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Abstract

Concerned with pathological voice assessment, this paper aims
at characterizing dysphonia in the frequency domain for a better
understanding of relating phenomena while most of the studies
have focused only on improving classification systems for diag-
nosis help purposes. In this context, a GMM-based automatic
classification system is applied on different frequency ranges
in order to investigate which ones are relevant for dysphonia
characterization. Experiment results demonstrate that the low
frequencies [0-3000]Hz are more relevant for dysphonia dis-
crimination compared with higher frequencies.
Index Terms: dysphonia characterization, pathological voice
and speech, automatic speaker recognition

1. Context
Many studies have focused on the objective measurement-
analysis for dysphonic voice assessment, proposed as an alter-
native to the perceptual evaluation [13] (the most widely used
by clinicians). In most cases, these studies describe classifi-
cation systems, acoustic, physiological and/or aerodynamical
analysis in order to improve voice classification performance
and to help clinicians making their decision [15][8][14]. A few
studies have been dedicated to the analysis of dysphonia effects
on the speech signal [5][10][16]. Indeed, if an expert is able to
assess a dysphonic voice according to a quality scale like the
Hirano’s GRBAS scale [6], it is more difficult for him/her to
bring acoustic justification for his/her choice.
As dysphonia is essentially related to the vocal source, most of
the studies have focused on parameters directly linked to this vi-
brator (FO stability, intensity, harmonics to noise ratio...). Other
studies are related on the global timbre of the voice, assum-
ing that the acoustic characteristics of dysphonia are distributed
uniformly on the whole spectrum. One of the originality of this
paper is to investigate the characteristics of dysphonia in the
frequency domain, especially by studying relating phenomena
through a frequency subband analysis. The second originality is
to rely on an automatic system dedicated to the dysphonic voice
classification and derived from the Automatic Speaker Recog-
nition technology [4]. This system will be applied on different
frequency subbands, which should permit to analyse the rel-
evance of the latter for the characterization of the dysphonic
voices. This paper pursues work reported in [12] in which a
simpler subband architecture (directly built from the spectrum
coefficients) was utilized.
The paper is organized as follows: the dysphonic voice cor-
pus used in this paper is first presented in section 2, followed
by the baseline classification system in section 3 as well as the
subband-based analysis in section 4. Section 5 is dedicated to
the experiments and result discussion. Finally, section 6 draws
some conclusions and proposes some perspectives.

2. Dysphonic speakers
The corpus used in this study is composed of speech excerpts
pronounced by both dysphonic subjects (affected by nodules,
polyps, oedema, cysts...) and control group. The subjects’
voices are classified according to the G parameter of the Hi-
rano’s GRBAS scale [6], where a normal voice is rated as grade
0, a slight dysphonia as 1, a moderate dysphonia as 2 and, fi-
nally, a severe dysphonia as 3.
The corpus was supplied by the Experimental and Clinical
Audio-Phonology Laboratory (LAPEC - Hospital La Timone
- Marseille). It is composed of 80 voices of females aged 17
to 50 (mean: 32.2). The speech material is obtained by read-
ing the same short text (French), which signal duration varies
from 13.5 to 77.7 seconds (mean: 18.7s). The 80 voices are
equally balanced among the 4 perceptual grades (20 voices per
each), which were determined by a jury composed of 3 expert
listeners. This perceptual judgment was carried out by consen-
sus between the different jury members, as it is the usual way
to assess voice quality by our therapist partners, considering the
G parameter of the GRBAS scale uniquely. The judgment was
done during one session only.
This corpus is used for all the experiments presented in this pa-
per. Due to its small size, cautions have been made to provide
statistical significance of the results by applying specific meth-
ods like, for instance, leave_x_out technics [4].

3. Baseline classification system
The baseline system is derived from a classical speaker recog-
nition (ASR) system adapted to dysphonic voice classification.
The ASR system is based on the state-of-the-art GMM mod-
elling. It relies on the ASR toolkit, available in « open source »
(LIA_SpkDet and ALIZE [3]) and developed at the LIA lab-
oratory. Three phases are necessary and are described in the
following sections.

