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A non-monotone conservation law for dune morphodynamics.
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ABSTRACT. We investigate a non-local non linear conservation last fitroduced by A.C. Fowler to describe
morphodynamics of dunes, seﬂa [b 6]. A remarkable featutleeiwiolation of the maximum principle, which
allows for erosion phenomenon. We prove well-posednesaitél data inZ? and give explicit counterexample
for the maximum principle. We also provide numerical sintiolas corroborating our theoretical results.

Keywords: non linear evolution equations, non local operator, maxmmprinciple, integral formula,
Fourier transform, pseudo-differential operator.
Mathematics Subject Classification:47J35, 47G20, 35L65, 35B50, 45K05, 65M06.

1 Introduction
We investigate the following Cauchy problem:

{@u(t,w) + 0y (“72> (t,z) + Z[u(t, )](z) — O u(t,z) =0 te (0,T),x € R, 1)

u(0,z) = up(z) z €R,

whereT is any given positive timeyo € L?(R) andZ is a non-local operator defined as follows: for any
Schwartz functionp € S(R) and anyz € R,

“+oo 1
Tlp)(x) = /0 ¢3¢ (@ — ¢)dc.

Remark 1. Equation(]) can also be written in conservative form

2
Oyu + 0, (“3 + Llu] - amu> =0

where

+oo ]
Clol() = /0 ¢3! — Q)dc.

Equation [(l) appears in the work of Fowl€} [b, 6] on the evolubf dunes the term dunes refers
to instabilities in landforms, which occur through the maigtion of a turbulent flow with an erodible
substrate. Equatiof](1) is valid for a river flow (from lefttte right) over a erodible bottom(t, x) with
slow variation. For more details on the physical backgrouvelrefer the reader t§][§, 6].



Roughly speakingZ[u] is a weighted mean of second derivatives:afith the bad sign; hence, this
term has a deregularizing effect and the main consequenmebsbly the fact thaf}1) does not satisfy
the maximum principle (see below for more details). Newadhs, one can see that the diffusive operator
—02,, controls the instabilities produced dyand ensures the existence and the uniqueness of a smooth
solution for positive times. The starting point to establisese facts is the derivation of a new formula
for the operatofZ, namely [B). This result allows first to show easily tiat 92, is a pseudo-differential
operator with symbot)z(¢) = 4n262 — azl¢ ﬁ + i b€ ]é, whereaz and bz are positive constants
(see [B)). The symbolr?¢? corresponds to the diffusive operate?, and —azl€|3 + i bzel€]s is
the symbol of the nonlocal operatér Notice that this last symbol contains a fractional antitdion
—aﬂ{]% (recall that this is the symbol oﬁ(—aﬁm)%, up to a positive multiplicative constant) and a
fractional drifti bz&|¢ |%. Because of the fact that the fractional anti-diffusion fisoader % the real
part of ¢»7(£) behaves ag?, up to a positive multiplicative constant, 48— +oco. A consequence
is that Equation[{1) has a regularizing effect on the initiata: even ifuq is only L?, the solutionu
becomesC> for positive times. The uniqueness of.&((0, T'); L?) solution is obtained by the use of
a mild formulation (see Definitiof] 1) based on Duhamel’s folan(12), in which appears the kern&l
of Z — 92,. The use of such a formula also allows to prove local-in-temistence with the help of a
contracting fixed point theorem. Such an approach is quites@tal; we refer the reader, for instance, to
the book of Pazy[]8] and the references therein on the apiolicaf the theory of semigroups of linear
operators to partial differential equations. We also réferreader to the work of Dronioet al. in [
for fractal conservation laws of the form

e+ 0o (f (w)) + (—03,)

wheref is locally Lipschitz continuous anil € (1, 2], and to the work of Tadmo[][9] on the Kuramoto-
Sivashinsky equation:

A
2

[u] =0, 2)

O+ 3|0l — 02,0 = (02, lu].

In fact, fractal conservation lay](2) is monotone and théagl@xistence of &> solution is based on the
fact that theL>° norm of« does not increase. In our case, this is not true and we haweta alassical
energy estimate to get a glob&t estimate. The regularizing effect on the initial data ars firoved by

a fixed point theorem on the Duhamel’s formula to g€t regularity in space and next by a bootstrap
method to get further regularity. This technique has alydsebn used inJ3].

On the other hand, one of our main result is probably the podahe failure of the maximum
principle for (1): more precisely, we exhibit positive dsnehich take negative values in finite time,
since we establish that the bottom is eroded downstream tihendune. We also give some numerical
results that illustrate this fact (for more precision, sesrrf® and Sectiof} 7). The proof of the failure
of the maximum principle is based on the integral form{la @pughly speaking, this formula means
thatZ is a Lévy operator with a bad sign, s¢f [2]. Notice that theakoto-Sivashinsky equation is also
non-monotone, but no proof of the failure of the maximum gipte is given in [$].

The paper is organized as follows. In Secfibn 2, we give ttegial and pseudo-differential formula
for Z; we also establish the properties on the kerdiedf Z — 92, that will be needed. In Sectidh 3, we
define the notion of mild solution fof](1). Sectiolls 4 4hd 5 aespectively, devoted to the proof of the
uniqueness and the existence of a mild solution; Seflioscdaintains the proof of the regularity of the
solution. The proof of the failure of the maximum principegiven in Sectiorf]6. Finally, we give in
Sectio{ ¥ some numerical simulations that illustrate tieety of the preceding sections.

Here are our main results.



Theorem 1. LetT > 0 andug € L?(R). There exists a unique mild solutiane L>°((0,7); L?(R)) of
(fl) (see Definitiod]1). Moreover,

) u e C®((0,T] x R) and for allty € (0,T], v and all its derivatives belong t6'([to, T]; L*(R)).

i) u satisfieso,u + am(% + Z[u] — 02,u = 0, on (0,T] x R, in the classical sense{u] being
properly defined byB) and (@)).

i) ue C([0,T); L*(R)) andu(0, .) = uy almost everywhere (a.e. for short).

Proposition 1 (L2-stability). Let (u,v) be solutions taf]) with respectivel? initial data (ug, vo), we
have:

lu = vlleqorr2my) < C (T, M, |lugll 2Ry [voll L2(r)) 1uo — voll 2wy
whereM := max (HUHC([O,T];LQ(R))7 HUHC([O,T];LZ(R)))-

Theorem 2 (Failure of the maximum principle). Assume that,y € C?(R) N H2(R) is nonnegative
and such that there exist. € R with uy(z,) = uj(zs) = uj(z.) = 0and

0
uo(zx + 2)
/Oo 2773 dz > 0.

Then, there exists. > 0 with u(t.,z,) < 0.

Remark 2. Hypothesis of the theorem above are satisfied, for instdoc@on-negativeuy € C2(R) N
H?(R) such that there exists, € R with ug(z.) = uf(x.) = uj(x.) = 0 and

Ve <z, up(z) >0 and 3Jxg < x, S.t.ug(zg) > 0.

