,0 ∪ X

′′
d′′,0 of two cones in general position in P3 as in [9], there is

a further degeneration principle. It prohibits to the image ϕ(C) to meet the double curve
D = X ′

d′,0∩X
′′
d′′,0 outside the points of D∩Xd,∞. Using the assumptions that d′, d′′ ≥ 4 and

Xd,∞ is general this forces ϕ to be constant, contrary to our construction.
This applies in particular to the union of two quartic cones X ′

4,0 ∪ X ′′
4,0 in P

3 in general
position. Modifying the construction in [9], in the present note we establish, in particular,
hyperbolicity of a general deformation of a double quartic cone in P3, see Example 2.3 below.

The author is grateful to the referee for indicating a flow in the first draft of the paper.

1. Some technical lemmas

Here we expose some preliminary facts that will be used in the next section. We let ∆
denote the unit disc in C, Bn the unit ball in Cn and Hol(Bn) the space of all holomorphic
functions on Bn. For two complex spaces X and Y , Hol(X, Y ) stands for the space of all
holomorphic maps X → Y with the usual topology.

Lemma 1.1. Let f0, f∞ ∈ Hol(Bn) be such that f0(0) = f∞(0) = 0 and the divisors X0 =
f ∗

0 (0) and X∞ = f ∗
∞(0) have no common component passing through 0. Let Γ = X0 ∩

X∞ and Xε = f−1
ε (0), where fε = f0 + εf∞. We assume that ▽f0|Γ = 0. Let further

ϕn ∈ Hol(∆, Xεn
), where εn −→ 0, be a sequence of holomorphic discs which converges to

ϕ ∈ Hol(∆, X0) with ϕ(0) = 0. Then necessarily dϕ(0) ∈ T0X∞.

Proof. The assertion is clearly true in the case where ϕ(∆) ⊆ Γ. So we will assume further
that ϕ(∆) 6⊆ Γ.

Claim 1. Under the assumptions as above ϕn(tn) ∈ Γ for some sequence tn −→ 0.

Proof of Claim 1. Let us consider the holomorphic map

F : Bn → C
2, z 7−→ (f0(z), f∞(z)) .

It is easily seen that F possesses the following properties:

• F (0) = 0;
• F−1(0) = Γ;
• F (Xεn

) ⊆ ln, where ln := {x+ εny = 0} ⊆ C2;
• F (X0) ⊆ l0 := {x = 0};
• F ◦ ϕn(∆) ⊆ ln;
• F ◦ ϕ(∆) ⊆ l0, F ◦ ϕ(0) = 0, F ◦ ϕ 6≡ 0.

We let F ◦ϕn = (xn(t), yn(t)) and F ◦ϕ = (0, y(t)). Thus xn −→ 0 and yn −→ y as n −→ ∞.
Since y(0) = 0 and y 6≡ 0, we have yn 6≡ 0. By Rouché’s Theorem there exists a sequence
tn −→ 0 such that yn(tn) = 0, so also xn(tn) = −εnyn(tn) = 0. Hence ϕn(tn) ∈ Γ = X0∩X∞,
as claimed. �

It will be convenient for the rest of the proof to replace the given sequence (ϕn) by a new
one (ψn). We let ψn(t) = ϕn(ant+ tn) with (tn) as in Claim 1 and an := 1−|tn| −→ 1. Then
ψn ∈ Hol(∆, Xεn

) and ψn −→ ϕ as n −→ ∞. Moreover pn := ψn(0) = ϕn(tn) ∈ Γ ∀n ≥ 1
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and vn := dψn(0) −→ v := dϕ(0) when n −→ ∞. Now the assertion follows immediately
from the next claim.

Claim 2. vn ∈ Tpn
X∞ ∀n ≥ 1.

Proof of Claim 2. We have:

ψn(t) = pn + tvn + HOT(t) and fεn
(x) = 〈▽fεn

(pn), x− pn〉 + HOT(x− pn) ,

where HOT means “the higher order terms”. Hence

(1) fεn
◦ ψn(t) = 〈▽fεn

(pn), vn〉 · t+ HOT(t) .

