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Automatic insertion of a turbulence model in the

finite element discretization of the Navier–Stokes equations

by Christine Bernardi1, Tomás Chacón Rebollo1,2, Frédéric Hecht1 and Roger Lewandowski3

Abstract: We consider the finite element discretization of the Navier–Stokes equations
locally coupled with the equation for the turbulent kinetic energy through an eddy viscosity.
We prove a posteriori error estimates which allow to automatically determine the zone
where the turbulent kinetic energy must be inserted in the Navier–Stokes equations and
also to perform mesh adaptivity in order to optimize the discretization of these equations.
Numerical results confirm the interest of such an approach.

Résumé: Nous considérons une discrétisation par éléments finis des équations de Navier–
Stokes couplées localement avec l’équation de l’énergie cinétique turbulente par une vis-
cosité turbulente. Nous prouvons des estimations d’erreur a posteriori qui permettent
de déterminer automatiquement la zône où l’énergie cinétique turbulente doit être insérée
dans les équations de Navier–Stokes et simultanément d’adapter le maillage pour optimiser
la discrétisation de ces équations. Des résultats numériques confirment l’intérêt d’une telle
approche.
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error estimates.
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1. Introduction.

Let Ω be a connected bounded open set in R
d, d = 2 or 3, with a Lipschitz–continuous

boundary ∂Ω. The following system models the stationary flow of a viscous incompressible
turbulent fluid





−div
(
ν(k)∇u

)
+ (u · ∇)u + grad p = f in Ω,

div u = 0 in Ω,

−div
(
α(k)∇k

)
= ν(k) |∇u|2 − k

√
k

ℓ
in Ω,

u = g on ∂Ω,

k = 0 on ∂Ω.

(1.1)

The unknowns are the velocity u, the pressure p and the turbulent kinetic energy k, while
the data are the distribution f and the function g. The functions ν and α are positive and
the parameter ℓ, which represents the mixing length scale, is also positive. We refer to [35,
Chap. 4] for the derivation of such a model. The main difficulty for its analysis is due to the
fact that the right-hand member of the third equation is a priori not more than integrable.
However the existence of a solution for similar problems when the function ν is bounded
is proved in [19] and [29]. When the function ν is not bounded, the existence result is also
established in [28, Chap. 5] for a scalar equation by a renormalization argument and in
[27] for problem (1.1) by a regularity argument. It is also established in [3] and [4] in the
case of two coupled fluids. Relying on the approach of [3] and [27], it can be checked that
problem (1.1) admits a solution when the function ν satisfies some additional assumptions.

In this work, both for mathematical convenience and in order not to handle all diffi-
culties together, we consider the simplified model





−div
(
ν(k)∇u

)
+ (u · ∇)u + grad p = f in Ω,

div u = 0 in Ω,

−α∆k = ν(k) |∇u|2 in Ω,

u = 0 on ∂Ω,

k = 0 on ∂Ω,

(1.2)

where α is now a positive constant. The replacement of nonhomogeneous boundary condi-
tions by homogeneous ones, i.e., taking g equal to 0, is only aimed to avoid the technical
difficulties of the Hopf lemma, see [20, Chap. IV, Lemma 2.3]. Note also [4, §2] that the
replacement of div

(
α(k)∇k

)
by α∆k comes from Kirchoff’s change of unknown. More-

over, as suggested in [35, Chap. 4] and [10], we assume that the function ν admits the
simple expansion

∀ξ ∈ R+, ν(ξ) = ν0 + ν1
√
ξ, (1.3)
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for positive constants ν0 and ν1. Indeed, in practical situations, ν1 is a function which
depends on the mixing length ℓ which appears in (1.1) and is approximatively of the same
order; so, it is not restrictive to assume that it is constant in the case of problem (1.2).

Following the recent works [5] and [30], we are interested in the finite element dis-
cretization of the still rather complex system (1.2). Our approach relies on the following
remark: Both experiments of measurements and numerical simulations indicate that, in
a large part of the domain Ω, the turbulent energy k is negligible. So, our idea is to
replace ν(k) by ν0 in all subdomains where the quantity ν1

√
k can be neglected without

increasing the global discretization error. Thus, we work with a finite element discretiza-
tion of the reduced problem only. We refer to J. Hoffman and C. Johnson [24][25] for a
similar approach but in the completely different framework of coupling the so-called Direct
Numerical Simulation and Large Eddy Simulation algorithms.

Of course, the discretization of the reduced problem must be coupled with mesh adap-
tivity since small turbulence scales cannot be captured where the mesh is too coarse. The
mathematical arguments for an optimal choice of the model coupled with mesh adaptiv-
ity relies on the a posteriori analysis of the discrete problem, and the main ideas for the
automatic coupling of models are due to M. Braack and A. Ern [8]. Proving a posteriori

estimates for nonlinear problems also relies on the approach of J. Pousin and J. Rappaz
[38]. In addition, we need to handle some specific difficulties to build the error indicators
related to the finite element discretization which are due to the nonlinear nature of the
turbulent viscosity. We use arguments due to R. Verfürth [41, Chap. 3] for that. Note
that, in any case, the deep links between the model and the mesh make the numerical
analysis of the discrete problem more complex. However the numerical experiments that
we present justify the interest of solving only a reduced problem.

An outline of the paper is as follows:
• The main ideas and the corresponding algorithm for the automatic insertion of the
turbulence model are described in Section 2.
• In Section 3, we recall the arguments for proving the existence of a solution to problem
(1.2).
• Section 4 is devoted to the analysis of a fixed reduced problem. A first a posteriori

estimate is also derived.
• In Section 5, we describe the finite element discrete problem based on the variational
formulation of the previous reduced problem. We prove the existence of a solution and a
priori error estimates.
• In Section 6, we introduce two different families of error indicators, the first one being
linked to the reduction of the problem and the second one to the finite element discretiza-
tion. We prove a posteriori upper and lower bounds for the global error as a function of
these indicators.
• In Section 7, we present some numerical experiments that are in good coherence with
the analysis and justify the interest of automatic modeling.
• Some conclusions are given in Section 8.
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2. The ideas for automatic modeling.