3.1. Parameterization

The speech signal is parameterized as follows: the signal (pre-
emphasized with 0.95 value) is characterized by 24 spectrum
coefficients issued from a filter-bank analysis (24 filters) applied
on 20ms Hamming windowed frames at a 10ms frame rate. The
filters are triangular and either equally spaced along the entire
linear scale to yield Linear Frequency Spectrum Coefficients
(LFSC) or distributed along a MEL scale (close to the hear-
ing perception) to yield MEL Frequency Spectrum Coefficients
(MFSC). The first and second derivatives of the LFSC/MFSC
coefficients are added (Δ and ΔΔ) to the parameters in order
to catch short-term dynamic information. Finally, parameters
are normalized to match a 0-mean and 1-variance distribution
(mean and variance are estimated on speech signal only, after
discarding non-speech signal).
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3.2. Modelling

In ASR, state-of-the-art systems rely on the statistical mod-
elling: Gaussian Mixture Model (GMM)[2]. A GMM is a
weighted sum of M multi-dimensional Gaussian distributions,
each characterized by mean vector x (dimension d), covari-
ance matrix Σ (d x d) and weight p of the Gaussian compo-
nent within the mixture (diagonal covariance matrices are used
in this work). A GMM model is built on a training data set by
estimating the parameters (x, Σ, p) thanks to the EM/ML algo-
rithm (Expectation-Maximization/Maximum Likelihood).
Classically, two training phases are necessary to cope with the
frequent lack of training data available for a speaker [2]: (1)
training of a generic speech model estimated by the EM/ML al-
gorithm on a large population of speakers; (2) training of the
speaker model, derived from the generic speech model by ap-
plying adaptation techniques (MAP, Maximum a posteriori).
In the pathological context, a model doesn’t correspond any-
more to a speaker but to a dysphonia severity level. It will be
named grade model Gg with g ∈ {0, 1, 2, 3}. Grade model
Gg is learned gathering all the voices evaluated as grade g. It
can be noted that all the voices used for the grade model train-
ing are excluded from the test trials in order to differentiate the
detection of the pathology from the speaker recognition.
All GMM models are composed of 128 gaussian components
with diagonal covariance matrices.

3.3. Classification and decision

In ASR domain, a test trial consists in computing a similarity
measure between a test signal and the GMM model of a given
speaker, following: L(yt|X) =

∑M
i=1 pi Li(yt) where Li(yt)

is the likelihood of signal yt given gaussian i, M the number of
gaussians and pi the weight of the gaussian i.
The decision is made by selecting grade g of model Gg for
which the largest likelihood is measured given a test voice.

4. Subband-based analysis
4.1. Objective

The subband-based analysis consists in cutting the frequency
domain in subbands processed independently. The main moti-
vation of this approach resides in the assumption that the rele-
vance of frequency information can be dependent on the band
of frequencies considered. For example, [1] shows that some
subbands seem to be more relevant to characterize speakers
than some others for the ASR task. In the same way, subband
architecture-based approaches have been used for the automatic
speech recognition task in adverse conditions, since subbands
may be affected differently by noise [9].
In this paper, the subband-based analysis is used in order to
study how the acoustic characteristics of dysphonia are spread
out along different frequency bands depending on the severity
level: « is a frequency subband more discriminant than another
for dysphonic voice classification ? ».

4.2. Subband description

In this paper, the full frequency band [0-8000]Hz is split into in-
dividual variable width subbands (e.g. 1000Hz width) on which
the classification system (described in section 3) is applied af-
terwards. The linear scale is preferred to the MEL scale in order
to keep homogeneous spectral analysis over the subbands.
It has to be noted that the subband-based analysis involved in
this paper is different from a subband architecture (as used in

[1][9][12]) since the overall classification system is directly ap-
plied on a given frequency range instead of utilizing information
extracted from the parameterization.

5. Experiments
Results provided in this section are either expressed in terms of
correct classification rates (named CCR in the rest of the paper)
- the number of well-classified voices is also provided in brack-
ets - or presented in confusion matrix form (a confusion matrix
provides the error number and the type of confusion between
the response given by the system - noted TGx in the paper -
and the perceptual reference - noted RGx. The matrix diagonal
provides the number of correct matches).
Note: all the results, presented in next sections, are issued from
the GMM classifier and have to be interpreted from a statistical
viewpoint.

5.1. Subband-based analysis

In this first experiment, eight 1000Hz-width subbands are
processed invidually through the classification system. Classifi-
cation performance is presented per subband: Table 1 compares
performance of the individual subbands and the full band
(CCR) while table 2 provides confusion matrices per subband.
From these different results, three main trends can be observed:
• Frequency bands between 0 and 3000Hz get the best per-
formance with an overall CCR varying from 55% to 70%. In
detail, the subband [0-1000]Hz exhibits 70% CCR for grade 3
voices (similarly to the full band), the subband [1000-2000]Hz
gets 95% CCR for grade 0 voices, outperforming the full
band rate (85% CCR) (see table 3 for the full band confusion
matrix), and 75% CCR for grade 1 voices (vs 55% CCR for the
full band). It also provides the best performance for the grade
2 voices with 50% CCR. Furthermore, it can be noted that the
classification errors are distributed on the adjacent grades in
most cases (e.g. On subband [0-1000]Hz, classification errors
for the grade 2 are reported on grades 1 and 3 with 8 and 5
errors respectively).
• Frequencies between 3000 and 5000Hz exhibit the worse
overall performance. The normal voices (grade 0) get a satis-
factory score of 65% CCR only, despite a loss of performance
compared with the full band (85% CCR). On the other side,
a strong confusion can be observed for the dysphonic voices,
leading to very low scores (20% CCR).
• Frequencies upper than 5000Hz provide better overall per-
formance compared with the previous subbands even though
most of the classification errors are scattered over the grades,
still demonstrating a large confusion. On the contrary, it can
be observed that severe dysphonic voices (grade 3) are well
classified in both subbands between 5000 and 7000 Hz (70%
CCR) and [7000-8000]Hz (80% CCR, best score).

