
HAL Id: hal-00173894
https://hal.science/hal-00173894v1

Preprint submitted on 20 Sep 2007 (v1), last revised 23 Jun 2008 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic over small extension fields via floating point
routines

Jean-Guillaume Dumas

To cite this version:
Jean-Guillaume Dumas. Arithmetic over small extension fields via floating point routines. 2007.
�hal-00173894v1�

https://hal.science/hal-00173894v1
https://hal.archives-ouvertes.fr

ha
l-

00
17

38
94

, v
er

si
on

 1
 -

 2
0

Se
p

20
07

Arithmetic over small extension fields via floating

point routines

Jean-Guillaume Dumas ∗

September 20, 2007

Abstract

We present here an algorithm to perform the arithmetic over small

extension field via numerical arithmetic. The idea is to convert the X-

adic representation of modular polynomials, with X an indeterminate,

to a q-adic representation where q is a prime power coprime with the

field characteristic. With some control on the different involved sizes it

is then possible to perform some of the q-adic arithmetic directly with

floating point operators. Depending also on the number of performed

numerical operations one must then convert back to the q-adic or X-adic

reprentation as to mod out high residues. In this note we present a new

version of both conversions. More tabulation and a way to reduce the

number of divisions involved in the process are presented and compared

to the original version.

1 Introduction

The FFLAS/FFPACK project has demonstrated the need of a wrapping of the
numerical routines for efficient small finite field linear algebra [1, 2].

A conversion between a modular representation of prime fields and floating
points used exactly is quite natural. Now for extension fields (isomorphic to
polynomials over a prime field) such a conversion is not direct. In [1] we propose
to transform the polynomials into a q-adic representation where q is a prime
power coprime to the field characteristic. With some care, in particular on the
size of q, it is possible to map the operations in the extension field into the
floating point arithmetic realisation of this q-adic representation.

In this note we still use this scheme but propose some implantation improve-
ments: we propose to make further use of tabulated zech logarithm and give a
trick to reduce the number of machine divisions involved. Therefore we recall
in section 2 the previous conversion algorithm. We then present our new ideas
in section 3 and end the presentation by a comparison.

∗Laboratoire J. Kuntzmann, Université J. Fourier. UMR CNRS 5224, BP 53X, F38041

Grenoble, France, Jean-Guillaume.Dumas@imag.fr

1

2 A first algorithm

We want now to use our ATLAS based implementation with non-prime fields.
The requirements are to be able to produce a coherent representation of GF(pk)
with double precision numbers.

2.1 A q−adic representation

We follow here the presentation of [1], we go back to the polynomial arithmetic
but in a q−adic way, with q a sufficiently big prime or power of a single prime.

Suppose that a =
∑k−1

i=0
αiX

i and b =
∑k−1

i=0
βiX

i are two elements of GF(pk)
represented by Z/pZ[X]/Q. One can perform the polynomial multiplication ab

via q−adic numbers. Indeed, by setting ã =
∑k−1

i=0
αiq

i and b̃ =
∑k−1

i=0
βiq

i, the
product is computed in the following maner (we suppose that αi = βi = 0 for
i > k − 1):

ãb =

2k−2∑

j=0

(
j∑

i=0

αiβj−i

)
qj (1)

Now if q is big enough, the coefficient of qi will not exceed q. In this case, it is
possible to evaluate a and b as floating point numbers, compute the product
of these evaluations, and convert back to finite field element, via a q−adic
reconstruction, a division by p and a division by Q:

Algorithm 2.1. Dot product over Galois fields via q−adic conversions to float-
ing point numbers

Input : – a field GF(pk) represented as polynomials mod p and mod Q, for
Q a degree k irreducible polynomial over Z/pZ.

– Two elements v1 and v2 of GF(pk) each, as polynomials.
– a prime power q.

Output : – R ∈ GF(pk), with R = v1.v2.