The aim of automatic modeling in the present framework is to exhibit a partition of
the domain Ω without overlap

Ω = Ωt ∪ Ωℓ and Ωt ∩ Ωℓ = ∅, (2.1)

(where the indices t and ℓ stand for turbulent and laminar, respectively), such that the
finite element discrete problem associated with system (1.2) is solved with the viscosity
ν(k) replaced by a constant ν0 on Ωℓ. This partition is considered as optimal when the
domain Ωℓ is chosen such that
• the total computation time is highly diminished,
• the error is not significantly increased,
in comparison with solving the discrete problem associated with the full system (1.2).
Indeed, the turbulence zone is limited to a part of the domain in a large number of flows
such as wakes, jets, boundary layers and so on.

From now on, system (1.2) with the viscosity ν(k) replaced by a constant ν0 on Ωℓ is
called “reduced problem”, and its finite element discretization is called “reduced discrete
problem”.

We propose an iterative algorithm for the choice of Ωℓ and Ωt and of a corresponding
triangulation, which is based on two families of error indicators (such indicators are defined
in (6.46) and (6.4)− (6.5)): The first family deals with the modelization error and is made
of error indicators ηm

K for all elements K of the triangulation which are contained in Ωℓ and
the second one is made of the standard residual error indicators ηK related to the finite
element discretization for all elements K of the triangulation. Note that an analogous
strategy is used in [24] and [25] for the a posteriori error control of specific quantities.

Remark 2.1. In contrast with many other problems of automatic modeling, see [8], the
choice of Ωt and Ωℓ cannot be made independently of the mesh adaptation. Indeed using
the turbulence model in subdomains where the mesh is too coarse is meaningless since
such a mesh cannot capture the small turbulence scales. So, in our case, the two types of
adaptivity must be performed simultaneously.

Initialization step: We first fix a triangulation T 0
h of the domain Ω such that the

distance of the data f to an appropriate finite element space relying on this mesh is
smaller than a given tolerance η∗ (the importance of such a choice is brought to light in
[17]). We take Ω0

t = ∅ and Ω0
ℓ = Ω. So we first solve the discrete Navier–Stokes equations

(without eddy viscosity), next the discrete equation on k. Note indeed that the first and
second line in (1.2) on one hand, and the third line on the other hand are uncoupled here
and moreover that the third line is a linear problem. Thus we are in a position to compute
the error indicators ηm

K and ηK .

Adaptation step: We assume that a partition of Ω into two subdomains Ωn
t and Ωn

ℓ

satisfying (2.1) is known, together with a triangulation T n
h . We compute the solution of

the associated reduced discrete problem, next the corresponding error indicators ηm
K and

ηK , together with the mean values ηm
h of the ηm

K and the mean value ηh of the ηK . Next,
we perform adaptivity in four substeps.
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1. Adaptivity due to modeling error.
All K in T n

h such that ηm
K is ≥ ηm

h (we recall that such K are contained in Ωn
ℓ ) are inserted

in a new domain Ω̃n+1
t . More precisely, this new domain Ω̃n+1

t is the union of Ωn
t and of

these new K.

2. Decomposition regularization.
We perform the following regularization: Any element K which is not imbedded in Ω̃n+1

t

but is surrounded by elements which are imbedded in Ω̃n+1
t , now belongs to the new domain

Ωn+1
t . We skip the details for the construction of Ωn+1

t and choose Ωn+1
ℓ such that (2.1)

holds.

3. Mesh refinement due to the change of decomposition.
The triangulation is automatically refined in the elements which belong to Ωn+1

t and not to
Ωn

t , in order to capture the new scales of turbulence: Each of these elements is divided into
smaller subelements according to the ratio ηm

h /η
m
K . This gives rise to a new triangulation

T̃ n+1
h .

4. Adaptivity due to discretization error.
When associating with each K in T̃ n+1

h which do not belong to T n
h the ηK′ , where K ′

belongs to T n
h and contains K, we are in a position to perform a standard finite element

adaptivity strategy: The diameter of a new element contained in K or containing K is
proportional to hK times the ratio ηh/ηK , where hK denotes the diameter of K. We refer
to [18] among others for more details on this procedure, specially in dimension d = 3. This
gives rise to the triangulation T n+1

h .

The adaptation step is of course iterated either a finite number of times or until both
quantities

max
K∈T n

h
,K⊂Ωn

ℓ

ηm
K and max

K∈T n
h

ηK ,

become smaller than the tolerance η∗.

Remark 2.2. Observe that Ωn
t is contained in Ωn+1

t for all n. A more complex strategy
must be used when working with the time-dependent system analogous to (1.2). Indeed,
some triangles in Ωn

t must go to Ωn+1
ℓ in order to handle vortices quickly moving from one

part of the domain to another one. However we do not consider this situation here.

The numerical experiments which are presented in Section 7 justify the interest of this
algorithm. Note also that the analysis which is performed in Sections 4 to 6 is perfectly
adapted to it. In particular, it leads to the construction of appropriate error indicators ηm

K

and ηK which make it very efficient.
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3. About the continuous problem.

Throughout this section, we make the following non restrictive assumptions on the
function ν:
• It is a positive function on R satisfying

∀ξ ∈ R, ν(ξ) ≥ ν0, (3.1)

for a positive constant ν0.
• It is bounded on R, i.e.

∀ξ ∈ R, ν(ξ) ≤ ν2, (3.2)

for a positive constant ν2.
• It is continuous on R.
Note that assumption (3.2) can be avoided: Recent results prove that most of the properties
below still hold in the two-dimensional scalar case [12] or when the function ν is concave
[27], but without convection term. However we prefer to work with (3.2), since this does
not induce any restriction of the model (in practical situations, k is always bounded).

We use the standard notation for the Sobolev spaces Wm,p(Ω) and Wm,p
0 (Ω) when

m is a positive integer and 1 ≤ p ≤ +∞. Moreover, with 1 < p < +∞ and 1
p

+ 1
p′ = 1,

W−m,p′

(Ω) is defined as the dual space of Wm,p
0 (Ω) (see [1, Thm 3.8] for its characteriza-

tion) and the corresponding duality pairing is denoted by 〈·, ·〉. We also need the spaces
Hs(Ω) for positive real numbers s. As usual, L2

0(Ω) stands for the space of functions in
L2(Ω) with a null integral on Ω.

From now on, we fix a real number r > d and take r′ such that

1

r
+

1

r′
= 1.