A simple example of such an initial dune is shown in Figdre loséve that the bottom is eroded
downstream from the dune (recall that the nonlinear corivederm propagates a positive dune from the
left to the right).

time t=0 ;
time t=tD

Figure 1: Evolution of a dune, @t = 0 andt = t¢.. We can observe that(t,,z,) < 0 and that
[ u(t, z) dz remains constant.

Notations: In the following, we letF denote the Fourier transform defined fore L'(R) by: for
all £ € R,

Ff§) = /Re%”gf(x)dx.
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We also letF define the extension of the preceding operator ftbfmto L2. In the sequel, we only
consider Fourier transform with respect to (w.r.t. for ghtte space variable; in order to simplify the
presentation, for any € C([0,7T]; L*(R)), we letFu € C([0,T]; L?(R, C)) denote the function

t€[0,T] — F(u(t,)) € L*(R,C).

2 Preliminaries

In Subsectior 2]1, we give the integral and the pseudordliiteal formula forZ and in Subsectiop 2.2
we give the properties on the kernel®f- 92 .

2.1 Integral formula for Z
Proposition 2. For all ¢ € S(R) and allz € R,
0

plo+2) = pl@) — P (@)z
77

Tlel(x) = Oz / -, 3)

—o0

Proof. The proof is an easy consequence of Taylor-Poisson’s fariamd Fubini’s Theorem; notice that
the regularity ofp ensures the validity of the computations that follow. Weehav

/0 p(z + 2) —’;‘P?(/:Ug) A GO /0 B (/01(1 — 1) (x + TZ)22d7'> dz,

— 50 —00

_ /01(1 _ ) </_OOO 2|3 (2 +7’z)dz> i,
= /01<1 7y (/0+°O 1o = O)ic)

thanks to the change of variabte = —(. Then,

0 r+2)— o) — o (x)z ! 2
/ pla + 2) |;|07(/3) ¢ () dz:/o (1 = P)rddr Zlel(@) = 22lel(a).

—00
The proof is now complete. |

Corollary 1. There are positive constants and b7 such that for allp € S(R) and all¢ € R,
F(Zle] = ¢") (€) = ¥z(§)F(8), 4)

whereyz(€) = 4n2¢% — azlé|3 + i brle]5.

Proof. We have

0 z+2)— o) — o (x
}“(I[ﬁﬂ])(f):CI/R/Ooezimgw( =) ’;‘07(/3) )

i dzdx.



Notice that Propositiofi] 2 ensures that fore S(R), Z[¢] € L'(R) and thus its Fourier transform is
well-defined. By Fubini’s theorem, we can first integratetw.tto deduce that

0 B B N(E)x
f(1[¢])(§):01/ F(T20) (€) |j7si§£) F()©z ,

2,

where we let7_,p denote the (translated) function — ¢(z + z). Classical formulae on Fourier
transform imply thatF (Z[y]) (&) = ¥(§)Fe(§), where

0 e2iméz _ 1 _ 2inlz
’2‘7/3

(€)= Cr / i

—00

Simple computations show that

w('f):CI/O dez‘@/o sin (2m€2) — 2m€z

’2‘7/3 ’2‘7/3

— 00 —00

It is immediate that the real part of(£) is even, non-positive, non-identically equal®t@nd homoge-
neous of degreé (the last property can be seen by changing the variablg by £z). Moreover, the
imaginary part ofy(¢) is odd, negative and homogeneous of de@m R, . There then exist positive
constantsiz andby such that

W(€) = —azl€|s + i brelé]s

and, in particular” (Zl]) (€) = (—azlé|? +ibr€le]3 ) Fil(6). SinceF(~")(€) = 4n*2F (&),
the proof of Corollanf]1 is complete. [ |

Remark 3. 1. SinceZ[p] = 1r_ |- |~ 3% WehaveF(I[gp]) 1R+\ \_%) (—472|€%) - F (o).
Elementary computations givE(1g, |- | 3) = T (3) <% isign(¢)% ) €75, Henceas =

(%)L andbr = I'(2).

Ié

2. Lets € R. If p € H*(R), one can also defin&[] through its Fourier transform by
2.(1 . V3 4
F(Zlp))(€) = —4n°T(3) (5 — legn(§)7> €[5 - F ()

Thus,ifo € H*, we have thaf[y] € H* 3 and||I[<p]||H 1 < 47T (2)||¢| = This implies in
particular thatZ : H2(R) — C,(R)NL2(R), since by Sobolev embeddifig — C,(R)NL2(R).

3. Corollary[] implies thaZ — 92, : C%(R) N H?(R) — C(R) N L?(R) with Z which satisfies both
formula (@) and ().
2.2 Main properties on the kernel K of Z — 92,

By Corollary[], we see that the semi-group generated byd?, is formally given by the convolution
with the kernel (defined far > 0 andz € R)

K(t,z) = fﬁl(efwf)(:v).



Proposition 3. K(t,-) is a L' real valued continuous function.

Proof. K(t,-) is aL' real valued continuous function as inverse Fourier tramsfof a W21 function
with an even real part and an odd imaginary part. |

In the sequel, we only consider real valued solutionpf (1} &¥pose in FigurF 2 the evolution of
K(t,-) for different times. Note thal( (¢, -) is not compactly supported but thai(¢, z) < (’;(Qt), for
2| > 1with C(t) = g2 102 F (K (t, )]

/t=0.05 s

t=0.1s

t=0.5s

Figure 2: The kernel of — 92, for t = 0.05,0.1 and0.5 s.

Proposition 4. The kernelK has a non-zero negative part.

Proof. Let us assume thdt is nonnegative, then

™7 O] < || (e )| sy = /R K ()]
- / K(t,)=F (F (e 1)) (0) = e 2O =1
R

3
4 2
for all ¢ € R; hence, sincge 7(©)| = ¢t €7 ~azlel) > 1 for 0 < [¢] < £Z;, this gives us a

contradiction. |
The main consequence of this is the failure of the maximumcjpie for the equation
Opu 4 T[u] — 02,u = 0; (5)

that is to say, there exists a non-negative initial conditig such that, for some > 0, u(t,.) :=
K(t,.) * up has a non-zero negative part, see sedtjon 6 below. Nevesthal enjoys many properties
similar than those one satisfied by the kernel of the heattiequand that ensure that Equatidh (5) has



a regularizing effect on the initial condition: ify € LP(R) for somep € [1,+oc0), thenw is C* for
positive times, see sectith 5.

Let us precise here the properties that will be needed irptiper. Sinces (¢,-) € L' (R), the family
of bounded linear operatofsy € L*(R) — K (t,-) * ug € L*(R)},_ is well-defined. Moreover, it is
a strongly continuous semi-group of convolution, that isdg:

Vi, s >0, K(s, )« K(t,) = K(s+t,-), 6)
Vug € LA(R), limy_o K (t,-) * up = ug in L3(R).