Using (1) and the identity fεn
◦ ψn ≡ 0 we obtain

0 = 〈▽fεn
(pn), vn〉 = 〈▽f0(pn), vn〉 + εn〈▽f∞(pn), vn〉 = εn〈▽f∞(pn), vn〉 .

Indeed, by our assumption ▽f0|Γ = 0, in particular ▽f0(pn) = 0 ∀n ≥ 1. This proves the
claim. �

Consider, for instance, a pencil of degree d hypersurfaces

Xε = (f0 + εf∞)∗(0) in P
n+1

generated by
X0 = X ′

0 ∪X
′′
0 = f ∗

0 (0) and X∞ = f ∗
∞(0) .

Assume that D := X ′
0 ∩ X

′′
0 ⊆ X∞. Then for any sequence of entire curves ϕn : C → Xεn

which converges to ϕ : C → X ′
0 we have by Lemma 1.1:

dϕ(t) ∈ TPX
′
0 ∩ TPX∞ ∀P = ϕ(t) ∈ D .

Next we study an enumeration problem, which deals with the intersection of a general
hypersurface and generators of a given cone in Pn+1.

Proposition 1.2. We let Ŷ ⊆ Pn+1 be a cone over a variety Y ⊆ Pn. We consider also a
general hypersurface X ⊆ Pn+1 of degree e ≥ 2 dimY . Then X meets every generator l =

(PQ) of Ŷ , where P is the vertex of the cone and Q runs over Y , in at least k = e−2 dim Y
points transversally.

Proof. We use below the following notation. For a pair (n, e) ∈ N2 we let F(n+ 1, e) denote
the vector space of all homogeneous forms in n + 2 variables of degree e and P(n + 1, e) its
projectivization. We let CY denote the affine cone over Y and CY ∗ = CY \{0} the same cone
with the vertex deleted. Let us fix coordinates in Pn+1 in such a way that P = (0 : . . . : 0 : 1)
and Y ⊆ {zn+1 = 0}. If Q = (z0 : . . . : zn : 0) = (z′ : 0) ∈ Y then

(PQ) = {(z′ : zn+1) | zn+1 ∈ C} ∪ {P} .

For a hypersurface X in P
n+1 of degree e its defining equation f = 0 can be written in the

form

(2) f(z′, zn+1) =
e∑

i=0

ai(z
′)ze−i

n+1 = 0 ,

where ai is a homogeneous form in z′ of degree i. Assuming that P /∈ X i.e., a0 6= 0,
we can normalize the equation so that a0 = 1. Fixing z′ ∈ An+1 we specialize f to a
monic polynomial fz′ ∈ C[zn+1] of degree e. In these terms the proposition asserts that for
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k = e− 2 dimY and for a general f ∈ F(n+ 1, e), the specialization fz′ has at least k simple
roots whatever is the choice of z′ ∈ CY ∗ ⊆ A

n+1.
The affine chart

U = P(n + 1, e) \ {a0 = 0}

can be identified with the affine space of all sequences of homogeneous forms a = (a1, . . . , ae)
with deg ai = i. The specialization (f, z′) 7−→ fz′ defines a morphism

ρ̃ : U × CY → Polye ,

where Polye stands for the affine variety of all monic polynomials of degree e. In turn Polye

can be identified with Symme(A
1) ∼= Ae.

Let us consider further the Vieta map

ν : A
e → Polye, (λ1, . . . , λe) 7−→ p(z) =

e∏

i=1

(z − λi) .

This is a ramified covering of degree e!. For a multi-index n̄ = (n1, . . . , ns) with
∑s

i=1
ni = e

we let
Σ′

n̄ = ν(Dn̄) ⊆ Polye ,

where Dn̄ is the linear subspace of Ae given by equations

λ1 = . . . = λn1
, λn1+1 = . . . = λn1+n2

, . . . , λn1+...+ns−1+1 = . . . = λe .

Clearly both Dn̄ and Σ′
n̄ have pure dimension s. Letting

Σ′
k =

⋃

nk≥2

Σ′
n̄ ⊆ Polye

denote the variety of all monic polynomials of degree e with at most k − 1 simple roots, we
have

dim Σ′
k = max

nk≥2
{dim Σ′

n̄} = k − 1 +

[
e− k + 1

2

]
.