Thus, we consider the variational problem,

Find (u, p, k) in H1
0 (Ω)d × L2

0(Ω) ×W 1,r′

0 (Ω) such that

∀v ∈ H1
0 (Ω)d,

∫

Ω

ν(k)∇u : ∇v dx +

∫

Ω

(u · ∇)u · v(x) dx

−
∫

Ω

(div v)(x)p(x) dx = 〈f ,v〉,

∀q ∈ L2
0(Ω), −

∫

Ω

(div u)(x)q(x) dx = 0,

∀χ ∈W 1,r
0 (Ω), α

∫

Ω

grad k · gradχdx =

∫

Ω

ν(k) |∇u|2 χ(x) dx.

(3.3)

Indeed standard arguments yield that this formulation is fully equivalent to problem (1.2).
Moreover the product ν(k) |∇u|2 belongs to L1(Ω) and it follows from the Sobolev imbed-
ding theorem that χ belongs to L∞(Ω), so that the right-hand member of the third equation
is well defined.
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We first state an a priori estimate on the solutions of problem (3.3). Note that the
estimate concerning u is obviously derived by taking v equal to u in the first line of
(3.3). The estimate concerning p involves the standard inf-sup condition on the bilinear
form: (v, q) 7→ −

∫
Ω
(div v)(x)q(x) dx, see [20, Chap. I, Cor. 2.1]. We refer to [7] for the

argument leading to the estimate concerning k.

Proposition 3.1. For any data f in H−1(Ω)d, any solution (u, p, k) of problem (3.3)
satisfies the following bound

ν0 ‖u‖H1(Ω)d ≤ c ‖f‖H−1(Ω)d ,

‖p‖L2(Ω) ≤ c
(
(1 +

ν2
ν0

) ‖f‖H−1(Ω)d +
1

ν2
0

‖f‖2
H−1(Ω)d

)
,

α ‖k‖W 1,r′ (Ω) ≤ c
ν2
ν2
0

‖f‖2
H−1(Ω)d ,

(3.4)

for a constant c only depending on Ω and r.

Proving the existence of a solution for problem (3.3) relies on a fixed point theorem.
We refer to [29] for the details (see also [3] and [4] for analogous results in a more complex
situation). As already hinted, the next theorem requires assumptions (3.1) and (3.2) (see
[27] for other cases) and also the continuity of the function ν.

Theorem 3.2. For any data f in H−1(Ω)d, problem (3.3) admits a solution (u, p, k) in

H1
0 (Ω)d × L2

0(Ω) ×W 1,r′

0 (Ω). Moreover this solution satisfies (3.4).

Theorem 3.2 provides the existence result for problem (3.3) in the case we are inter-
ested in, i.e. when the viscosity ν is given by

∀ξ ∈ R, ν(ξ) = min
{
ν0 + ν1

√
ξ+, ν2

}
, (3.5)

where ξ+ stands for max{ξ, 0}. Indeed, applying the maximum principle yields that k is
nonnegative on Ω (see [28, Chap. 4, §4.4.3]). Moreover, it appears later on that, at least
in dimension d = 2, it is bounded. So this choice does not seem restrictive.

From now on, we assume that Ω is a polygon or a polyhedron. We intend to investigate
the regularity properties of the solution (u, p, k) in this case. The idea of the next proof
is due to N.G. Meyers [34]. It relies on the well-known property that the solution of the

Stokes problem with smooth enough data belongs to H
3
2 (Ω)d ×H

1
2 (Ω), see [22, §7.3.3] for

instance.

Proposition 3.3. There exists a real number q0 > 2 depending on the geometry of Ω and

on the ratio ν2/ν0 such that, for any q, 2 < q ≤ q0, and for any data f in W−1,q(Ω)d, any

solution (u, p, k) of problem (3.3) belongs to W 1,q(Ω)d × Lq(Ω) ×W 2, q
2 (Ω) and satisfies,

for a constant cq only depending on Ω, q, ν0 and ν2,

ν0 ‖u‖W 1,q(Ω)d + ‖p‖Lq(Ω) + α ‖k‖
W

2,
q
2 (Ω)

≤ cq
(
‖f‖W−1,q(Ω)d + ‖f‖2

H−1(Ω)d

)
. (3.6)

Proof: Let S♯ denote the Stokes operator, i.e., the operator which associates with any
data F in H−1(Ω)d, the part u of the solution (u, p) of the Stokes problem

{−∆u + grad p = F in Ω,
div u = 0 in Ω,
u = 0 on ∂Ω.

(3.7)
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When taking ν02 equal to ν0+ν2

2 , we observe that the first two lines in problem (1.2) can
equivalently be written as

u + S♯

(
div((1 − ν(k)

ν02
)∇u)

)
= S♯

(f − (u · ∇)u

ν02

)
. (3.8)

Furthermore, it follows from the Sobolev imbedding theorem that the term (u · ∇)u
belongs to Lr(Ω) for all r < 2 in dimension d = 2 and r ≤ 3

2 in dimension d = 3. Using

the fact that Lr(Ω) is imbedded in W−1,r∗

(Ω) if and only if the dual space W 1,r∗′

0 (Ω) of

W−1,r∗

(Ω) (with 1
r∗ + 1

r∗′ = 1) is imbedded in Lr′

(Ω) (with 1
r

+ 1
r′ = 1) combined with

the Sobolev imbedding theorem, we obtain that (u · ∇)u belongs to W−1,r∗

(Ω) for all
r∗ < +∞ in dimension d = 2 and r∗ ≤ 3 in dimension d = 3. The same arguments,
combined with (3.4), also yield that, for such an r∗,

∥∥∥
f − (u · ∇)u

ν02

∥∥∥
W−1,r∗ (Ω)d

≤ c
(
‖f‖W−1,r∗ (Ω)d + ‖f‖2

H−1(Ω)d

)
. (3.9)

Next, we observe that:
1) The Stokes operator S♯ is continuous from H−1(Ω)d into H1

0 (Ω)d with norm ≤ 1 and

also from W−1,q♯(Ω)d into W
1,q♯

0 (Ω)d for q♯ = 6 − d, see [21] or [32] and [33]. If χ denotes

the norm of S♯ in the space of linear applications from W−1,q♯(Ω)d into W
1,q♯

0 (Ω)d, an
interpolation argument (see [31, Chap. 1, Th. 5.1] or [1, Thms 7.17 & 7.20]) yields that
S♯ is continuous from W−1,q(Ω)d into W 1,q

0 (Ω)d for all q, 2 ≤ q ≤ q♯, with norm ≤ χθ(q),
where θ is a continuous increasing function on [2, q♯], equal to zero in 2 and to 1 in q♯ (we
do not make it precise for simplicity).
2) For any q, 2 ≤ q ≤ ∞, the norm of the divergence operator from Lq(Ω)d×d into
W−1,q(Ω)d is ≤ 1, and the same property holds for the norm of the gradient operator from
W 1,q(Ω)d into Lq(Ω)d×d.