Next, the kernelK is smooth on0, +c0) x R and we have:

VT > 0, I s.t.Vt € (0,7, [|0.K ()| 2y < Kot T, @)
VT > 0, 3K sVt € (0, 7], [|0.K (8, )|y < Kt~ 2, (8)
Vt,s >0, K(s, )« 0, K(t,-) = 0, K(s+1,-). 9)

Proof of these propertiesThe semi-group property](6) anf] (9) are immediate consexpseaf Fourier
formula. Let us prove the strong continuity. By Plancher&rmula,

1K (2,-) % uo — uollF2 gy = [[F(E (L, ) * uo) — Fuol[7a )

= |le™"7 Fug — fuo||%2(]g) = / le™™7 — 12| Fupl®. (10)
R

The function|e =7 — 1|2 | Fug|? converges pointwise toonR, ast — 0. Recalling thainin Re(y)7) is
finite, we infer thate ~"¥7 — 1|2 | Fug|? < C|Fup|? and the dominated convergence theorem implies that
the last term of[(30) tends tbast — 0. This completes the proof df|(6). Let us now prove the eseémat
on the gradient. The smoothnessiofis an immediate consequence of the theorem of derivatioerund
the integral sign applied to the definition &f by Fourier transform. We get in particular:
OpK (1) = B, (e77) = F1 (¢ = 2imge 7).
Since the functiof — 2irée~7(€) is L2, 9, K (t, ) is L? and we have:
|0 K (1, _)H%Q(R) = / 47T2§2]e_w1(5)\2d§ _ / 47T2§2€—2t(47r2\{‘2_a1‘§‘§)d§.
R R

Let us change the variable l§{/= tég. We get:

3 , 1 , 4
HaxK(tv )"%2(]}{) = t 2 / 471'2’6/‘26_2(471—2‘5 ‘2_t3a1|§ ‘§)d§/7
R

IN
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forallt € (0,7]. The proof of [[7) is now complete. To pro\¢ (8), we have towdea "homogeneity-like
property fork. Easy computations show that

K(t,z) = /e%”getW(g)df,
R
_ / 2imat —t(4n? e —azlel 3 +ivrelel) g
R
_ 3 / (2Tt T )~ Pt aglé!| 3415 brg/€13) gt
R
by changing the variable b/ = t%g. Then,

L [ i ia)e —(an2(eP—az|€'| 3 +ibre!|€/]3) —(1—t3 ) (az|€'|F —i bre'|€'|3) g
K(t,x) = t72 [ e e z z e 7 7 dg¢’,
R

N[

- / (2t R0 —ur(€) ~ (-t )azl¢ | —ibr¢ 1) gt
R

1 4 ; Y 1 . . .
Fort < 1, defineG((1 — t3),-) := F~! (e—(l—””)(alf'|3—lbff € "”>>. It is readily seen that is L'

as inverse Fourier transform ofi@?! function. Moreover, fot, € (0,1) and allt € (0, to],

1 4 1
I|G((1 — t%), Npiw <C e~ (1=t3)(az|[3 —ibz:|-[3) < C(to),

W21(R,C)
whereC'(ty) only depends ony. Classical formula on Fourier transform then give:
K(t,z) =t"2 (K(l,-) «G((1—t3), -)) (t~22).

Observe now thad, K (1,-) = F~! (¢ — 2i ére~¥7(®)) is L! as inverse Fourier transform ofi&>!
function. Then,
O, K(t,x) =11 <amK(1, )% G((1 — t3), .)) (t %)

is L' and itsL! norm can be computed by the change of variable: =2z as follows:
10:K (¢, )|y =210 K (1) % GUL = £5), sy < 218K (L)l Cko),
for anyt € (0, to]. Since
0= K (t, )| 1) < ClI§ — 2i §W€7th(£)||w2,1(ﬂz,<c> < C(to,T),

for all t € [to, T, the proof of [B) is now complete. |
Remark 4. For anyuo € L%(R) andt > 0,

K (t,-) * uoll 2wy < e|uol|r2(r), (11)
wherewy = — min Re(1)7).

Proof. This is readily established with Plancherel's formulaglik ([Z0). [



3 Duhamel’s formula

Using Fourier transform and Corollafy 1, we formally seet #ray solution to [[1) satisfies Duhamel’s
formula (12) (see also the proof of Lemifja 3, which justifies ¢bmputations). This observation is the
starting point of the definition of mild solution below.

Definition 1. LetT > 0 andug € L?(R). We say that: € L>((0,7); L?(R)) is a mild solution ta(f)
if fora.e.t € (0,7),

t
u(t,-) = K(t,-) *xug — %/0 0. K (t —s,-) xu?(s,-)ds. (12)

The following proposition shows that all the terms [n](12% avell-defined and that Equatiofj (1)
generates a (non-linear) semi-group.

Proposition 5. LetT > 0, ug € L*(R) andv € L>°((0,T); L'(R)). Then, the function
t
u:te (0,T) — K(t,-) *xug — %/ 0K (t —s,-) xv(s, )ds € L*(R), (13)
0

is well-defined and belongs @([0, T; L?(R)) (being extended at= 0 by the valueu(0,.) = uy).
(Semi-group property) Moreover, for @il € (0,7') and allt € [0, T — tg],

u(to +t,.) = K(t,-) *u(to, ) /8K )k v(to + s, -)ds.

Proof. By (B), it is classical that the functione (0,7] — K(t,-) * ug € L*(R) is continuous and can
be continuously extended by the valu@, -) = u att = 0. What is left to prove is thus the continuity
of the function

wite0,T] — /t 0K (t— s,-) % v(s,-)ds € L*(R).
0

Let us extend),, K andwv for all times the following way:

f 0xK(t,r) ift>0, [ ow(t,s) ifte(0,T),
) = { 0 if not and V(i) := { 0 if not.

Then we have

t,-) = /RH(t —8,-) * V(s,-)ds.

It is immediate that’ € L>°(R; L'(RR)). Moreover, [[7) implies that

(M2 (r) < Locrary Kot (14)

and it follows that{ € L'(R; L?(R)). Young’s Inequalities imply that for all € R

IN

/R HH(t -5, ) * V(S, ')HLQ(R)dS /R HH(t - S, ')HLQ(R)HV(37 ')HLI(R)dS

[[H] | m;z2w)) VI Loe mip m))- (15)

IN
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This implies, in particular, that the functian is well-defined. Let us now take s € R and define

[ ‘ AH(t—T,-)*V(T)dT—AH(s—T, ) V()

L2(R)
We have

I < /R (H(E = 7,) = H(s = 7,7)) # V() | o
< /R 10t = 7,-) = H(s — 7, 2| V) sy
thanks to Young'’s Inequalities. It follows that
I< /R (= 7.) = (s — 7 )l egydr V]| g @),

Since the translation are continuouslif(R; L?(R)), we see thal — 0 as|t — s| — 0. In particular,
the functionw is continuous and this completes the proof of the continiity.
Let us now prove the semi-group property. Bly (6) ajd (9), vierithat