If e− k + 1 is even then the latter maximum is achieved for

n1 = . . . = nk−1 = 1, nk = . . . = ns = 2 ,

and otherwise for
n1 = . . . = nk−2 = 1, nk−1 = . . . = ns = 2 .

Anyhow

codim (Σ′
k,Polye) = 1 +

[
e− k

2

]
.

Claim 1. The restriction dρ̃|TU is surjective at every point (a, z′) ∈ U × CY ∗. In particular
dρ̃ has maximal rank e at every such point.

Proof of Claim 1. For a point (a, z′) = (a1, . . . , ae, z0, . . . , zn) ∈ U × CY ∗ we let

a0 = (a0

1, . . . , a
0

e) ∈ A
e, where a0

i = ai(z
′), i = 1, . . . , e .

Since z′ 6= 0, for an arbitrary tangent vector b0 = (b01, . . . , b
0
e) ∈ Ae there exists a e-tuple of

homogeneous forms b = (b1, . . . , be) with deg bi = i such that b(z′) = b0. Therefore

(a+ tb)(z′) = a0 + tb0 and so dρ̃(a0, z′)(b, 0) = b0 .

This proves Claim 1. �
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By virtue of Claim 1,

codim (ρ̃−1(Σ′
k), U × CY ∗) = codim (Σ′

k, Polye) = 1 +

[
e− k

2

]
.

Since
fλz′(zn+1) = λ.fz′(zn+1) = λ−efz′(λzn+1) ∀λ ∈ C

∗ ,

the subvariety ρ̃−1(Σ′
k) of U×CY ∗ is stable under the natural C∗-action on the second factor.

Hence

codim
(
ρ̃−1(Σ′

k)/C
∗, U × Y

)
= codim (ρ̃−1(Σ′

k), U × CY ∗) = 1 +

[
e− k

2

]
.

Thus the general fibers of the projection

pr2 : U × Y → U

do not meet ρ̃−1(Σ′
k)/C

∗ ⊆ U × Y provided that

dimY ≤

[
e− k

2

]
.

The latter inequality is equivalent to k ≤ e− 2 dimY , which fits our assumption. Now the
proposition follows. �

Remark 1.3. Let us indicate an alternative approach. Given a projective variety Y ⊆ Pn

and a cone X ⊆ Pn+1 over Y with vertex P , for every k ≥ 1 we consider the subset
F(Y, e, k) ⊆ F(n+ 1, e) of all forms f ∈ F(n+ 1, e) such that the intersection divisor f ∗(0) ·
(PQ) has at most k − 1 reduced points on at least one generator l = (PQ) (Q ∈ Y ) of X.
We let P(Y, e, k) denote the projectivization of F(Y, e, k). Proposition 1.2 asserts that the
complement P(n+1, e) \P(Y, e, k) is a nonempty Zariski open subset of P(n+1, e) provided
that e ≥ 2 dimY + k. We divide this into two claims; the first one is proved in a general
setting, while for the second one we provide a simple argument in dimension 3 only.

Claim 1. P(Y, e, k) is a Zariski closed subset of P(n+ 1, e).

Proof of Claim 1. Blowing up Pn+1 with center at P yields a fiber bundle ξ : P̂n+1 → Pn

with fiber P1. We let Symme(ξ) denote the eth symmetric power1 of ξ over Pn. Its fiber
over a point Q ∈ Pn consists of all effective divisors on ξ−1(Q) ∼= P1 of degree e. Given a
partition

e =

k∑

i=1

ni with 1 ≤ n1 ≤ n2 ≤ . . . ≤ ns

we let Σn̄, where n̄ = (n1, . . . , ns), denote the closed subbundle of Symme(ξ) whose fiber
over Q consists of all effective divisors on ξ−1(Q) of the form

s∑

i=1

ni[pi], where pi ∈ ξ−1(Q) .

We also let
Σk =

⋃

n̄:nk≥2

Σn̄ .