3) For any q, 2 ≤ q ≤ ∞, and any function k, the norm of the multiplication by 1 − ν(k)
ν02

from Lq(Ω)d×d into itself is smaller than |1 − ν2

ν02
| = ν2−ν0

ν2+ν0
.

It follows from the previous arguments that the operator in the left-hand side of (3.8) is
an automorphism of W 1,q(Ω)d for all q ≤ q♯ such that

χθ(q) ν2 − ν0
ν2 + ν0

< 1. (3.10)

The existence of a q0 > 2 satisfying this condition comes from the fact that the limit of
χθ(q) when q tends to 2 is equal to 1 and that the quantity ν2−ν0

ν2+ν0
is < 1.

Next, for a q ≤ q♯ satisfying (3.10) and since the right-hand side of (3.8) belongs to
W 1,q(Ω)d, the velocity u belongs to W 1,q(Ω)d and, owing to (3.9), satisfies (3.6). Then,
grad p obviously belongs to W−1,q(Ω), so that p belongs to Lq(Ω) and also satisfies (3.6)
thanks to the estimate on u and (3.9). Finally, k is the solution of a Laplace equation
with right-hand side in L

q
2 (Ω), hence belongs to W 2,q♭(Ω) with q♭ = min{ q

2 ,
4
3} (see [22,

Thm 4.3.2.4], [15, Th. 2] or [16, Cor. 3.10]) and satisfies (3.6).

Note that the results of Proposition 3.3 can be slightly improved when the domain Ω
is convex or has a smooth boundary.
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Remark 3.4. Similar arguments yield that, if the function ν belongs to W 1,∞(R) and if
the data f are smooth enough, the part u of the solution (u, p, k) of problem (3.3) belongs
to Hs+1(Ω)d for a real number s > 0 also depending on the geometry of Ω and on the
function ν.

We now state and prove a uniqueness result, only in dimension d = 2. Indeed, its
analogue in dimension d = 3 would require an assumption on the regularity of the solution
which is not likely.

Proposition 3.5. Assume that the function ν is Lipschitz-continuous with Lipschitz con-

stant ν∗0 . In dimension d = 2, for any real number q > 2 and any data f in W−1,q(Ω)2

such that, for appropriate constants c∗1 and c∗2,

c∗1
ν2
0

(
‖f‖W−1,q(Ω)2 +‖f‖2

H−1(Ω)2

)
≤ 1,

c∗2ν
∗
0

α ν2
0

(
‖f‖W−1,q(Ω)2 +‖f‖2

H−1(Ω)2

)2 ≤ 1, (3.11)

problem (3.3) admits at most a solution (u, p, k) in H1
0 (Ω)2 × L2

0(Ω) ×W 1,r′

0 (Ω).

Proof: Without restriction, we assume that q ≤ q0 for the q0 introduced in Proposition
3.3, and we denote by cq(f) the quantity (which appears in estimate (3.6))

cq(f) = cq
(
‖f‖W−1,q(Ω)2 + ‖f‖2

H−1(Ω)2

)
. (3.12)

Let (u1, p1, k1) and (u2, p2, k2) be two solutions of problem (3.3). We set: u = u1 − u2,
p = p1 − p2, k = k1 − k2. Next, we proceed in three steps.
1) The pair (u, p) satisfies





−div
(
ν(k1)∇u

)
+ grad p

= div
(
(ν(k1) − ν(k2))∇u2

)
+ (u2 · ∇)u2 − (u1 · ∇)u1 in Ω,

div u = 0 in Ω,
u = 0 on ∂Ω.

Writing these equations in the form (3.8), we derive thanks to the same arguments as for
Proposition 3.3

ν0 ‖u‖W 1,q(Ω)2 ≤ c
(
‖div

(
(ν(k1) − ν(k2)

)
∇u2

)
‖W−1,q(Ω)2

+ ‖(u2 · ∇)u2 − (u1 · ∇)u1‖W−1,q(Ω)2
)
.

It follows from the Lipschitz property of ν that

‖div
(
(ν(k1) − ν(k2)

)
∇u2

)
‖W−1,q(Ω)2 ≤ ν∗0 ‖k‖L∞(Ω)‖∇u2‖Lq(Ω)2×2 .

Thus, applying estimate (3.6) to u2 and using the Sobolev imbedding of W 2, q
2 (Ω) into

L∞(Ω), we derive

‖div
(
(ν(k1) − ν(k2)

)
∇u2

)
‖W−1,q(Ω)2 ≤ c

ν∗0
ν0
cq(f) ‖k‖

W
2,

q
2 (Ω)

.
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Similarly, we have

‖(u2 · ∇)u2 − (u1 · ∇)u1‖W−1,q(Ω)2 ≤ c
2

ν0
cq(f) ‖u‖W 1,q(Ω)2 .

Combining all this yields

ν0 ‖u‖W 1,q(Ω)2 ≤ c
ν∗0
ν0
cq(f) ‖k‖

W
2,

q
2 (Ω)

+ c
2

ν0
cq(f) ‖u‖W 1,q(Ω)2 .

Thus, the following estimate follows from the first condition in (3.11) (with c∗1 = 4c cq)

ν0
2

‖u‖W 1,q(Ω)2 ≤ c
ν∗0
ν0
cq(f) ‖k‖

W
2,

q
2 (Ω)

. (3.13)

2) The function k is a solution of the Laplace equation

{
−α∆k = ν(k1) |∇u1|2 − ν(k2) |∇u2|2 in Ω,
k = 0 on ∂Ω.

So, similar arguments lead to the estimates

α ‖k‖
W

2,
q
2 (Ω)

≤ c′ν∗0
ν2
0

cq(f)2 ‖k‖
W

2,
q
2 (Ω)

+
2c′ν2
ν0

cq(f) ‖u‖W 1,q(Ω)2 .