Finally, figure 1, which summarizes results (number of cor-
rect classification per grade and per individual subband) high-
lights (1) the difficulties to classify grade 2 voices whatever the
individual subband considered, (2) the ability of low frequen-
cies to discriminate most of the voices, except grade 2 voices,
(3) the "surprising" performance of grade 3 voices on high fre-
quencies despite the low rate of speech in this zone.

5.2. Joint frequency bands

This section focuses on the three frequency zones highlighted
in the previous section. Here, the classification scheme is
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Figure 1: Voices correctly classified from the 4-G classification fol-
lowing different frequency subbands (LFSC parameters)

Table 1: 24LFSC - Results of the 4-G classification following different
frequency subbands in terms of % CCR

Grade 0 Grade 1 Grade 2 Grade 3 Total

24LFSC % CCR % CCR % CCR % CCR % CCR

(nb/20) (nb/20) (nb/20) (nb/20) (nb/80)

Full Band 85.0 (17) 55.0 (11) 50.0 (10) 70.0 (14) 65.00 (52)

[0-1000]Hz 85.0 (17) 60.0 (12) 35.0 (7) 70.0 (14) 62.50 (50)

[1000-2000]Hz 95.0 (19) 75.0 (15) 50.0 (10) 60.0 (12) 70.00 (56)

[2000-3000]Hz 80.0 (16) 50.0 (10) 25.0 (5) 65.0 (13) 55.00 (44)

[3000-4000]Hz 65.0 (13) 35.0 (7) 35.0 (7) 25.0 (5) 40.00 (32)

[4000-5000]Hz 65.0 (13) 25.0 (5) 20.0 (4) 20.0 (4) 32.50 (26)

[5000-6000]Hz 40.0 (8) 65.0 (13) 20.0 (4) 70.0 (14) 48.75 (39)

[6000-7000]Hz 40.0 (8) 40.0 (8) 35.0 (7) 70.0 (14) 46.25 (37)

[7000-8000]Hz 65.0 (13) 20.0 (4) 30.0 (6) 80.0 (16) 48.75 (39)

[0-3000]Hz 90.0 (18) 65.0 (13) 65.0 (13) 65.0 (13) 71.25 (57)

[3000-5400]Hz 65.0 (13) 40.0 (8) 25.0 (5) 65.0 (13) 48.75 (39)

[5400-8000]Hz 65.0 (13) 35.0 (7) 45.0 (9) 70.0 (14) 53.75 (43)

performed on the following frequency subbands: [0-3000]Hz,
[3000-5400]Hz and [5400-8000]Hz. This experiment aims at
taking benefit of the complementarity of individual subbands.
Tables 1 and 3 report CCR and the confusion matrices per fre-
quency band respectively, on which it can be pointed out that:
• the [0-3000]Hz band, mainly covering the formant zone, is
the most interesting frequency band. First, an overall 71.25%
CCR is reached (compared with 65% CCR on [0-8000]Hz and
70% CCR on [1000-2000]Hz). Secondly, grade 2 voices reach
their best CCR (65% CCR vs 50% for both the full band and the
best individual subband [1000-2000]Hz); Finally, the joint use
of the individual subbands results in classification performance
more homogeneous and satisfactory along the different grades,
especially regarding the grade 2 voices.
• the [3000-5400]Hz band, mainly related to the fricative and
plosive zone, gets the lowest overall CCR (48.75%) compared
with the other bands. Confusion observed in the individual sub-
bands is still present, except for the grade 3 voices, which tend
to take benefit of the complementarity of the individual sub-
bands (65% CCR vs 25% and 20%).
• the [5400-8000]Hz band, related to the residual zone of frica-

Table 2: Confusion matrices of the 4-G classification following differ-
ent frequency subbands (LFSC parameters)