1 [t
U(to—{—t, ) = K(ta )*K(to,)*U0—§ amK(t+t0—Sa -)*v(s,-)ds
0
1 t+to
—= / 0 K(t+tg—s,-) xv(s,)ds,
2 to
1 [t
= K(to, ) * K(t,-)*up — 5 K(t,") * 0, K(tg — s,-) *xv(s,)ds
0

1 t
5 / O K(t—s,)xv(to+§,-)ds,
0

thanks to the change of variable= s — ¢, to compute the last integral term. Then,

to
U(to—{—t, ) = K(ta )*K(th)*uo—K(t?)*% a:vK(tO_Sa ')*U(Sa )dS
0

1 t
—3 / O K(t—s,)xv(tg+5,-)ds,
0

to

= K(t,-)* <K(t0, )k ug — % 0. K (to — s,+) x v(s, -)ds)

0
t
—% / 0. K(t—s,)xv(to+§,-)ds,
0
1 t
= K(t,-) xu(to,-) — 5/ O K(t—s,)xv(to+,-)ds’.
0
The proof of the semi group property is now complete. |

Remark 5. For v € L>=((0,T); L*(R)), v € C([0,T]; L?>(R)) defined in(L3) satisfies:

1
ullooryrzmy < €7 luollz2@) + 2KoT3 |[0]| 1 ((0.7), 01 (R))- (16)
Proof. Indeed, with [14) and (15), we estimate the integral ternflg) @nd with [(1]L), we estimate the
L? norm of K (t, -) * uy. |

10



4 Uniqueness of a solution

Let us state a lemma that will be needed later.

Lemma 1. LetT > 0, ug € L*([R). Fori = 1,2, letv; € L*((0,T); L'(R)) and defineu; €
C([0,T); L%(R)) as in Propositior{]5 by

ui(t,-) = ) % ug — / O K(t ) *vi(s,-)ds.
Then we have the estimate

1
lur = walloqom;2my) < 2KoT'% [Jv1 — val[ oo ((0,1):11 (R)) - (17)

Proof. Forallt € [0, 7], we have

() —ua(t,) = —= [ 0K (t = s,°) % (v1(5,) — va(s,-))ds.
2 Jo

Hence,
t
lfui(t, ) —ua(t, 2wy = /0&J((t—s,-)*(vl(s,-)—uQ(s,-))ds .
t
< %/0 10K (t—5,) * (01(s,.) — va(s, e ds.  (18)
By (@),
[0z K (t —s,.) % (vi(s,+) —va(s, )e@) < 0K (t—s,) l[r2@llvi(s, ) —v2(s, )| (w)
< Kolt — )T [or(s, ) — va(s, )| oy

Inequality (1B) then gives

Ko
2 Jo

IN

3
Jui(t, ) — ua(t, )|l p2(w) (75 —8)"4ds [[v1 — val|peo (0,021 (R))
1
= 2Kot7 [[v1 — v2|| Lo (0,001 (R))-

In particular, for alls € [0, ¢]
1
[[u1(s, ) —ua(s,)|[L2®) < 2Kosi [Jur — V2| Lo ((0,5):L1 (R)) < 2K0t 1 [[v1 — val[Loo (0,0);L1 (R))
and we have proved that
1
lur — w2lloqo;r2®)) < 2Kot4 v — val| Lo ((0,0);11 (®)) - (19)

Proposition 6. LetT > 0 anduy € L?(R). There exists at most onec L>°((0,7); L?(R)) which is a
mild solution to(fl).
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Proof. Letu,v € L>((0,T); L*(R)) be two mild solutions. Let € [0,7]. With Lemma[]L applied to
v1 = u? andvy = v?, we get
1

llu = vlleqoL2@y) < 2Kot |[u® = v*|] Loe 0,001 (®))- (20)
Since|[u® —v?|| oo (0,021 ®)) < Mlu—vllc (0,522 (my) With M = [[ullc o1, 2 @) F vl e o122 ®))
we get:

1

lu = vlleog;z2@y) < 2MKot? |[u — vl|ogo,0;22R))-
We then have established that= v on [0, ¢] for anyt € (0, 7] such that < (2MK,)~*. Notice that
sinceu andv are continuous with values ih?, u = v on [0, T} with T}, = (2MK)~* > 0. To prove
thatu = von|[0,T7, letus defing, := sup{t € (0,7] s.t.w = v on|[0,¢]} and let us assume thiat# 7.
The continuity ofu andv implies thatu(to, -) = v(to, -). The semi-group property of Propositiph 5 thus
implies thatu(tp + -, -) andv(to + -, -) are mild solutions of[{1)with the same initial conditionatlis to
sayu(to + 0,-) = v(top + 0, -). The first step of the proof then implies thaty + -,-) = v(tp + -, -) on
[0, min{T, T — to}]; hence, we get a contradiction with the definition‘@and we deduce thag = T.
The proof of the uniqueness is now complete. |

5 Existence of a regular solution
This section is devoted to the proof of the existence of atieslu, € C12((0,7] x R)to (@); that is to
say,u is C? in space and’'! in time. We first need the following technical resuilt:

Lemma 2. Letug € L2(R) andT > 0. Letv € C([0,7]; L' (R)) N C((0, T]; WH1(R)) that satisfies

sup 12 |0,0(t, )| 1 (g) < +o00- (21)
te(0,7]

Letu € C([0,T]; L?(R)) be the function defined ifi3). Then,u € C((0,7]; H'(R)) with
Kol

1 1 1
sup t2[0,u(t, )| r2m) < Killuol|r2m) + —20 T1 sup t2]|0,v(t, )|l (r), (22)
t€(0,T] t€(0,T]

wherel! is a constant equal tgfol(l - s)‘%s‘%ds = B(1/2,1/4), B being the beta function.
Moreover, let; € C([0, T]; LY(R)) N C((0, T); WHH(R)) satisfy(@3) and defineu; by (L3) (with » and
v replaced, respectively, hy;, andwv;) for i = 1, 2. Then,

1 ’C I 1 1
sup t2[[0z(u1 — u2)(t, )|[L2®) < TO T1 sup t2|0x(v1 — v2)(t, )1 (R)- (23)
t€(0,7] t€(0,T]
Proof. Recall that Propositiof] 5 ensures that C ([0, T]; L?(R)). It is easy to check that the distribu-
tion derivative ofu w.r.t. the space variable satisfies: for any (0, 77,
t
Oru(t, ) = 0 K(t,-) *up — %/ 0. K(t —s,-) % Oyv(s,-)ds.
0

Let us verify that all the terms are well-defined ii?. Sinced, K (t,-) € L'(R), it is obvious that
0. K (t,-) * ug € L2(R). Moreover, define

t
w(t,) = % /0 0. K(t —s,-) x dypv(s,-)ds.