So, the second condition in (3.11) (with c∗2 ≥ c2 = 2c′c2q) yields

α

2
‖k‖

W
2,

q
2 (Ω)

≤ 2c′ν2
ν0

cq(f) ‖u‖W 1,q(Ω)2 . (3.14)

3) Combining (3.13) and (3.14) leads to

ν0
2

‖u‖W 1,q(Ω)2 ≤ c
ν∗0
ν0
cq(f)

4c′ν2
α ν0

cq(f) ‖u‖W 1,q(Ω)2 .

When the second condition in (3.11) holds (with c∗2 = max{c2, 16cc′ c2q
ν2

ν0
}), u is zero.

Thus, it follows from (3.14) that k is zero and from the equation

∀v ∈ H1
0 (Ω)2,

∫

Ω

(div v)(x)p(x) dx = 0,

combined with the already quoted inf-sup condition on this form, that p is zero. This
concludes the proof.

The first condition in (3.11) with q = 2 is very similar to the condition which is
sufficient for the uniqueness of the solution of Navier-Stokes equations, see [20, Chap. IV,
Thm 2.2]. Still more than for the Navier-Stokes equations, the conditions in (3.11) are too
restrictive and will not be assumed in what follows. Moreover it can be noted that the
function ν defined in (3.5) is not Lipschitz–continuous. However and without restriction,
we can replace this function by, for a fixed positive parameter ε,

∀ξ ∈ R, ν(ξ) = min
{
ν0 + ν1

√
ξε+, ν2

}
, (3.15)

where ξε+ stands for max{ξ, ε}, in order to recover the Lipschitz property.
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4. The reduced problem.

We now assume that the domain Ω admits a partition into Ωt and Ωℓ satisfying (2.1).
We suppose that both Ωt and Ωℓ are polygons or polyhedra with Lipschitz–continuous
boundaries. The strategy for an automatic determination of Ωt and Ωℓ is described in
Section 2.

We also assume that the function ν is given by (3.15). We introduce a modified
viscosity function ν∗ defined by

∀ξ ∈ R, ν∗(x, ξ) =

{
ν(ξ) = min{ν0 + ν1

√
ξε+, ν2} for a.e. x in Ωt,

ν0 for a.e. x in Ωℓ,
(4.1)

i.e.,

∀x ∈ Ω, ∀ξ ∈ R, ν∗(x, ξ) = χΩt
(x) ν(ξ) + χΩℓ

(x) ν0, (4.2)

where χΩt
and χΩℓ

stand for the characteristic functions of Ωt and Ωℓ, respectively. Next,
we consider the reduced problem





−div
(
ν∗(·, k∗)∇u∗

)
+ (u∗ · ∇)u∗ + grad p∗ = f in Ω,

div u∗ = 0 in Ω,

−α∆k∗ = ν∗(·, k∗) |∇u∗|2 in Ω,

u∗ = 0 on ∂Ω,

k∗ = 0 on ∂Ω.

(4.3)

The same arguments as in Section 3 imply that this problem admits the equivalent
variational formulation, for some real number r > d and with 1

r
+ 1

r′ = 1,

Find (u∗, p∗, k∗) in H1
0 (Ω)d × L2

0(Ω) ×W 1,r′

0 (Ω) such that

∀v ∈ H1
0 (Ω)d,

∫

Ω

ν∗(x, k∗)∇u∗ : ∇v dx +

∫

Ω

(u∗ · ∇)u∗ · v(x) dx

−
∫

Ω

(div v)(x)p∗(x) dx = 〈f ,v〉,

∀q ∈ L2
0(Ω), −

∫

Ω

(div u∗)(x)q(x) dx = 0,

∀χ ∈W 1,r
0 (Ω), α

∫

Ω

grad k∗ · gradχdx =

∫

Ω

ν∗(x, k∗) |∇u∗|2 χ(x) dx.

(4.4)

The a priori estimates on the solution (u∗, p∗, k∗) are also easily derived from the fact that
the function ν∗ is bounded from above and from below by the same constants as ν.
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Proposition 4.1. For any data f in H−1(Ω)d, any solution (u∗, p∗, k∗) of problem (4.4)
satisfies the following bound

ν0 ‖u∗‖H1(Ω)d ≤ c ‖f‖H−1(Ω)d ,

‖p∗‖L2(Ω) ≤ c
(
(1 +

ν2
ν0

) ‖f‖H−1(Ω)d +
1

ν2
0

‖f‖2
H−1(Ω)d

)
,

α ‖k∗‖W 1,r′ (Ω) ≤ c
ν2
ν2
0

‖f‖2
H−1(Ω)d ,

(4.5)

for a constant c only depending on Ω and r.

The function ν∗ is no longer continuous on Ω, however it belongs to L∞(Ω × R) and
even to L∞(Ω; C 0(R)). So a direct extension of the arguments in [29] leads to the existence
result.

Theorem 4.2. For any data f in H−1(Ω)d, problem (4.4) admits a solution (u∗, p∗, k∗)

in H1
0 (Ω)d × L2

0(Ω) ×W 1,r′

0 (Ω). Moreover this solution satisfies (4.5).

Note that the arguments used for the proof of Proposition 3.3 only requires the bound-
edness of ν. So the results of this proposition still hold with ν replaced by ν∗.

Proposition 4.3. For the real number q0 > 2 introduced in Proposition 3.3, for any q,
2 < q ≤ q0, and for any data f in W−1,q(Ω)d, any solution (u∗, p∗, k∗) of problem (4.4)
belongs to W 1,q(Ω)d × Lq(Ω) ×W 2, q

2 (Ω) and satisfies (3.6).

We now intend to prove a first a posteriori estimate concerning the distance between
(u, p, k) and (u∗, p∗, k∗). To do this, we write both problems (3.3) and (4.4) in a different
formulation, which is also useful for the numerical analysis of the discretization. Let S
denote the Stokes operator, i.e., the operator which associates with any data F inH−1(Ω)d,
the part u of the solution (u, p) of the Stokes-like problem (the viscosity ν0 corresponds
to the case where Ωt is empty)

{−ν0 ∆u + grad p = F in Ω,
div u = 0 in Ω,
u = 0 on ∂Ω,

(4.6)

and similarly let L denote the inverse Laplace operator, i.e., the operator which associates
with any data G in W−1,r′

(Ω), the solution k of the Laplace equation

{−α∆k = G in Ω,
k = 0 on ∂Ω.

