
HAL Id: hal-00173894
https://hal.science/hal-00173894v5

Preprint submitted on 4 Apr 2008 (v5), last revised 23 Jun 2008 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Q-adic Transform revisited
Jean-Guillaume Dumas

To cite this version:

Jean-Guillaume Dumas. Q-adic Transform revisited. 2008. �hal-00173894v5�

https://hal.science/hal-00173894v5
https://hal.archives-ouvertes.fr

ha
l-

00
17

38
94

, v
er

si
on

 5
 -

 4
 A

pr
 2

00
8

Q-adic Transform revisited

Jean-Guillaume Dumas∗

April 4, 2008

Abstract

We present an algorithm to perform a simultaneous modular reduc-

tion of several residues. This algorithm is applied fast modular polynomial

multiplication. The idea is to convert the X-adic representation of mod-

ular polynomials, with X an indeterminate, to a q-adic representation

where q is an integer larger than the field characteristic. With some con-

trol on the different involved sizes it is then possible to perform some

of the q-adic arithmetic directly with machine integers or floating points.

Depending also on the number of performed numerical operations one can

then convert back to the q-adic or X-adic representation and eventually

mod out high residues. In this note we present a new version of both con-

versions: more tabulations and a way to reduce the number of divisions

involved in the process are presented. The polynomial multiplication is

then applied to arithmetic in small finite field extensions.

Keywords: Kronecker substitution ; Finite field ; Modular Polynomial
Multiplication ; REDQ (simultaneous modular reduction) ; Small extension
field ; DQT (Discrete Q-adic Transform) ; FQT (Fast Q-adic Transform)

1 Introduction

The FFLAS/FFPACK project has demonstrated the usefulness of wrapping
cache-aware routines for efficient small finite field linear algebra [4, 5].

A conversion between a modular representation of prime fields and e.g. float-
ing points used exactly is natural. It uses the homomorphism to the integers.
Now for extension fields (isomorphic to polynomials over a prime field) such a
conversion is not direct. In [4] we proposed transforming the polynomials into
a q-adic representation where q is an integer larger than the field characteristic.
We call this transformation DQT for Discrete Q-adic Transform, it is a form of
Kronecker substitution [7, §8.4]. With some care, in particular on the size of q,
it is possible to map the operations in the extension field into the floating point
arithmetic realization of this q-adic representation and convert back using an
inverse DQT.

∗Laboratoire J. Kuntzmann, Université de Grenoble, umr CNRS 5224. BP 53X, 51, rue

des Mathématiques. F38041 Grenoble, France. Jean-Guillaume.Dumas@imag.fr

1

In this note we propose some implementation improvements: we propose to
use a tabulated discrete logarithm for the DQT and we give a trick to reduce
the number of machine divisions involved in the inverse. This then gives rise to
an improved DQT which we thus call FQT (Fast Q-adic Transform). This FQT
uses a simultaneous reduction of several residues, called REDQ, and some table
lookup.

Therefore we recall in section 2 the previous conversion algorithm. We then
present our new reduction in section 4. We then show in section 5 how a time-
memory trade-off can make this reduction very fast. This can then be applied to
modular polynomial multiplication with small prime fields in section 6 as well as
for small extension field arithmetic and fast matrix multiplication in section 7.

2 Q-adic representation of polynomials

We follow here the presentation of [4] of the idea of [12]: polynomial arithmetic
is performed a q−adic way, with q a sufficiently big prime or power of a single
prime.

Suppose that a =
∑k−1

i=0 αiX
i and b =

∑k−1
i=0 βiX

i are two polynomials
in Z/pZ[X]. One can perform the polynomial multiplication ab via q−adic

numbers. Indeed, by setting ã =
∑k−1

i=0 αiq
i and b̃ =

∑k−1
i=0 βiq

i, the product is
computed in the following manner (we suppose that αi = βi = 0 for i > k − 1):

ãb =
2k−2∑

j=0

(
j∑

i=0

αiβj−i

)
qj (1)

Now if q is large enough, the coefficient of qi will not exceed q− 1. In this case,
it is possible to evaluate a and b as machine numbers (e.g. floating point or
machine integers), compute the product of these evaluations, and convert back
to polynomials by radix computations (see e.g. [7, Algorithm 9.14]). There just
remains then to perform modulo p reductions on every coefficient as shown on
example 1.