1That is the eth Cartesian power factorized by the natural action of the symmetric group of degree e.
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The restriction map

ρ : f 7−→ f ∗(0) · (PQ), Q ∈ Y ,

associates to f a section ρ(f) of Symme(ξ) over Y . It is easily seen that f ∈ F(n + 1, e)
belongs to F(Y, e, k) if and only if ρ(f) meets Σk.

We claim that the set, say, Γe,k of all sections of Symme(ξ)|Y meeting Σk is a Zariski closed
subset of Γ(Y,O(Symme(ξ)|Y )). More generally, given projective varieties X and Y and a
subvariety S ⊂ Y , the set MS of all morphisms f : X → Y such that the image f(X) meets
S is a Zariski closed subset of Mor(X, Y ). Indeed, let us consider the incidence relation

I = {(f, x, y) ∈ Mor(X, Y ) ×X × Y | f(x) = y} .

Then MS = π1(π
−1

3 (S) ∩ I) is Zariski closed, as claimed.
Consequently, P(Y, e, k) is Zariski closed in P(n+ 1, e), as stated. �

Claim 2. P(n+ 1, e) \ P(Y, e, k) 6= ∅ if n = 3.

Indeed, it is easy to see that the union X ′ of e planes in P3 in general position belongs to
this complement. �

Presumably the same holds in higher dimensions for unions of e hyperplanes in general
position. However the latter is much less evident, so we’ve chosen above a different approach.

2. Examples

Theorem 2.1. Let Y0 be a Kobayashi hyperbolic hypersurface in P
n (n ≥ 2), where P

n is
realized as the hyperplane H = {zn+1 = 0} in Pn+1. Then a general small deformation

Xε ⊆ Pn+1 of the double cone X0 = 2Ŷ0 over Y0 is Kobayashi hyperbolic.

Proof. Suppose the contrary. Then letting X∞ be a general hypersurface of degree 2d =
2 deg Y0 and (Xt)t∈P1 the pencil generated by X0 and X∞, we can find a sequence εn −→ 0

and a sequence of Brody curves ϕn : C → Xεn
such that ϕn −→ ϕ, where ϕ : C → Ŷ0

is non-constant. We let π : Ŷ0 99K Y0 be the cone projection. Since Y0 is assumed to be
hyperbolic we have π ◦ ϕ = cst. In other words ϕ(C) ⊆ l, where l ∼= P1 is a generator of the

cone Ŷ0.
Letting Y0 = f ∗

0 (0), where f is a homogeneous form of degree d in z0, . . . , zn, we note that
▽f 2

0 |Ŷ0
= 0. If l and X∞ meet transversally in a point ϕ(t) ∈ l ∩ X∞ then dϕ(t) = 0 by

virtue of Lemma 1.1.
Since Y0 ⊆ Pn is hyperbolic and n ≥ 2 we have d ≥ n+ 2. In particular

degX∞ = 2d ≥ 2n+ 4 ≥ 2 dimY0 + 5 .

By Proposition 1.2, l and X∞ meet transversally in at least 5 points. Hence the nonconstant
meromorphic function ϕ : C → l ∼= P1 possesses at least 5 multiple values. Since the defect
of a multiple value is ≥ 1/2, this contradicts the Defect Relation. �

Remark 2.2. Given a hyperbolic hypersurface Y ⊆ Pn of degree d, Theorem 2.1 provides a
hyperbolic hypersurface X ⊆ Pn+1 of degree 2d. Iterating the construction yields hyperbolic
hypersurfaces in Pn ∀n ≥ 3. However, their degrees d(n) grow exponentially with n, whereas
the best asymptotic achieved so far is d(n) = 4(n− 1)2 (see e.g., [11]).
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Example 2.3. Let C ⊆ P2 be a hyperbolic curve of degree d ≥ 4, and let Ĉ ⊆ P3 be a

cone over C. Then a general small deformation of the double cone X0 = 2Ĉ is a Kobayashi
hyperbolic surface in P3 of even degree 2d ≥ 8.

The following degeneration principle can be proved along the same lines as Theorem 2.1.