(4.7)

For a real number ρ which is made precise later on, we set:

X = W 1,ρ
0 (Ω)d ×W 1,ρ

0 (Ω), (4.8)

and assume that f belongs to W−1,ρ(Ω)d. Thus it follows from Proposition 3.3 that, for
appropriate values of ρ, problem (3.3) can equivalently be written as: Find U = (u, k)T in
X such that

F(U) = U +

(
S 0
0 L

)
G(U) = 0, (4.9)
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where G is given by

G(U) =

(
div

(
(ν0 − ν(k))∇u

)
+ (u · ∇)u − f

−ν(k) |∇u|2
)
. (4.10)

In an analogous way, problem (4.4) can equivalently be written as: Find U∗ = (u∗, k∗)T

in X such that

F∗(U
∗) = U∗ +

(
S 0
0 L

)
G∗(U

∗) = 0, (4.11)

where G∗ is given by

G∗(U) =

(
div

(
(ν0 − ν∗(·, k))∇u

)
+ (u · ∇)u − f

−ν∗(·, k) |∇u|2
)
. (4.12)

Let D denote the differentiation operator with respect to U . In what follows, we are
led to assume that DF(U) is an isomorphism of X . So, we consider the following problem,
for any data (Φ,Ψ) in H−1(Ω)d ×W−1,r′

(Ω),

Find (w, π, κ) in H1
0 (Ω)d × L2

0(Ω) ×W 1,r′

0 (Ω) such that

∀v ∈ H1
0 (Ω)d,

∫

Ω

ν(k)∇w : ∇v dx +

∫

Ω

ν′(k)κ∇u : ∇v dx

+

∫

Ω

(u · ∇)w · v(x) dx +

∫

Ω

(w · ∇)u · v(x) dx

−
∫

Ω

(div v)(x)π(x) dx = 〈Φ,v〉,

∀q ∈ L2
0(Ω), −

∫

Ω

(div w)(x)q(x) dx = 0,

∀χ ∈W 1,r
0 (Ω), α

∫

Ω

gradκ · gradχdx = 〈Ψ, χ〉

+ 2

∫

Ω

ν(k)∇u · ∇w χ(x) dx +

∫

Ω

ν′(k)κ |∇u|2 χ(x) dx.

(4.13)

This problem makes sense when the mappings

v 7→
∫

Ω

ν′(k)κ∇u : ∇v dx and χ 7→
∫

Ω

ν′(k)κ |∇u|2 χ(x) dx,

are linear continuous forms on H1
0 (Ω)d and W 1,r(Ω), respectively. Since W 1,r(Ω) with

r > d is imbedded in L∞(Ω) and ν′ is bounded, this holds when κ∇u belongs to L2(Ω)d×d.
It can be checked that this property is satisfied for any (u, κ) in W 1,q(Ω)3×W 2, q

2 (Ω) when
q > 2 in dimension d = 2 and q ≥ 12

5 in dimension d = 3.

As a consequence, when taking ρ > 2 (for instance) in dimension d = 2 and ρ ≥ 12
5 in

dimension d = 3, the assumption that DF(U) is an isomorphism of X can equivalently be
written as follows: For any data (Φ,Ψ) in W−1,ρ(Ω)d ×W−1,ρ(Ω), problem (4.13) has a
unique solution and this solution belongs to W 1,ρ(Ω)d ×Lρ(Ω)×W 1,ρ(Ω). It can be noted
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that this assumption only requires the local uniqueness of the solution (u, p, k) and it is
well-known to be less restrictive than the conditions for its global uniqueness as given in
Proposition 3.5 (see [20, Chap. IV, §3.2] for the analogue for the Navier–Stokes equations).

We also need that the mapping: V 7→ DF(V ) is Lipschitz–continuous at least in a
neighbourhood of U . This requires for instance that the mapping:

k 7→
∫

Ω

ν′(k)κ∇u : ∇v dx,

is Lipschitz–continuous or, equivalently that the product ν′′(k)kκ∇u : ∇v is integrable
for all u in W 1,q(Ω)d and v in H1(Ω)d, k and κ in W 1,q(Ω). This is true when ν′′ is
bounded and the product kκ belongs to Lt(Ω) with 1

t
+ 1

q
= 1

2 . This property is always

valid in dimension d = 2 since W 1,q(Ω) is imbedded in L∞(Ω) for all q > 2, but only
holds when q ≥ 18

7 in dimension d = 3. For simplicity, we have decided to make the next
hypothesis.

Assumption 4.4. In the case of dimension d = 3, there exists a real number q̃0 ≥ 3 such
that, for any q, 2 < q ≤ q̃0, and for any data f in W−1,q(Ω)d, any solution of problem
(3.3) or (4.4) belongs to W 1,q(Ω)d × Lq(Ω) ×W 1,q(Ω).

When looking at (3.10), we observe that this assumption is satisfied at least when the
ratio ν2/ν0 is small enough. So, from now on, we take

2 < ρ < q0 in dimension d = 2 and ρ = 3 in dimension d = 3. (4.14)

We are now in a position to prove the a posteriori estimate. This relies on a result due to
J. Pousin and J. Rappaz [38] (see also [41, §2.1] for another statement). We introduce the
function µ defined by

∀ξ ∈ R, µ(ξ) = min{ν1
√
ξε+, ν2 − ν0}, (4.15)

and, in analogy with (4.2), the function µ∗ defined by

∀x ∈ Ω,∀ξ ∈ R, µ∗(x, ξ) = χΩℓ
(x)µ(ξ). (4.16)

Proposition 4.5. If the function ν belongs to W 2,∞(R) and Assumption 4.4 is satisfied,

let (u, p, k) be a solution of problem (3.3) such that DF(U), with U = (u, k)T, is an

isomorphism of X . There exists a positive number R only depending on this solution such

that the following a posteriori error estimate holds

‖u − u∗‖W 1,ρ(Ω)d + ‖k − k∗‖W 1,ρ(Ω)

≤ c
(
‖div

(
µ∗(·, k∗)∇u∗

)
‖W−1,ρ(Ω)d + ‖µ∗(·, k∗) |∇u∗|2‖W−1,ρ(Ω)

)
.