Example 1. For instance, to multiply a = X + 1 by b = X + 2 in Z/3Z[X]
one can use the substitution X = 100: compute 101 × 102 = 10302, use radix
conversion to write 10302 = q2+3q+2 and reduce modulo 3 to get a×b = X2+2.

We call DQT the evaluation of polynomials modulo p at q and DQT inverse
the radix conversion of a q-adic development followed by a modular reduction,
as shown in algorithm 1.

Depending on the size of q, the results can still remain exact:

Theorem 1. [4] Let m be the number of available mantissa bits within the
machine numbers and nq be the number of polynomial products v1.v2 of degree
k accumulated before the re-conversion. If

q > nqk(p − 1)2 and (2k − 1) log2(q) < m, (2)

then Algorithm 1 is correct.

2

Algorithm 1 Polynomial multiplication by DQT

Input Two polynomials v1 and v2 in Z/pZ[X] of degree less than k.
Input a sufficiently large integer q.
Output R ∈ Z/pZ[X], with R = v1.v2.

Polynomial to q−adic conversion

1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the
elements of v1 and v2. {Using e.g. Horner’s formula}

One computation

2: Compute r̃ = ṽ1ṽ2

Building the solution

3: r̃ =
∑2k−2

i=0 µ̃iq
i. {Using radix conversion, see e.g. [7, Algorithm 9.14]}

4: For each i, set µi = µ̃i mod p
5: set R =

∑2k−2
i=0 µiX

i

Note that the integer q can be chosen to be a power of 2. Then the Horner
like evaluation of the polynomials at q (line 1 of algorithm 1) is just a left shift.
One can then compute this shift with exponent manipulations in floating point
arithmetic and use native shift operator (e.g. the << operator in C) as soon as
values are within the 32 (or 64 when available) bit range.

In the following we will thus always consider that q is a power of two.
It is shown on [4, Figures 5 & 6] that this wrapping is already a pretty good

way to obtain high speed linear algebra over some small extension fields. Indeed
we were able to reach high peak performance, quite close to those obtained with
prime fields, namely 420 Mop/s on a PIII, 735 MHz, and more than 500 Mop/s
on a 64-bit DEC alpha 500 MHz. This is roughly 20 percent below the pure
floating point performance and 15 percent below the prime field implementation.

3 Euclidean division by floating point routines

In the implementations of the proposed subsequent algorithms, we will make
extensive use of Euclidean division in exact arithmetic. Unfortunately exact
division is usually quite slow on modern computers. This division can thus be
performed by floating point operations. Suppose we want to compute r/p where
r and p and integers. Then their difference is representable by a floating point
and, therefore, if r/p is computed by a floating point division with a rounding to
nearest mode, [9, Theorem 1] assures that flooring the result gives the expected
value. Now if a multiplication by a precomputed inverse of p is used (as is done
e.g. in NTL [13]), proving the correctness for all r is more difficult, see [10] for
more details. We therefore propose the following simple lemma which enables
the use of the rounding upward mode to the cost of loosing only one bit of
precision:

3

Lemma 1. For a prime p, r ∈ N∗ and ǫ > 0, we have

⌊
r

p

⌋
=

⌊(
r

(
1

p
(1 + ǫ)

))
(1 + ǫ)

⌋
as long as r <

1

2ǫ + ǫ2
.

Proof. Consider up ≤ r < up + i with u, i positive integers and i < p. Then⌊
r
p

⌋
= u and r

p (1 + ǫ)(1 + ǫ) = u + i
p + r

p (2ǫ + ǫ2). The latter is maximal at

i = p − 1. This proves that flooring is correct as long as r
p (2ǫ + ǫ2) < 1

p .

This proves that when rounding towards +∞ (0 ≤ ǫ ≤ 2−53 for double float-
ing point arithmetic) it is possible to perform the division by a multiplication
by the precomputed inverse of the prime number as long as r ≤ 2−52 − 1 <

1
2.2−53+2−106 < 2−52. Since our entries will be integers but stored in floating
point format this is a potential significant speed-up.

4 REDQ: modular reduction in the DQT do-

main

The first improvement we propose to the DQT is to replace the costly modular
reduction of the polynomial coefficients by a single division by p (or, better,
by a multiplication by its inverse) followed by several shifts. The idea is sum-
marized in algorithm 2 (note that when q is a power of 2, and when elements
are represented using an integral type, division by qi and flooring are a single
operation, a right shift).