Proposition 2.4. Let (Xt)t∈P1 be a pencil of hypersurfaces in Pn+1 generated by two hyper-
surfaces X0 and X∞ of the same degree d, where X0 = kQ with k ≥ 2 for some hypersurface
Q ⊆ Pn+1, and X∞ =

⋃d

i=1
Hai

(a1, . . . , ad ∈ P1) is the union of d ≥ 5 distinct hyperplanes
from a pencil of hyperplanes (Ha)a∈P1. If a sequence of entire curves ϕn : C → Xεn

, where
εn → 0, converges to an entire curve ϕ : C → X0, then ϕ(C) ⊆ X0 ∩Ha for some a ∈ P1 .

Examples 2.5. Given a pencil of planes (Ha)a∈P1 in P3, using Proposition 2.4 one can
deform

• X0 = 5Q, where Q ⊆ P3 is a plane,
• a triple quadric X0 = 3Q ⊆ P3, or
• a double cubic, quartic, etc. X0 = 2Q ⊆ P3

to an irreducible surface Xε ∈ 〈X0, X∞〉 of the same degree d, where as before X∞ =⋃d

i=1
Hai

, so that every limiting entire curve ϕ : C → X0 is contained in a section X0 ∩ Ha

for some a ∈ P1.

The famous Bogomolov-Green-Griffiths-Lang Conjecture on strong algebraic degeneracy
(see e.g., [1, 6]) suggests that every surface S of general type possesses only finite number
of rational and elliptic curves and, moreover, the image of any nonconstant entire curve
ϕ : C → S is contained in one of them. In particular, this should hold for any smooth
surface S ⊆ P3 of degree ≥ 5, which fits the Kobayashi Conjecture. Indeed, by Clemens-Xu-
Voisin’s Theorem, a general smooth surface S ⊆ P3 of degree ≥ 5 does not contain rational
or elliptic curves, hence it should be hyperbolic provided that the above conjecture holds
indeed.

Anyhow, the deformation method leads to the following result, which is an immediate
consequence of Proposition 2.4.

Corollary 2.6. Let S ⊆ P3 be a surface and Z ⊂ S be a curve such that the image of any
nonconstant entire curve ϕ : C → S is contained in Z 2. Let X∞ be the union of d = 2 degS
planes from a general pencil of planes in P3. Then any small enough linear deformation Xε

of X0 = 2S in direction of X∞ is hyperbolic.

Along the same lines, Proposition 2.4 can be applied in the following setting.

Example 2.7. Let us take for X0 a double cone in P3 over a plane hyperbolic curve of degree
d ≥ 4, and for X∞ the union of 2d distinct planes from a general pencil of planes (Ha)a∈P1 .
Then small deformations Xε of X0 in direction of X∞ provide examples of hyperbolic surfaces
of any even degree 2d ≥ 8. In suitable coordinates in P3 such a surface can be given by
equation

(3) Q(X0, X1, X2)
2 − P (X2, X3) = 0 ,

where P, Q are generic homogeneous formes of degree d = 2k and k, respectively. The latter
are actually the Duval-Fujimoto examples [4, 5].

2The latter holds, for instance, if S is hyperbolic modulo Z.



8 MIKHAIL ZAIDENBERG

Let us finally turn to the Kobayashi problem on hyperbolicity of complements of general
hypersurfaces. By virtue of Kiernan-Kobayashi-M. Green’s version of Borel’s Lemma, the
complement Pn \ L of the union L =

⋃2n+1

i=1
Li of 2n+ 1 hyperplanes in Pn in general po-

sition is Kobayashi hyperbolic. In particular, this applies to the union l of 5 lines in P2 in
general position. Moreover [13] l can be deformed to a smooth quintic curve with hyperbolic
complement via a small deformation. This deformation proceeds in 5 steps and neither is
linear nor very generic. So the following question arises.

2.8. Question. Let L (M) stands for the union of 2n+1 (2n−1, respectively) hyperplanes
in Pn in general position. Is the complement of a general small linear deformation of L
Kobayashi hyperbolic? Is a general small linear deformation of M Kobayashi hyperbolic?
In particular, does the union of 5 lines in P2 (of 5 planes in P3) in general position admit a
general small linear deformation to an irreducible quintic curve with hyperbolic complement
(to a hyperbolic quintic surface, respectively)?
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