12



Young's Inequalities and(7) give

[0 K (t = 5,°) * Opv(s, 2wy < 0Kt = s, )20z (s, )1 (),
_1 1
= |[0:K(t—s, )||L2(R)5 252||amv(5,')||L1(R),
< Ko(t—s)_%s_% sup T%H8$?}(T,-)HL1(R). (24)

7€(0,T]
Since f; (t — s)"1s2ds < oo, by @]) we deduce thab(t, ) is well-defined inZ? and thus for all

€ (0,7, Oyu(t,-) € L3(R). Let us now prove thal,u is continuous orf0, 7] with values inL?2. For
d > 0andt € (0,7, define

1 t
= 5/0 DK (t —s,-) % (1555 000(s,-)) ds.

Sincely,.50,0(s,-) € L=([0,T]; L*(R)), Proposition[}5 ensures that; is continuous o0, 7] with
values inL?. Moreover, for any, € (0,7], § < tq andt € [to, T],

(e, ) — ws(t N2y < / 10K (¢ = 5,-) % By, 2y ds,
< = (t—S) Ts73ds sup s3]|0,0(s s, )Merw) by 24),
2 0 s€(0,T]
Ko _3 _1 1
< — [ (to—s) 4s 2ds sup 52||81v(5,-)||L1(R).

2 Jo s€(0,T]

It follows that

K 0 3 _1 1
sup [u(t,) = wtMlzegey < 50 [ (to—5)EsHds sup sH0so(s, sy - 0
telto,T) 0 s€(0,7T

asd — 0. We deduce thav € C((0,T]; L?(R)) as local uniform limit of continuous functions. More-
over,

B K (1) % up = F~! (5 2 wge—Wﬂf)fuo(g)) .

The dominated convergence theorem immediately impligsfohanyty > 0,

2
/ 47721,5\2(@*%(0—e*tmﬁf(ﬁ)( \Fuo(€)2de — 0, ast — to.
R

This means that > 0 — (,5 — 24 wge*“/’I(@}“uo) € L%(R) is continuous and, sincg is an isometry
of L2, we deduce that > 0 — 9, K (¢t,-) * ugp € L*(R) is continuous. We then have established that
dyu € C((0,T; L*(R)). Let us now estimate how th* norm of d,u can explode at = 0. By (£3),

K
llw(t, )| p2@) < (t—s)tsdds sup 73(10p0(7, )| 11 )
2 Jo 7€(0,T]
Kol 1 1
= =5t71 sup 72 |0,0(r )l ey,

7€(0,T]
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wherel = fol(l - s’)‘%s"%ds/ = B(1/2,1/4); notice that the last integral term has been computed
with the help of the change of variabié= 7. Moreover, [B) and Young's Inequalities imply that
1
[0z K (t,-) * uol| r2my < K1t™ 2 ||uol|r2(m)-
We deduce that for anye (0,77,

Kol
[0zu(t, 2@y < Kit™ 2HUOHL2(R) + Tt i S(L(l]pT]t??Ha 2 0(Ss )| L ()

which implies immediately{ (22).
Let us now prove[(33). For antyc (0, T,

10 (a1 — u2)(t, M2y < / 10K (t — 5,.) % O (01 — 12)(5, )| 2y s,

< 5 (-5 tebds sup sH[0u(r — v2)(s, M)
0 5€(0,T]

Kol
= S-t7E sup 82|01 — v2) (sl .
s€(0,7T7]
which implies immediately[(23). [ |

Remark 6. Letug, T, v andv that satisfy assumptions of Lemiija 2. Then, we have eswdlibhat for
anyt € (0,77,

1 t
Oru(t, ) = 0 K(t,-) *ug — 5/ 0. K(t—s,-) *xdpv(s,-)ds.
0
Let us now prove the local-in-time existence of a regulautsoh.

Proposition 7. Letug € L?(R). There existd, > 0 that only depends ofjuol|2(r) Such that()
admits a (unique) mild solution € C([0,T.]; L?(R)) N C((0, T]; H(R)) on (0, T} )such that

sup #2]|0,u(t, )| 2@y < +oo and  sup #]|0%,u(t, )| gy < +oo-
te(0,7%] te(0,7%]

Moreover,u belongs toaC'2((0,7}] x R) and satisfies the PDE iffl) in the classical sense.

Proof. We use a contracting fixed point theorem. kae C([0, 7.]; L2(R))NC((0, T.]; H(R)), define
the norm

ulll = llullogoryramy + sup 2 |10zut, )| 2 (25)
te(0,T%]
Define the space
X = {u € C([0,T.); L*(R)) N C((0, T.]; H' (R)) s.t. (0, ) = up and|||ul|| < +oo} .

Itis readily seen thak is a complete metric space endowed with the distance induc#te norml||- |||
Foru € X, define the function

Ou:tel0,T.] — K(t,-)*uy— % /Ot 0, K(t —s,) *u?(s,-)ds € L*(R). (26)
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By Proposition[[5,0u € C([0,7T]; L?(R)) and satisfie®u(0,-) = ug. Definev := u?. We have
Oyv = 2ud,u. Therefore thav € C([0,T.]; L' (R)) N C((0,T]; W1 (R)) and that[(Z1) holds true.
By Lemma[R, we deduce th&iu € X. Let us takeR > ||ug||r2(r) + Ki||uol|12(r) @and assume that
[Ilull] < R. Since[u?]| Lo (0,.):21®)) = 1ulE 0 2222w estimate[(16) of Remai 5 implies that

wo T

A

1
[Oullcqo,nr2my < e uo||p2(m) + 20T HUH%([O,T*};H(R)y

1
< e ug|| 2wy + 2Ky R, (27)

Estimate [22) of Lemmf 2, implies that

IN

Kol 1 1
TOT,:‘ sup t2||8:v(u2)(t,')||L1(R)’

1
sup £2(|0,(Ou(t, )l 2 (r) te(0,T2]
€(0,1%

Killuo|| 2wy +
t€(0,T%]

1
Killuol|p2ry + Kol T R?,

IN

by Cauchy-Schwarz inequality. Adding this inequality W), we get:

1
©ulll < e ol 2ay + Kl 2ggy + (2 + T) KoTil R.

For T, € (0, 7] sufficiently small such that

1
e |ug|| 2wy + K1lluoll 2wy + (2 + I) KoT R* < R, (28)

we deduce thalf|©u||| < R. To sum-up, we have established that for ghye (0,7] such that[(28)
holds true,® (defined by [26)) map®5 into itself, whereB denotes the ball ok (endowed with
the ||| - ||| norm) centered at the origin and of radilts Let us now prove tha® is a contraction. For
u,v € Bp, Estimate [3J7) of Lemmy 1 implies that

1
[[©u — Ov|[co,1.):02m)) < ARKT [[u — vl|c(qo,m);02m))s (29)

where we again useth® —v?||c (o 7,121 (r)) < ([ulloqo 2@y vl leqor), r2@) ) u—vllogoryr2w®))-
Moreover, Estimate[ (23) of Lemnfia 2 implies that

1
sup t%H@C(@u = Ov)(t, )2 m) < KolTid sup t%H(u@Cu —v0,0)(t, )| 11 (m)-

te(0,T%] t€(0,7%]
Since
£3]] (udp — v3,0) (8, M amy < 211050 (t, ) 2oyl (= v)(E, |2y
42 fu(t, )l e 102 (e = 0) (&)l 2wy,
< lloll] 1w = ), 2y
Hlll] #2110 (u — v)(¢, )| 22y,
< Rllju -],

1
we getisupye (o1, t3 102 (Ou—0Ov)(t, )| L2y < RKoIT. |||u—wv||. Adding this inequality with[(29),
we find that .
11©u — ©ul]] < (4 + NRKoL! [[Ju — vl
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Consequently, for any, > 0 sufficiently small such thaf (8) holds true afid+ I)RICOT*% <1,0is
a contraction fromBp into itself. The Banach fixed point theorem then implies Batdmits a (unique)
fixed pointu € C([0, T.]; L*(R)) N C((0, T.]; H'(R)) satisfyingsup;e o 1] t2(|0pult, Mz < o0
which is, of course, a mild solution t] (1).