Polynomial to q−adic conversion
1 : Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the

elements of v1 and v2.
{Using Horner’s formula, for instance}

One computation
2 : Compute r̃ = ṽ1ṽ2

Building the solution

3 : r̃ =
∑2k−2

i=0
µ̃iq

i.
{Using radix conversion, see [3, Algorithm 9.14] for instance}

4 : For each i, set µi = µ̃i mod p
5 : set R =

∑
2k−2

i=0
µiX

i mod Q

2

Theorem 2.2. [1] Let m be the number of available mantissa bits within the
machine floating point numbers and n be the number of floating points products
v1.v2 accumulated, e.g. in a dot product, before the re-conversion. If

q > nk(p − 1)2 and (2k − 1) log[2](q) < m,

then Algorithm 2.1 is correct.

It is shown on [1, Figures 5 & 6] that this wrapping is already a pretty good
way to obtain high speed linear algebra over some small extension fields. Even
more so with the following optimizations.

2.2 Implementation optimizations

For the performance, a first näive implementation would only give limited speed-
up as the conversion cost is then very expensive. However, some simple opti-
mizations were proposed in [1]:

1. The prime power q can be chosen to be a power of 2. Then the Horner like
evaluation of the polynomials at q (line 1 of algorithm 2.1) is just a left
shift. One can then compute this shift with exponent manipulations in
floating point arithmetic and use then native C++ << operator as soon
as values are within the 32 bits range, or use the native C++ << on 64
bits when available.

2. Some sparse primitive polynomials modulo p can be chosen to build GF(pk).
Then the division (line 5 of algorithm 2.1) can be simplified. The idea is
to consider primitive tri or penta-nomials. In this case, proved that less
than 5k field operations were required to perform the final reconstruction.

With those optimization we were able to reach high peak performance, quite
close to those obtained with prime fields, namely 420 Mop/s on a PIII, 735 MHz,
and more than 500 Mop/s on a 64-bit DEC alpha 500 MHz. This is roughly
20 percent below the pure floating point performance and 15 percent below the
prime field implementation.

3 Improvements

In this paper we propose to improve all the conversion steps of the previous
algorithm in order to approach the performance of the prime field wrapping
also for several extension fields:

1. Replace the Horner evaluation of the polynomials, to form the q-adic ex-
pansion, by a single table lookup recovering directly the floating point
representation.

2. Replace the radix conversion by a single floating point division and some
“ la Montgommery” reductions.

3. Replace the polynomial division by a single field operation.

3

More precisely, we propose the following algorithm 3.1:

Algorithm 3.1. Fast Dot product over Galois fields via q−adic conversions to
floating point numbers

Input : – a field GF(pk) with elements represented as exponents of a gen-
erator of the field.

– Two elements v1 and v2 of GF(pk).
– a prime power q coprime with p.

Output : – R ∈ GF(pk), with R = v1.v2.

Tabulated q−adic conversion
{Use conversion tables from exponent to floating point evaluation}

1 : Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the
elements of v1 and v2.

The floating point computation
2 : Compute r̃ = ṽ1ṽ2;

Computing a radix decomposition
3 : r = ⌊r̃⌋;

4 : rop =
⌊

r̃
p

⌋
;

5 : For i = 0 to 2k − 2 Do

6 : ui =
⌊

r
qi

⌋
− p

⌊
rop
qi

⌋
;

7 : End For

Tabulated radix conversion to exponents of the generator

{µi is such that µi = µ̃i mod p for r̃ =
∑2k−2

i=0
µ̃iq

i}

8 : Set L = representation(
∑k−1

i=0
µiX

i).

9 : Set H = representation(Xk ×
∑

2k−2

i=k µiX
i−k).

Reduction in the field
10 : For j = 1 to n Do

11 : Compute Rj = Hj + Lj ∈ GF(pk);
12 : End For

13 : Return R;

We prove next that in algorithm 3.1, ui satisfies ui =
∑

2k−2

j=i µjq
j−i mod p.

Therefore the representations of
∑

µiX
i in the field can be precomputed and

stored in a table where the indexing will be made by (u0, . . . , uk−1) and (uk, . . . , u2k−2)
and not by the µi’s

∗. Note also that the representation of Xk can be just k if
the irreducible polynomial used to build GF(pk) is primitive and X has been
chosen as the generator. Finally note that when q is a power of 2 division by qi

and flooring is just a right shift.