[0-1000]Hz

RG0 RG1 RG2 RG3

TG0 17 3 0 0

TG1 2 12 5 1

TG2 0 8 7 5

TG3 2 2 2 14

[1000-2000]Hz

RG0 RG1 RG2 RG3

TG0 19 1 0 0

TG1 2 15 1 2

TG2 1 3 10 6

TG3 0 1 7 12

[2000-3000]Hz

RG0 RG1 RG2 RG3

TG0 16 3 1 0

TG1 5 10 3 2

TG2 5 3 5 7

TG3 0 0 7 13

[3000-4000]Hz

RG0 RG1 RG2 RG3

TG0 13 5 2 0

TG1 7 7 4 2

TG2 4 8 7 1

TG3 0 9 6 5

[4000-5000]Hz

RG0 RG1 RG2 RG3

TG0 13 4 3 0

TG1 6 5 6 3

TG2 6 7 4 3

TG3 3 4 9 4

[5000-6000]Hz

RG0 RG1 RG2 RG3

TG0 8 7 4 1

TG1 3 13 3 1

TG2 4 7 4 5

TG3 1 1 4 14

[6000-7000]Hz

RG0 RG1 RG2 RG3

TG0 8 4 6 2

TG1 5 8 3 4

TG2 4 4 7 5

TG3 0 2 4 14

[7000-8000]Hz

RG0 RG1 RG2 RG3

TG0 13 2 3 2

TG1 9 4 6 1

TG2 5 3 6 6

TG3 1 1 2 16

tives and plosives, provides reasonable performance for the
normal (65% CCR) and severe dysphonic voices (70% CCR).
Regarding the speech information carried by this band, grade
3 voice CCR may be explained by the resulting noise of the
« veiled » (or « blown ») features of severe dysphonic voices.
In contrary, it is more difficult to explain the behavior of the
normal voices in this band, except by a « discriminant lack of
information ».

5.3. Application to the complete system

According to the frequency analysis performed above, the com-
plete classification system is applied on the best frequency
band: [0-3000]Hz and compared with the full band [0-8000]Hz-
based system. 24 spectrum coefficients plus first and second
derivative coefficients are utilized for classification, involving
either a Linear or MEL scale.
Table 4 gives performance in terms of CCR for each config-
uration. Here, we can observe that [0-3000]Hz band permits
to improve classification performance over all the grades com-
pared with the full frequency band ([0-8000]Hz) using both
MEL and Linear scales. The best performance is reached by
the MFSC coefficients, which, coupled with the derivative co-
efficients, gets 80% CCR (against 76.25% on the full band).
The performance gain classically brought by using the deriva-
tive coefficients (Δ and ΔΔ) is still observed here.

1200



Table 3: Confusion matrices of the 4-G classification following differ-
ent frequency ranges (24LFSC)

[0-3000]Hz

RG0 RG1 RG2 RG3

TG0 18 1 1 0

TG1 1 13 6 0

TG2 0 6 13 1

TG3 0 2 5 13

[3000-5400]Hz

RG0 RG1 RG2 RG3

TG0 13 6 1 0

TG1 8 8 2 2

TG2 7 6 5 2

TG3 2 1 4 13

[5400-8000]Hz

RG0 RG1 RG2 RG3

TG0 13 4 3 0

TG1 8 7 4 1

TG2 5 3 9 3

TG3 0 1 5 14

[0-8000]Hz (Full Band)

RG0 RG1 RG2 RG3

TG0 17 2 1 0

TG1 2 11 5 2

TG2 2 6 10 2

TG3 0 1 5 14

6. Conclusion
In this paper, the authors propose to study how the acoustic
characteristics of dysphonia are spread out along the frequency
domain by analyzing the performance of an automatic dyspho-
nic voice classification on different frequency ranges. This sub-
band analysis outlines that low frequencies tend to be the most
interesting zones, leading to an homogeneous discrimination
between voices. Additional experiments, involving a more com-
plex parameterization (MFSC plus Δ and ΔΔ), show that the
use of the restricted frequency band [0-3000]Hz (compared with
the [0-8000]Hz full band) provides a very good compromise for
the classification over all the grades.
In further work, this study will be coupled with a phonetic anal-
ysis [11] in order to evaluate how the dysphonia effects may
impact on phonemes or phoneme classes in particular subbands
according to the grades. Moreover, it will be interesting to com-
pare the results presented in this paper with a perceptual eval-
uation of dysphonic voices performed by an expert jury within
restricted frequency bands. On the other side, the results re-
ported in this paper are issued from statistical observations. For
instance, even if a subband appears as discriminant (e.g. [5400-
8000]Hz for the grade 3), relevance may be due to either a pres-
ence of signal information or a lack of energy, compared with
the other bands. These two alternatives can draw different in-
terpretations. Therefore, results outlined in this paper have to
be validated in the future from a physio-pathological or clini-
cal analysis. The authors will first investigate some results in
laryngology [7], which could bring some explanations to the
observed behaviors.
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