To prove theH? regularity of u, we have to use again a contracting fixed point theorem. Buit,
this is now the gradient of the solution which is searched figeal point. Letty € (0,7%). For any
t € (0, T, — tol, definetu(t, ) := u(to +t,-). LetT! € (0, T, — to]. We still endowC' ([0, T7]; L2(R)) N
C((0,T!]; HY(R)) with the norm||| - ||| defined in [2p) withT replaced byT". Define the complete
metric space

X ={ve C([0,T.]; L*(R)) N C((0, T.]; HY(R)) s.t. (0, -) = wo and|||v]|| < +o0},

wherev, := 9,u(0, -). Forv € X', define the function
t
Ov:tel0,T)] — K(t,) *vg — / 0K (t —s,-) * (wv) (s, )ds € L*(R). (30)
0

Arguing as in the first step of the proof, we claim that Progiosi§, RemarK]5, Lemmd$ 1 afd 2 imply
that®’ mapsX”’ into itself with: for anyu,v € X',

! 1L
116"ll] < e Jvo| 2 ) + Kllvoll L2y + CT: Il

1
110" — ©"wl[| < CTL[jo — wl|],

for some nonnegative constaftthat only depends okt and|[||c (1, 7.);11 () Let us takeR’ such
that
R' > e |vo| | 2wy + Kt l[vol| L2 (w)-

If 7] > 0 satisfies

’ 1 1
e UOHLQ(R) +’C1HUOHL2(R) + CT>(:4R/ < R and CT>(:4 <1,

then®’ mapsBr (X') into itself and is a contraction. Let denote its unique fixed point. Observe
now that®’d,u = 9,w, thanks to Remar@ 6. But, similar arguments than these oses to prove the
uniqueness of a mild solution in the preceding section altoshow that there exists at most one function
w € L®((0,T!); L*(R)) that satisfie®’'w = w. It follows thatd,w = v € X’ on (0,T7); hence, we
deduce that, € C(to, to + T1]; H*(R)). To sum-up, we have proved that for &jlc (0, 7.], there exists
T! € (0, T, — to) such thatu € C((to, to + T.]; H*(R)). This completes the proof of the continuity of
u on (0, T,] with values inH?2. The proof of theC''? regularity is postponed to Lemnh 3 in the next
section, where it will be useful for the maximum principldiee. [

We can finally prove the global-in-time existence.

Proposition 8. Letug € L*(R) andT > 0. There exists a (unique) mild solutianc C ([0, T]; L*(R))N
C((0,T); H*(R)) to (fl) such that

sup 2 [|0,u(t, |2y < +oo and  sup )|02u(t, )|z < +oc.
te(0.7] t€(0.7]

Moreover,u belongs taC'?((0, 7] x R) and satisfies the PDE iffll) in the classical sense.
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Proof. We have to derive first &> estimate on the local regular solutierconstructed in Propositidn 7.
Multiplying () by « and integrating w.r.t. the space variable, we get:

1
L / uldz +/(I[u] — 02, u)udz = 0. (31)

Indeed, the following computations show that the nonlineem equal$):

2 2 2
/ Oy <u_> udr = —/ u—axudm = ! / u(Opuu)dr = ! / u Oy <u_> dx.
AN R 2 2 Ju 2 Ju 2

But, Corollary[lL implies that
/ (Z[u] — 02, u)udz = / F s Fu)ude = / Yr|Ful?de = / Re(vy7)| Ful?dE,
R R R R

since [, (Z[u] — 02, u)udz is real. It follows that,

/(I[u] — 02 w)udr > minRe(i/)I)/ | Ful?de,
R R
= min Re(wz)/uzdx,
R

thanks to Plancherel’s Equality. Equatidn](31) then insptreat

d1
——/qumgwo/uzdx

and by Gronwall's Lemma, we deduce that fortadt [0, 7]

ult, N2y < e fuollL2w)-

Define now

to := sup{t > 0 s.t. there exists a (unique) mild sol. fd (1)
on (0, ) that satisfies the regularity of Propositijh 8

and let us assume that < T (recall that Propositiof] 7 ensures thgt> 0). By Proposition(]7, there
existsT, > 0 such that for any initial datay that satisfy||vg|[2r) < €°%||uol]L2(r), (@) admits a
regular mild solution on(0, 7%) with initial datumwvg. Hence, if we definey = u(ty — 7%/2), then
() admits a mild solution that satisfies the regularity of Propositign 8. Using thequeness and the
semi-group property, it is now easy to show théty — 7../2 + t,-) = v(t,-) for all ¢t € [0,7./2] and
that the functionu defined byu = w on [0,%y] andu(ty — 7/2 +t,-) = v(t,-) for t € [T./2,T,]

is still a mild solution to [[L) that satisfies the regularityppoposition[. Since the solutiom lives on
[0, to + T /2], this gives us a contradiction. We conclude that 7" and this completes the proof of the
global existence of a regular solution. |

Remark 7. To sum-up, we have proved Theorgm 1 with €€’ regularity of u. To obtain further
regularity, we claim that we can use the same method by aggayrinduction.

Now we prove the.>-stability stated in Propositidd 1.
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Proof of Propositior{]1 .Let (u, v) be solutions to[{1) with respectivié’ initial data (ug,vo). letT > 0
andt € [0, 7. Substracting

u(t,-) = K(t,-) *ug — % /0 Ou K (t —s,-) % u?(s,-)ds

and .
u(t,.) = K(t,-) *vg — % / 0K (t —s,-) xv%(s, )ds
0

we get

ult, ) —vlt, ) = K () « (o —vp) — 3 /Ot DI (t— 5,) % (u2(s,) — v2(s,))ds.  (32)
Hence, by [A]1) of Remalk 4 and Young inequality
Ju(t, ) =v(t )2 @) < eonHUo—UOHB(R)Jr% /Ot |0, K (t —s, ')HLQ(R)HUQ(37')_U2(37 Nzt r) ds.