Algorithm 2 REDQ

Input Two integers p and q satisfying the conditions (2).

Input r̃ =
∑d

i=0 µ̃iq
i ∈ Z.

Output ρ ∈ Z, with ρ =
∑d

i=0 µiq
i where µi = µ̃i mod p.

1: rop =
⌊

r̃
p

⌋
;

2: for i = 0 to d do

3: ui =
⌊

r̃
qi

⌋
− p

⌊
rop
qi

⌋
;

4: end for

5: µd = ud

6: for i = 0 to d − 1 do

7: µi = ui − qui+1 mod p;
8: end for

9: Return ρ =
∑d

i=0 µiq
i;

In order to prove the correctness of this algorithm, we first need the following
lemma:

4

Lemma 2. For r ∈ N and a, b ∈ N∗,

⌊⌊
r
b

⌋

a

⌋
=
⌊ r

ab

⌋
=

⌊⌊
r
a

⌋

b

⌋

Proof. We proceed by splitting the possible values of r into intervals kab ≤ r <
(k + 1)ab, where k =

⌊
r
ab

⌋
. Then kb ≤ r

a < (k + 1)b and since kb is an integer

we also have that kb ≤
⌊

r
a

⌋
< (k + 1)b. Thus k ≤

⌊ r
a⌋
b < k + 1 and

⌊
⌊ r

a⌋
b

⌋
= k.

Obviously the same is true for the left hand side which proves the lemma.

Theorem 2. Algorithm REDQ is correct.

Proof. First we need to prove that 0 ≤ ui < p. By definition of the truncation,

we have r̃
qi − 1 <

⌊
r̃
qi

⌋
≤ r̃

qi and r̃
pqi − 1 − 1

qi <
⌊

rop
qi

⌋
≤ r̃

pqi . Thus −1 <

ui < p + p
qi , which is 0 ≤ ui ≤ p since ui is an integer. We now consider the

possible case ui = p and show that it does not happen. ui = p means that⌊
r̃
qi

⌋
= p(1 +

⌊
rop
qi

⌋
) = pg. This means that pgqi ≤ r < pgqi + qi. So that in

turns gqi ≤ rop ≤ r̃
p < gqi + qi

p . Thus g ≤ rop
qi < g + 1

p so that
⌊

rop
qi

⌋
= g. But

then from the definition of g we have that g = g − 1 which is absurd. Therefore
0 ≤ ui ≤ p − 1.

Second we show that ui =
∑d

j=i µjq
j−i mod p. Line 2 of algorithm 2 defines

ui =
⌊

r̃
qi

⌋
− p

⌊
⌊ r̃

p⌋
qi

⌋
and thus lemma 2 gives that ui =

⌊
r̃
qi

⌋
− p

⌊ ⌊
r̃

qi

⌋

p

⌋
.

The latter is ui =
⌊

r̃
qi

⌋
mod p. Now, since r̃ =

∑d
j=0 µ̃jq

j , we have that
⌊

r̃
qi

⌋
=
∑d

j=i µ̃jq
j−i. Therefore, as µj = µ̃j mod p, the equality is proven.

Note that the last steps are not needed when p divides q. Indeed in this case
µi = ui. The trick works then simply as shown on example 2 below:

Example 2. Let a = X2 + 2X + 3 and b = 4X2 + 5X + 6 unreduced modulo 5.
Then ã × b̃ = 40013002800270018, with q = 10000, for which we need to reduce
five coefficients modulo 5. The trick is that we can recover all the residues at
once. Line 2 produces rop = ⌊08002600560054003.6⌋. It thus contains all the
quotients 0;0002;0005;0005;0003 and one has then just to multiply by p and sub-
tract to get: ã × b = 40013002800270018 − 2000500050003 × 5 = 40003000300020003

so that a × b = 4X4 + 3X3 + 3X2 + 2X + 3.

Now we can give a final example to show the last corrections required when p
does not divide q. The first part of the algorithm, lines 2 to 2 is unchanged and
is used to get small sizes for µi. The second part is then just a small correction
modulo p to get the correct result.