(4.17)

for any solution (u∗, p∗, k∗) of problem (4.4) such that (u∗, k∗) belongs to the ball of X
with centre (u, k) and radius R.
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Proof: Since ν belongs to W 2,∞(R), it follows from Assumption 4.4 and the choice
(4.14) of ρ that the mapping F is continuously differentiable on X and moreover that
the mapping: V 7→ DF(V ) is Lipschitz–continuous with values in the space of linear
endomorphisms of X . Let λ denote the corresponding Lipschitz constant. Applying [41,
Prop. 2.1] yields that there exist positive constants R and c only depending on the norm
of DF(U)−1 and λ such that the following estimate holds for any solution U∗ of problem
(4.11) satisfying ‖U − U∗‖X ≤ R,

‖U − U∗‖X ≤ c ‖F(U∗)‖X = c ‖F(U∗) −F∗(U
∗)‖X .

To evaluate this last quantity, we observe that

F(U∗) −F∗(U
∗) = −

(
S 0
0 L

) (
div

(
(ν(k∗) − ν∗(·, k∗))∇u∗

)

(ν(k∗) − ν∗(·, k∗)) |∇u∗|2
)
.

Since S maps W−1,ρ(Ω)d into W 1,ρ(Ω)d (see [32] and [33] in dimension d = 3) and L maps
W−1,ρ(Ω) into W 1,ρ(Ω) (see [16, Thm 1.1]), we derive

‖U − U∗‖X
≤ c

(
‖div (ν(k∗) − ν∗(·, k∗))∇u∗‖W−1,ρ(Ω)d + ‖(ν(k∗) − ν∗(·, k∗)) |∇u∗|2‖W−1,ρ(Ω)

)
.

The function ν(k∗) − ν∗(·, k∗) is equal to min{ν1
√
k∗ε+, ν2 − ν0} = µ(k∗) on its support

which is contained in Ωℓ. So this gives the desired result.

In the previous proposition, we have made the assumption that the solution (u∗, p∗, k∗)
of problem (4.4) is not too far from (u, p, k). Since the reduced problem (4.4) obviously
coincides with problem (3.3) when Ωt is equal to Ω, we now state a convergence result
which makes this property consistent. For simplicity, we only give an abridged proof of
the next proposition.

Proposition 4.6. Let (Ωtn)n be an increasing sequence of open polygons or polyhedra

with Lipschitz–continuous boundaries such that ∪n∈N Ωtn is equal to Ω, and let Ωℓn be

equal to Ω \ Ωtn. Let also (un, pn, kn) be a solution of problem (4.4) with Ωt = Ωtn

and Ωℓ = Ωℓn. If the function ν belongs to W 1,∞(R), Assumption 4.4 holds and the

data f belong to W−1,ρ(Ω)d ∩ Hs−1(Ω)d for a real number s, 0 < s < 1, there exists a

subsequence (un′ , pn′ , kn′)n′ which converges to a solution (u, p, k) of problem (3.3) weakly

in W 1,ρ(Ω)d × Lρ(Ω) ×W 1,ρ(Ω).

Proof: It follows from Proposition 4.3 that the sequence (un, pn, kn)n satisfies

‖un‖W 1,ρ(Ω)d + ‖pn‖Lρ(Ω) + ‖kn‖W 1,ρ(Ω) ≤ cρ
(
‖f‖W−1,ρ(Ω)d + ‖f‖2

H−1(Ω)d

)
,

and also (see Remark 3.4), for a real number s0 > 0 small enough,

‖un‖Hs0+1(Ω)d ≤ cρ ‖f‖Hs0−1(Ω)d .

So, there exists a subsequence (un′ , pn′ , kn′)n′ which converges to (u, p, k) weakly in
W 1,ρ(Ω)d × Lρ(Ω) ×W 1,ρ(Ω). It follows from compactness arguments that there exists
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another subsequence, still denoted by (un′ , pn′ , kn′)n′ for simplicity, such that (un′ , kn′)n′

converges to (u, k) strongly in H1(Ω)d × Lq(Ω) for an appropriate real number q > 2.
From this, we deduce that

∀v ∈ H1
0 (Ω)d, lim

n′→+∞

∫

Ω

ν∗(x, kn′)∇un′ : ∇v dx =

∫

Ω

ν(k)∇u : ∇v dx,

∀χ ∈W 1,r
0 (Ω), lim

n′→+∞

∫

Ω

ν∗(x, kn′) |∇un′ |2 χ(x) dx =

∫

Ω

ν(k) |∇u|2 χ(x) dx.

So, when passing to the limit in the problem satisfied by (un, pn, kn), it can be checked
from the previous convergence properties that (u, p, k) is a solution of problem (3.3).

Note to conclude that the function ν defined in (3.15) does not belong to W 2,∞(R).
More precisely its derivative is continuous everywhere but at the two points ξ = ε and
ξ = ξ0 = (ν2−ν0

ν1
)2. Without restriction, we now work with a regularization of the function

ν which coincides with ν except in the neighbourhoods ] ε
2 ,

3ε
2 [ and ]ξ0 − ε

2 , ξ0 + ε
2 [ of these

two points, as illustrated in Figure 1. We do not make precise this regularization for
simplicity and still denote the regularized function by ν.

Figure 1. The function ν and its regularization
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5. The reduced discrete problem.

In view of the discretization, we introduce a regular family (Th)h of triangulations of
Ω by closed triangles (d = 2) or tetrahedra (d = 3), in the usual sense that
• for each h, Ω is the union of all elements of Th,
• for each h, the intersection of two different elements of Th, if not empty, is a corner, a
whole edge or a whole face of both elements,
• the ratio of the diameter hK of an element K in Th to the diameter of its inscribed circle
or sphere is bounded by a constant σ independent of K and h.
As standard, h denotes the maximum of the diameters of the elements of Th. We make
the further and non restrictive assumption that each element K of Th is contained either
in Ωt or in Ωℓ. From now on, c, c′, . . . stand for generic constants which may vary from
line to line but are always independent of h.

For each nonnegative integer m and any K in Th, let Pm(K) denote the space of
restrictions to K of polynomials with d variables and total degree ≤ m. As standard for
the Stokes problem, we have decided to work with the Taylor–Hood finite elements, see
[26]. Consequently, the discrete spaces of velocities and pressures are defined by

Xh =
{
vh ∈ H1

0 (Ω)d; ∀K ∈ Th, vh|K ∈ P2(K)d
}
,

Mh =
{
qh ∈ H1(Ω) ∩ L2

0(Ω); ∀K ∈ Th, qh|K ∈ P1(K)
}
.