Taking M = max (||u||c([0,T];L2(R)), ||U||C([O,T];L2(R))) , we can bound

t
lu(t, ) —o(t, )l 2@y < ewOTHuO_UOHL?(R)"’M/O 10K (t = 5, )|l L2y [[uls, -) — (s, )| 2wy ds

IN

t
_3
€07 || — v | 2(z) + MKo /O (t = 5)~HJu(s, ) — v(s, )| 2w ds.

thanks to[[7). With lemmf 4, the proof is finished. [ |

6 Failure of the maximum principle

We now investigate the proof of Theordin 2. We first need a egijulresult which ensures that if the
initial data is regular then so is the solution up to the time0.

Lemma 3. Letug € H%(R) andT > 0. Assume that is a mild solution to(@) that satisfies the
regularity of Propositior{]7. Theny is in factC([0, T]; H*(R)) N CH2((0,T] x R) and satisfies the PDE
in (@) in the classical sense. Moreoverif € C?(R), thenu € C12(]0,7] x R) and satisfies the PDE
up to the timeg = 0.

Proof. First, we leave it to the reader to verify that the continwifyh values inH? up to the timet = 0
can be proved again by the use of a contracting fixed pointéineoNote that the regularity af, allows

to work in a space of continuous functions with valuegdit up to the timet = 0; more precisely, we
argue as in the proof of Propositigh 7, but we can directly tageC ([0, 7.]; H?) norm instead of the
l|| - ||| norm defined in[(35). Let us now prove thais a classical solution td](1). Taking the Fourier
transform w.r.t. the space variable [n](12), we get: for al [0, T,

Flu(t,-) = e ™ Fug — /Ot i e” YT F(u2(s,-))ds. (33)
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Sinceu? € C([0,T]; LY(R)), we know thatF(u?) € C([0,T]; Cy(R,C)). For any¢ € R, the function
t €10,T] — F(u*(t,-))(€) € Cis thus continuous. Define
t
(1.6) = = [ imee IO P (s, ) (€,
0
Classical results on ODE then imply thatis derivable w.r.t. the time variable with

u2
Ouu(t,€) + vr(Eult.€) = ~ineF e N = -7 (0. (5 ) ) © @4

Let us prove that all these terms are continuous with valuég i First,u € C ([0, T]; H'(R)) therefore
’ )) is continuous with values i, Moreover,

dx(u?) € C([0,T]; L*(R)) and we deduce thak (9, (%

Equation [3B) implies that
e_wffuo) .

brw(t,) = vr (Flult, ) -

Sinceu € C([0, T]; L*(R)) and+:7 behaves at infinity als |?, 1»zw is continuous with values ifh2. Al
the terms in[(33) then are continuous with valuegfrand this impliesv € C'1([0, T); L*(R, C)) with

%(w(,; )N +vrwlt,) = —F (896 (u;> (t,-)> :

Moreover, it is easy to see that [0, 7] — e 7 Fuy € L*(R,C) is C'* with

d =tz Yz _
i ( .7:U()> + Yre " Fug = 0.

From Equation[(33), we infer tha&w is C'* on [0, T with values inL? with

U2
FEl) = —vru(ts) — vze < Fu - 7 (2 () 4)
= (1))~ F ()1, ).

SinceF is an isometry of.2, we deduce that € C'([0, T]; L?>(R)) and that

d u? _
G = =0, () () = wrFlue ).
u2
-0, (') 0 = Thute. ] + Bt ).
where we used Corollafy 1 to compute the pseudo-differetatien. In particularu satisfies the PDE of
() in the distribution sense. What is left to prove is @teregularity in space ofi. Differentiating [1P)
two times w.r.t. the space variable, we get: for ary [0, T']
o2 u(t,) = ) % uy — / 0. K (t xv(s,-)ds. (35)

wherev = (9,u)? + ud?,u. By the Sobolev imbeddingZ?(R) — CJ(R), we know thatv €
C([0,T); LY (R) N L?(R)). By Lemmap, we know that for alt, y € R

|02 K (t =5, -)xv (s, -)(2) = Ox K (t=s5,-)xv(s, ) (y)| < ([0 K (=)l L2m)l| T(w—y) (v(5, ) —0(s, )| L2(R)
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By (1), we deduce that for all€ [0, 7] and allz,y € R,

/ 0. K(t—s,-)xv(s,-)(z)ds — / O K(t—s,)*xv(s,-)(y)ds
0 0

t 3 1
< /0 Ko(t =) 1| Z(z—y)(v(s,-)) —v(s, )l L2w)ds < 4T ol 7 (z—y) (v(s, ) —v(s, )l L2(r)-
By Lemmd b, we deduce that the second ternfi df (35) is contmuatt. the space variable independently
of the time variable (equicontinuity w.r.t. the time vailiglb Moreover, we already know that this term is
continuous on0, 7] with values inL? (by Propositiorj 5) and Lemni& 7 implies that it is continuoustw
the couple(t, z) on [0, 7] x R. We now leave it to the reader to verify thatz) — K(¢,-) * uj(x) is
continuous or{0, 7] x R whenuy € H?(R) and continuous off), 7] x R when moreover, € C%(R).
The proof of Lemm4]3 is complete. |

The proof of Theorerf] 2 is now an immediate consequence ohtegral formula[(3).

Proof of Theoreni]2Lemma[B and Propositidih 2 imply that the solutieto (@) isC*+? up to the initial
timet¢ = 0 and that

0 _ !
mwm+mmmww+@/ %m+@rﬁ%)“w”%ww&m:a
It follows that 0 ( )
Ug(Ts + 2
ut(O,x*) - —CI /OO |2|77/3 dz < 0.
There then exists, > 0 such thatu(t., z.) < 0. The proof of Theorerﬁ| 2 is now complete. [ |

7 Numerical simulations

The aim of this part is to show some numerical simulationgflpr An explicit discretization gives results
in line with the theoretical study (see Remfk 2).
We write (1) with a viscous coefficient > 0 as follows:

2
Oyu + Oy (% + E[u]) —e0%u =0, (36)

where for anyy € S(R) andz € R,

+00 ]
cmmwzé <173/ (@ — Q)dc.

The viscous coefficient is taken sufficiently small, in orttemagnify the erosive effect of the non-local
term. The new definition of the non-local terdi[¢| = 9,L[u]) follows [B], which interpretesC[u] as
a flow. Notice that in[[B[]6], the bottom is, in fact(t,z) = u(t,z + ¢/(1)t), whereq is the bedload
transport of sediments; for the sake of simplicity, we amunti to work withu.