Example 3. Take the polynomial R = 1234X3 + 5678X2 + 9123X + 4567,
the prime p = 23 and use q = 106. In this case, the division gives rop =

5

⌊1234005678009123004567/23⌋ = 53652420783005348024. Then the multiplica-
tion by the prime produces rop × 23 = 1234005678009123004552 so that u0 =
4567−4552 = 15. We shift to get 1234005678009123 and 53652420783005×23 =
1234005678009115 which gives u1 = 9123 − 9115 = 8. We shift and multiply
twice to get u2 = 18 and u3 = µ3 = 15 just like in example 2. Now −q = −106

mod 23 = 17 which is non zero and thus we have to compute the corrections
of lines 2 to 2 of algorithm 2. This can also be formalized as a matrix vector
product:

µ =




1 0 0 0
17 1 0 0
0 17 1 0
0 0 17 1


u mod p

to get the final result, R = 15X3 + 20X2 + 15X + 13 mod 23.

The algorithm is efficient because one can precompute 1/p, 1/q, 1/q2 etc.
and use multiplication to compute all of the mods. The computation of each ui

and µi can also be pipelined or vectorized since they are independant. As is,
the benefit when compared to direct remaindering by p is that the corrections
occur on smaller integers. Thus the remaindering by p can be faster. Actually,
another major acceleration can be added: the fact that the µi are much smaller
than the initial µ̃i makes it possible to tabulate the corrections as shown next.

5 Time-Memory trade-off in REDQ

5.1 A Matrix version of the correction

Indeed, there is a bijection between the ui and the µi. This can be viewed
on the corrections of lines 2 to 2 of algorithm 2: view these corrections as a
matrix-vector multiplication by a matrix Qd as in example 3. Then we have
that:

Qd =




1 0 0

−q
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 −q 1




=




1 0 0

q
. . .

. . .
...

q2
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

qd . . . q2 q 1




−1

5.2 Tabulations of the matrix-vector product and Time-

Memory trade-off

Thus if the multiplication by Qd is fully tabulated, it requires a table of size at
least pd+1. But, due to the nature of Qd, we have the relations of figure 1.

Therefore, it is very easy to tabulate with a table of size pk only and perform⌈
1 + d+1−k

k−1

⌉
=
⌈

d
k−1

⌉
table accesses as shown on example 4.

6

Qd

Qd

2dQ 1

0

0

=

Qd+1

Qd

2d+1Q 1

0

0

=

Figure 1: Recurring relations on the Qd matrices.

Example 4. Let us compute the corrections for a degree 6 polynomial. One can
tabulate the multiplication by Q6, a 7× 7 matrix, with therefore p7 entries each
of size at least 7 log2(p). Or one can tabulate the multiplication by Q2, a 3 × 3
matrix. To compute [µ0, . . . , µ6]

T = Q6[u0 . . . , u6]
T one can instead use three

multiplications by Q2 and discard the last entry for the first two multiplications
as shown on the following algorithm:

Algorithm 3 Q6 with an extra memory of size p3

Input [u0 . . . , u6] ∈ Z/pZ
7.

Input The table Q2 of the associated 3 × 3 matrix-vector multiplication over
Z/pZ.

Output [µ0, . . . , µ6]
T = Q6[u0 . . . , u6]

T .
1: a0, a1, a2 = Q2[u0, u1, u2];
2: b0, b1, b2 = Q2[u2, u3, u4];
3: c0, c1, c2 = Q2[u4, u5, u6];
4: Return [µ0, . . . , µ6] = [a0, a1, b0, b1, c0, c1, c2];

The computation of the ui, in the first part of algorithm 2 requires 1 div &
(d + 1) mul & 2d shifts. Now, the time memory trade-off enables to compute
the second part at a choice of costs given on table 1.

Extra Memory time
0 d (mul,add,mod)
p2 d accesses

pk
⌈

d
k−1

⌉
accesses

pd+1 1 access

Table 1: Time-Memory trade-off in REDQ of degree d over Z/pZ

5.3 Indexing

In practice, indexing by a t-uple of integers mod p is made by evaluating at p, as∑
uip

i. If more memory is available, one can also directly index in the binary

format using
∑

ui

(
2⌈log2

(p)⌉
)i

. On the one hand all the multiplications by p are

7

replaced by binary shifts. On the other hand, this makes the table grow a little
bit, from pk to 2⌈log2

(p)⌉k.