∗In practice, indexing by a t-uple of integers mod p is made by evaluating at p e.g. as∑
uip

i

4

Theorem 3.2. Algorithm 3.1 is correct.

We first need the following lemma:

Lemma 3.3. For r, a, b ∈ IN,

⌊⌊
r
b

⌋

a

⌋
=

⌊⌊
r
a

⌋

b

⌋

Proof. We proceed by splitting the possible values of r into intervals kab ≤
r < (k + 1)ab. Then kb ≤ r

a
< (k + 1)b and since kb is an integer we also have

that kb ≤
⌊

r
a

⌋
< (k + 1)b. Thus k ≤

⌊ r
a⌋
b

< k + 1 and

⌊
⌊ r

a⌋
b

⌋
= k. Obviously

the same is true for the left hand side which proves the lemma.

of theorem 3.2. First we need to prove that 0 ≤ ui < p. By definition of the

truncation, we have r
qi − 1 <

⌊
r
qi

⌋
≤ r

qi and r
pqi − 1 − 1

qi <
⌊

rop

qi

⌋
≤ r

pqi . Thus

−1 < ui < p + p
qi , which is 0 ≤ ui ≤ p since ui is an integer. We now consider

the possible case ui = p and show that it does not happen. ui = p means that⌊
r
qi

⌋
= p(1 +

⌊
rop

qi

⌋
) = pg. This means that r < pgqi + qi. So that in turns

rop ≤ r
p

< gqi + qi

p
. Thus rop

qi < g + 1

p
so that

⌊
rop

qi

⌋
= g. but then from the

definition of g we have that g = g−1 which is absurd. Therefore 0 ≤ ui ≤ p−1.

Second we show that ui =
∑

2k−2

j=i µjq
j−i mod p. Well ui =

⌊
r
qi

⌋
− p

⌊
⌊ r̃

p⌋
qi

⌋

and thus lemma 3.3 gives that ui =
⌊

r
qi

⌋
− p

⌊ ⌊
r̃

qi

⌋

p

⌋
. The latter is ui =

⌊
r̃
qi

⌋

mod p. Now, since r̃ =
∑2k−2

j=0
µ̃jq

j , we have that
⌊

r̃
qi

⌋
=
∑2k−2

j=i µ̃jq
j−i. There-

fore, as µj = µ̃j mod p, the equality is proven.
Finally R = HXk+L needs to be reduced modulo the irreducible polynomial

used to build the field. But, if we are given the representations of H , Xk and L
in the field, R is still equal to their multiply-add inside the field, directly using
the internal representations.

4 Conclusion

Table 1 gives the respective complexities of the two presented algorithms

Shift & Add Accesses Divisions Reduction Memory
Algorithm 2.1 4k − 2 0 2k − 1 5k 3pk

Algorithm 3.1 4k − 2 4 1 3 6pk

Table 1: Complexity of the back and forth conversion between extension field
and floating point numbers

5

Now, figure 1 shows only the speed of the conversion after the floating point
operations. The log scales prove that for q ranging from 21 to 226 (on a 32 bit
Pentium IV) our new implantation is two to three times faster than the previous
one.

 0.1

 1

 10

 100

 1 10

M
ill

io
ns

 o
f f

ie
ld

/fl
oa

t c
on

ve
rs

io
ns

 p
er

 s
ec

on
d

q-adic Power of 2

Small extension fields conversion speed on a PIV 3.4GHz

Algorithm 2.1 Algorithm 3.1

Figure 1: Small extension field conversion speed on a PIV 3.4GHz

This will almost surely improve the running time of linear algebra over some
extension fields.

References

[1] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field
linear algebra subroutines. In Teo Mora, editor, Proceedings of the 2002

International Symposium on Symbolic and Algebraic Computation, Lille,

France, pages 63–74. ACM Press, New York, July 2002.

[2] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: Fi-
nite field linear algebra package. In Jaime Gutierrez, editor, Proceedings of

the 2004 International Symposium on Symbolic and Algebraic Computation,

Santander, Spain, pages 119–126. ACM Press, New York, July 2004.

[3] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 1999.

6