To shed light on the effect of the nonlocal term, we compaeeetvolution of the solution of (B6)
with the solution of the viscous Burgers equation:

u2

Oy + Oy <7> —02,u=0. (37)

20



7.1 Maximum principle for the viscous Burgers equation

It is well-known that [[J7) satisfies the maximum principler &ny initial datauy € L*>°(R), ess-infuy <

u < ess-supyy. As a consequencd, {37) cannot take into account erosiaropfena. To simulate the
evolution ofu, we define a regular discretization [0f L] with a spatial stepg\z such thatl = M Az,
and a discretization df), 7'] with a time stepAt such thatl’ = NAt. We letxz;, t,, andu] respectively
denote the poiniAz, the timenAt and the computed solution at the pointAt,iAz). We use the
following explicit centered scheme:

1(ur ) = (@ ,)? wl = 2ul +ul
n+1 — At - +1 1—1 +1 7 1—1 38
i i 2 2Ax e Ax? (38)
It is well-known that this scheme is stable under the CFLI®@@ondition:
Az Az
At = min (22 22 ) (39)
lu| = 2e

To convince the reader, let us simulate the evolution of teé-known following travelling waves of

B7) fore = 1:
= [ (1 (o 2]

We expose in FigurF 3 both analytic and numerical solutidée.observe an error of the order f *
between these solutions. Let us now take, as an initial dhedpllowing small regular perturbation on

—— numerical solution
3.5+ - - - analytic solution |

w
T

2.5¢

N
T

1.51

[y
T

0.5

20
Figure 3: Numerical and analytic travelling waves of thecwiss Burgers equation.

the bottom:

—1

_(e— L2 e I L

up(z) = el-@=%) |f5—}<x<§+1, (40)
0 otherwise

We describe its evolution in Figufg 4. The dune propagatgsadomentioned above the erosion phenom-
ena are not taken into account sinceemains positive (because of the maximum principle).

Remark 8. Equation(fl]) also admits travelling wave solutions, s¢k [1].
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70,2008

" 0.1575

" 0.1125
e /00075

7" 0.0225
Figure 4: Evolution of the solution of (B7) with, defined in [4P) L = 30, M = 4001 ande = 0.1).

7.2 Erosive effect of the nonlocal term

Let us return to the study of (36). We add the discretizatibthe non-local operatof to the explicit
centered schemé¢ (38). It is natural to consider the follgvdiscretization:

+oo n .
o 5% gt e e
- 2Ax ’

Instead we will approximate

i n — .
o 3ot et
s 2Ax

This is based on the assumption thatfof [0, L],

/ ¢ 3 Buult, = — €)dC. (1)

This fact is not true for general, but if we assume that the initial profile) satisfiesuy(xz) = 0,Vx <0
and semi-discretize in time Equatidn](36), we get :
2

)= OnLlute, )]+ <)
We observe that(t + At,z) = 0, Vo < 0 and by inductionu(t,,,z) = 0 Vz < 0, Vn. Now

) = /0 €173 Byt & — ).

u(t+ At,x) = u(t,x) + At <—61(
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Actually, we takeuy € C°(R) and suppug) cC (0, L) (see Figuré]5). Moreover, Lemrfla 3 suggests

The initial dune

(L/2')—1 (L2 (L/2')+1

Figure 5: The initial dune defined ifi {40).

that all the derivatives of are continuous with values ib”> w.r.t. the time variable up to the tinte= 0.
It then is natural to expect that (at least for small times)y&mn (41) is a good approximation.
We then use the following explicit scheme fpr](36):

2 2
s S 1 (uiy)” = (wy)” Lludy] — Lui ] 8“?+1 —2ui +uiy
g ! 2 2Ax 2Ax Az?

As far as the stability condition, one can numerically se §89) is still ensuring stability for small
Az. The evolution of the initial dung (B0) is given in Pictte/As the solutions of the viscous Burgers
equation, the dune is propagated downstream but we nowvabaarerosive process behind the dune:
the bottom is eroded downstream from the dune, as shown irafkgin

Let us make a final remark. We are aware of that the fact thaethemerical simulations are a first
crude attempt. To tackle rigorously the non local term wawded further study, which will be reported
elsewhere.
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0.2025

0.1575

= 0.1125

0.0075

0.025

Figure 6: Evolution of an initial dune, by using the non-loozodel (3§) € = 30, M = 4001 and
e =0.1).

A Some technical lemmas.

We first recall a generalization of Gronwall’s lemma provegl én [4].

Lemma 4. Letg : [0,7] — R, be a bounded measurable function and suppose that thereoaitve
constants”, A andf > 0 such that, for alit < T',

g(t) <A+ C /Ot(t — )97 1g(s) ds.

Then,

sup g(t) < Cr4,
0<t<T

where constanf'; does not depend oA.
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Lemmas. Let f, g € L2(R). Then,f x g € C(R) and for allz, y € R,

[f9(@) = f+9W)| <T@y f = Fll2@llgll2w)-

Proof. The result is immediate if andg are smooth; indeed,

|f xg(z) — f*9(y)l /Rf(w —2)g(2)dz — /Rf(y — 2)g(2)dz

[ 1@ =2~ =)=
< NT@—yy f = Fllezwllgllr2 -

)

IN

The result for generaf andg only L?, is then obtained by density. |
Lemma 6. Letu € C([0, T]; L*(R)). Thensup,ejory ||Za(ult, ) — u(t, )| 2 ) — 0, ash — 0.

Proof. The functionu is uniformly continuous with values ifi? as a continuous function on a compact
set[0,T]. For anys > 0, there then exist finite a sequente- ¢ty < t; < ... < ty = T such that for
anyt € 0,71, there existg € {0,..., N — 1} with

lu(t,-) = ulty, 2@ <e

Moreover,

1Tt ) — ult, 2y < 1T (ult, ) = TnCulty, Dl 2
+ [T (ulty, ) — ulty, )lrzw) + [lulty, ) — w(t, )2 @)-
Since|| T (u(t,-)) = Tn(ulty, )l 2wy = lu(t,-) — ulty, )llr2r), We get:
[Tt ) = ult, Mra@ < |Tn(ulty, ) = ulty, 2 + 2ty ) = ult, )l 2@,
< M Tn(ulty, ) = ulty, )l 2y + 2
By the continuity of the translation if*(R), |7, (u(t;,-)) — u(t;, )| 2®) — 0, @sh — 0. Then,

lim sup [|75 (u(t, -)) = ut, 2@ < 2e-

Taking the infimum w.r.te > 0 implies the result. [

Lemma 7. Letu € C([0, T]; L?(R)) such thatu is continuous w.r.t. the variable uniformly int. Then,
ue C(0,T] x R).

Proof. Let (tp,z0) € [0,7] x R. Lete > 0. By the regularity ofu w.r.t. the space variable, we know
that there existg > 0 such that for any € [0, 7] and allz, y € [z¢ — 1,z + 7],
’u(t07 1’0) - U,(t, 1’)’ < ‘U(to, .%'0) - u(t07 y)‘ + ’U(to, y) - u(t7 y)‘ + ’U(t, y) - u(t7 .%')‘7
< e+ |ulto,y) —ult,y)| +e.
If we integrate w.r.ty € [xo — 1, zo + 1], then we get:

xo+n

1
2n|u(to, zo) — u(t, )| < den + / u(to,y) — u(t,y)ldy < 4en(2n)2[[u(to, ) — u(t,)||r2(r)-

To—"n
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By the continuity ofu with values inL?,

limsup |u(to, xo) — u(t, z)| < 2e.
(t,:l})gr(to,:ljo)

Taking the infimum w.r.te > 0 completes the proof. [
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