6 Comparison with delayed reduction for poly-

nomial multiplication

The classical alternative to algorithm 1 to perform modular polynomial multi-
plication is to use delayed reductions e.g. as in [1]: the idea is to accumulate
products of the form

∑
i aibk−i, without reductions, while the sum does not

overflow. Thus, if we use for instance a centered representation modulo p (inte-
gers from 1−p

2 to p−1
2), it is possible to accumulate at least nd products as long

as
nd(p − 1)2 < 2m+1 (3)

The modular reduction can be made by many different ways (e.g. classical
division, floating point multiplication by the inverse, Montgomery reduction,
etc.), we just call the best one REDC here. It is at most equivalent to 1 machine
division.

Now the idea of the FQT (Fast Q-adic Transform) is to represent modular

polynomials of the form P =
∑N

i=0 aiX
i by P =

∑N/k
i=0 PiX

i where the Pi are
degree k polynomials stored in a single integer in the q-adic way. Therefore, a
product PQ has the form

∑
(
∑

PiQt−i)Xt. There, each multiplication PiQt−i

is made by algorithm 1 on a single machine integer. The reduction is made by
a tabulated REDQ and can also be delayed now as long as conditions (2) are
guaranteed.

For the complexity, table 2 gives the respective complexities of both strate-
gies.

Complexity Multiplications Reductions

Delayed N2 N2

nd
REDC

k-FQT
(

N
k

)2 1
nq

(
N
k

)2
REDQk

Table 2: Modular polynomial multiplication complexities.

For instance, with p = 3, N = 100, if we choose a double floating point
representation and a degree 4 DQT (i.e. k = 4), the fully tabulated FQT boils
down to 1024 multiplications and 57 divisions. For the same parameters, the
classical polynomial multiplication algorithm requires 104 multiplications and
only 1 remaindering, which is roughly 10 times more operations as shown on
figure 2.

Even by switching to a larger mantissa, say e.g. 128 bits, so that the DQT
multiplications are roughly 4 times costlier than double floating point opera-
tions, this can still be useful: take p = 1009 and choose k = 3, gives 1521
multiplications over 128 bits and 73 divisions. This should still be faster than
the delayed.

8

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 Degree

polymul/s Polynomial mutiplication modulo 3 on a Xeon 3.6GHz

4-FQT
NTL

Delayed

Figure 2: Polynomial multiplications modulo 3 per second on a Xeon 3.6 GHz

On figure 2, we compare also our two implementations with that of NTL
[13]. We see that the FQT is faster than NTL as long as better algorithms
are not used. Indeed the change of slope in NTL’s curve reflects the use of
Karatsuba’s algorithm for polynomial multiplication. One should note that NTL
also proposes a very optimized modulo 2 implementation which is an order of
magnitude faster than our implementation on small primes. There is therefore
room for more improvements on small fields. Our strategy is anyway very useful
for small degrees and small primes. Furthermore, we have not implemented the
FQT as the base case of faster recursive algorithms such as Karatsuba, Toom-
Cook, etc. The figure shows that these recursive algorithms together with the
FQT could be the fastest.

In particular, the FQT already improves the speed of small finite field ex-
tension’s arithmetic as shown next.

7 Application to small finite field extensions

The isomorphism between finite fields gives us a canonical representation: any
finite field extension is viewed as the set of polynomials modulo a prime p and

9

modulo an irreducible polynomial P of degree k. Clearly we can thus convert
any finite field element to its q-adic expansion ; perform the FQT between two
elements and then reduce the obtained polynomial modulo P . Furthermore,
it is possible to use floating point routines to perform exact linear algebra as
demonstrated in [6]. The strategy of the following algorithm 4 is thus to convert
vectors over GF(pk) to q-adic floating point, call a fast numerical linear algebra
routine (BLAS) and then to convert the floating point result back to the usual
field representation. In this paper we propose to improve all the conversion
steps of [4, algorithm 4.1] in order to approach the performance of the prime
field wrapping also for small extension fields:

1. Replace the Horner evaluation of the polynomials, to form the q-adic ex-
pansion, by a single table lookup recovering directly the floating point
representation.

2. Replace the radix conversion and the costly modular reductions of each
polynomial coefficient, by a single REDQ operation.

3. Replace the polynomial division by two table lookups and a single field
operation.

Indeed, suppose the internal representation of the extension field is already
by discrete logarithms and uses conversion tables from polynomial to index
representations. See e.g. [1] for more details. Then we choose a time-memory
trade-off for the REDQ operation of the same order of magnitude, that is to
say pk. The overall memory required by these new tables only doubles and
the REDQ requires only 2 accesses. Moreover, in the small extension, the
polynomial multiplication must also be reduced by an irreducible polynomial,
P . We show next that this reduction can be precomputed in the REDQ table
lookup and is therefore almost free.

Moreover, many things can be factorized if the field representation is by
discrete logarithms. Indeed, the element are represented by their discrete log-
arithm with respect to a generator of the field, instead of by polynomials. In
this case there are already some table accesses for many arithmetic operations,
see e.g. [1, §2.4] for more details.

More precisely, we here propose algorithm 4 for linear algebra over extension
fields: line 1 is the table look-up of floating point values associated to elements
of the field ; line 2 is the numerical computation ; line 3 to 7 is the first part
of teh REDQ reduction ; line 8 and 9 are a time-memory trade-off with two
table access for the corrections of REDQ, combined with a conversion from
polynomials to discrete logarithm representation and the last line 10 combines
the two access results in the field.

A variant of REDQ is used in algorithm 4, but ui still satisfies ui =
∑2k−2

j=i µjq
j−i

mod p as shown in theorem 2. Therefore the representations of
∑

µiX
j in the

field can be precomputed and stored in two tables where the indexing will be
made by (u0, . . . , uk−1) and (uk−1, . . . , u2k−2) and not by the µi’s as shown
next.

10

Algorithm 4 Fast Dot product over Galois fields via FQT and FQT inverse

Input a field GF(pk) with elements represented as exponents of a generator of
the field.

Input Two vectors v1 and v2 of elements of GF(pk).
Input a sufficiently large integer q.
Output R ∈ GF(pk), with R = vT

1 .v2.

Tabulated q−adic conversion

{Use conversion tables from exponent to floating point evaluation}
1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the

elements of v1 and v2.

The floating point computation

2: Compute r̃ = ṽ1
T ṽ2;

Computing a radix decomposition

3: r = ⌊r̃⌋; {r = r̃ but we might need a conversion to an integral type}

4: rop =
⌊

r̃
p

⌋
;

5: for i = 0 to 2k − 2 do

6: ui =
⌊

r
qi

⌋
− p

⌊
rop
qi

⌋
;

7: end for

Tabulated radix conversion to exponents of the generator

{µi is such that µi = µ̃i mod p for r̃ =
∑2k−2

i=0 µ̃iq
i}

8: Set L = representation(
∑k−2

i=0 µiX
i).

9: Set H = representation(Xk−1 ×
∑2k−2

i=k−1 µiX
i−k+1).

Reduction in the field

10: Return R = H + L ∈ GF(pk);

Theorem 3. Algorithm 4 is correct.

Proof. There remains to prove that it is possible to compute L and H from the
ui. From the equality above, we see that µ2k−2 = u2k−2 and µi = ui − qui+1

mod p, for i = 0..(2k−3). Therefore a precomputed table of pk entries, indexed
by (u0, . . . , uk−1), can provide the representation of

L =

k−2∑

i=0

(ui − qui+1 mod p)X i.

Another table with pk entries, indexed by (uk−1, . . . , u2k−2), can provide the
representation of

H = u2k−2X
2k−2 +

2k−3∑

i=k−1

(ui − qui+1 mod p)X i.

11

Finally R = Xk−1 ×
∑2k−2

i=k−1 µiX
i−k+1 +

∑k−2
i=0 µiX

i needs to be reduced
modulo the irreducible polynomial used to build the field. But, if we are given
the representations of H and L in the field, R is then equal to their sum inside
the field, directly using the internal representations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
ill

io
ns

 o
f f

in
ite

 fi
el

d
op

er
at

io
ns

 p
er

 s
ec

on
d

Matrix order

fgemm mod 11
fgemm over GF(32)

dgemm

Figure 3: Speed of finite field Winograd matrix multiplication on a XEON, 3.6
GHz

Table 3 recalls the respective complexities of conversion phase in the two
presented algorithms.

Alg. 1 Alg. 4 Alg. 4
Memory 3pk 6pk 4pk + 2k⌈log

2
p⌉+1

Shift 4k − 2 4k − 2 4k − 2
Add 4k − 4 0 2k − 1
Axpy 0 4k − 3 2k − 1
Div 2k − 1 0 0
Table 0 3 3
Red ≥ 5k 4 4

Table 3: Complexity of the back and forth conversion between extension field
and floating point numbers

Figure 4 shows only the speed of the conversion after the floating point
operations. The log scales prove that for q ranging from 21 to 226 (on a 32 bit
Xeon) our new implementation is two to three times faster than the previous
one.

Furthermore, these improvements e.g. allow the extension field routines to
reach the speed of 7800 millions of GF(9) operations per second (on a XEON,

12

 0.1

 1

 10

 100

 1 2 4 8 16

M
ill

io
ns

 o
f f

ie
ld

/fl
oa

t c
on

ve
rs

io
ns

 p
er

 s
ec

on
d

q-adic Power of 2

Conversions of Algorithm 3
Conversions of Algorithm 1

Figure 4: Small extension field conversion speed on a Xeon 3.6GHz

3.6 GHz, using Goto BLAS-1.09 dgemm as the numerical routine [8] and FFLAS
fgemm for the fast prime field matrix multiplication [6]) as shown on figure 3.
The FFLAS routines are available within the LinBox 1.1.4 library [11] and the
FQT is in implemented in the givgfqext.h file of the Givaro 3.2.9 library [3].

With these new implementations, the obtained speed-up shown in figure 3
represents a reduction from the 15 percent overhead of the previous implemen-
tation to less than 4 percent now, when compared to GF(11).

8 Conclusion

We have proposed a new algorithm for simultaneous reduction of several residues
stored in a single machine word. For this algorithm we also give a time-memory
trade-off implementation enabling very fast running time if enough memory is
available.

We have shown very effective applications of this trick for both modular
polynomial multiplication, and extension fields conversion to floating point. The
latter allows efficient linear algebra routines over small extension fields.

More applications include linear algebra over small prime fields [2].
Further improvements include comparison of running times between choices

for q. Indeed our experiments were made with q a power of two and large table

13

lookup. With q a multiple of p the table lookup is not needed but divisions by
qi will be more expensive.

It would also be interesting to see how does the trick extend in practice
tolarger precision implementations: one the one hand the basic arithmetic slows
down, but on the other hand the trick enables a more compact packing of
elements (e.g. if an odd number of field elements can be stored inside two
machine words, etc.).

References

[1] Jean-Guillaume Dumas. Efficient dot product over finite fields. In Vic-
tor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Pro-
ceedings of the seventh International Workshop on Computer Algebra in
Scientific Computing, Yalta, Ukraine, pages 139–154. Technische Univer-
sität München, Germany, July 2004.

[2] Jean-Guillaume Dumas, Laurent Fousse, and Bruno Salvy. Compressed
modular matrix multiplication. In Milestones in Computer Algebra 2008,
Tobago, May 2008.

[3] Jean-Guillaume Dumas, Thierry Gautier, Pascal Giorgi, Clément Pernet,
Jean-Louis Roch, and Gilles Villard. Givaro 3.2.9: C++ library for arith-
metic and algebraic computations, 2007. ljk.imag.fr/CASYS/LOGICIELS/
givaro.

[4] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field
linear algebra subroutines. In Teo Mora, editor, Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation, Lille,
France, pages 63–74. ACM Press, New York, July 2002.

[5] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: Fi-
nite field linear algebra package. In Jaime Gutierrez, editor, Proceedings
of the 2004 International Symposium on Symbolic and Algebraic Computa-
tion, Santander, Spain, pages 119–126. ACM Press, New York, July 2004.

[6] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Dense linear
algebra over prime fields. ACM Transactions on Mathematical Software,
2008. to appear.

[7] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 1999.

[8] Kazushige Goto and Robert van de Geijn. On reducing TLB misses in
matrix multiplication. Technical Report TR-2002-55, University of Texas,
November 2002. FLAME working note #9.

[9] Vincent Lefèvre. The Euclidean division implemented with a floating-
point division and a floor. Technical report, INRIA Rhône-Alpes, 2005.
http://hal.inria.fr/inria-00000154.

14

ljk.imag.fr/CASYS/LOGICIELS/givaro
ljk.imag.fr/CASYS/LOGICIELS/givaro

[10] Vincent Lefèvre. The Euclidean division implemented with a floating-point
multiplication and a floor. Technical report, INRIA Rhône-Alpes, 2005.
http://hal.inria.fr/inria-00000159.

[11] The LinBox Group. Linbox 1.1.4: Exact computational linear algebra,
2007. www.linalg.org.

[12] B. David Saunders. Personal communication, 2001.

[13] Victor Shoup. NTL 5.4.1: A library for doing number theory, 2007.
www.shoup.net/ntl.

15

www.linalg.org