(5.1)

We also use piecewise quadratic functions for approximating the turbulent kinetic energy
k in order to preserve the convergence order equal to 2 for the previous elements. So the
discrete space of energies is defined by

Yh =
{
χh ∈W 1,r

0 (Ω); ∀K ∈ Th, χh|K ∈ P2(K)
}
. (5.2)

The discrete problem is then built from (4.4) by the Galerkin method. It reads

Find (uh, ph, kh) in Xh ×Mh × Yh such that

∀vh ∈ Xh,

∫

Ω

ν∗(x, kh)∇uh : ∇vh dx +

∫

Ω

(uh · ∇)uh · vh(x) dx

−
∫

Ω

(div vh)(x)ph(x) dx = 〈f ,vh〉,

∀qh ∈Mh, −
∫

Ω

(div uh)(x)qh(x) dx = 0,

∀χh ∈ Yh, α

∫

Ω

grad kh · gradχh dx =

∫

Ω

ν∗(x, kh) |∇uh|2 χh(x) dx.

(5.3)

The imbeddings of Xh in H1
0 (Ω)d, of Mh in L2

0(Ω) and of Yh both in W 1,r
0 (Ω) and in

W 1,r′

0 (Ω) yield that the discretization is fully conforming.

Remark 5.1. In the implementation of this problem, ν∗(·, kh) is replaced by the function
νh such that, for each K in Th, νh|K belongs to P2(K) and which is equal to ν∗(a, kh(a)) at
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each vertex and midpoint a of an edge of K. We do not take into account this modification
in the analysis for simplicity.

The numerical analysis of this problem relies on the Brezzi–Rappaz–Raviart theorem,
see [9] or [20, Chap. IV, Thm 3.1]. We recall that problem (4.4) admits the formulation
(4.11); however we are led to use a modified formulation. We now work with X replaced
by the space Y defined by

Y = H1
0 (Ω)d ×

(
H1

0 (Ω) ∩ L∞(Ω)
)
, (5.4)

and equipped with the corresponding norm, which seems more natural in view of the finite
element discretization. For any real number or real-valued measurable function ξ on Ω,
we introduce the Stokes operator S(ξ) which associates with any data F in H−1(Ω)d, the
part u of the solution (u, p) of the generalized Stokes problem

{−div
(
ν∗(·, ξ)∇u

)
+ grad p = F in Ω,

div u = 0 in Ω,
u = 0 on ∂Ω.

(5.5)

We also use the operator L defined in (4.7). Thus, problem (4.4) can equivalently be
written as: Find U∗ = (u∗, k∗)T in Y such that

F̃(U∗) = U∗ +

(
S(k∗) 0

0 L

)
G̃(U∗) = 0, (5.6)

where G̃ is given by

G̃(U) =

(
(u · ∇)u − f

−ν∗(·, k) |∇u|2
)
. (5.7)

Similarly, let Sh(ξ) denote the discrete Stokes operator associated with problem (5.5),
i.e., the operator which associates with any data F in H−1(Ω)d, the part uh of the solution
(uh, ph) in Xh ×Mh of the Stokes problem

∀vh ∈ Xh,

∫

Ω

ν∗(x, ξ)∇uh : ∇vh dx −
∫

Ω

(div vh)(x)ph(x) dx = 〈F ,vh〉,

∀qh ∈Mh, −
∫

Ω

(div uh)(x)qh(x) dx = 0.

(5.8)

Let finally Lh denote the discrete inverse Laplace operator, i.e., the operator which asso-
ciates with any data G in H−1(Ω), the solution kh in Yh of the Laplace equation

∀χh ∈ Yh, α

∫

Ω

grad kh · gradχh dx = 〈G,χh〉. (5.9)

Indeed, an inf-sup condition on the form: (vh, qh) 7→ −
∫
Ω
(div vh)(x)qh(x) dx between

the spaces Xh and Mh is proven for instance in [20, Chap. II, Cor. 4.1], so that these
operators are well-defined. Problem (5.3) now admits the equivalent formulation: Find
Uh = (uh, kh)T in Y such that

Fh(Uh) = Uh +

(
Sh(kh) 0

0 Lh

)
G̃(Uh) = 0. (5.10)
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To go further, we recall from a simple extension of [20, Chap. II, Thm 4.3] that the
operator Sh(ξ) satisfies the following properties: For any F in H−1(Ω)d,

‖Sh(ξ)F ‖H1(Ω)d ≤ c ‖F ‖H−1(Ω)d , (5.11)

and, if moreover F belongs to Hs−1(Ω)d and S(ξ)F to Hs+1(Ω)d for a real number s,
0 ≤ s ≤ 2,

‖
(
S(ξ) − Sh(ξ)

)
F ‖H1(Ω)d ≤ c hs

(
‖S(ξ)F ‖Hs+1(Ω)d + ‖F ‖Hs−1(Ω)d

)
. (5.12)

Moreover, since the function ν∗(·, ξ) is bounded from above and from below, both constants
in estimates (5.11) and (5.12) are independent of ξ. The analogous properties concerning
the operator Lh are also standard [6, Chap. X, Th. 1.1 & 1.2]: For any data G in H−1(Ω),

‖LhG‖H1(Ω) ≤ c ‖G‖H−1(Ω), (5.13)

and, if moreover LG belongs to Hs+1(Ω) for a real number s, 0 ≤ s ≤ 2,

‖(L − Lh)G‖H1(Ω) ≤ c hs ‖LG‖Hs+1(Ω). (5.14)

We refer to [36, Cor. 2] for the less usual result: For any data G in H−1(Ω) such that LG
belongs to W s+1,∞(Ω) for s equal to 0, 1 or 2,

‖(L − Lh)G‖L∞(Ω) ≤ c hs+1 ‖LG‖W s+1,∞(Ω). (5.15)

Moreover, we are led to assume that, if LG belongs to L∞(Ω),

‖LhG‖L∞(Ω) ≤ c ‖LG‖L∞(Ω). (5.16)

This property is proved in [39, Thm 5.1] only when the family of triangulations (Th)h is
uniformly regular. However it seems possible to extend this result to more general families
of triangulations.

Let us introduce the matrix operators

M(ξ) =

(
S(ξ) 0

0 L

)
, Mh(ξ) =

(
Sh(ξ) 0

0 Lh

)
. (5.17)

The following convergence result is easily derived from (5.11) to (5.16) by a density argu-
ment: When property (5.16) holds, for any (F , G) in H−1(Ω)d × H−1(Ω) such that LG
belongs to C 0(Ω),

lim
h→0

‖
(
M(ξ) −Mh(ξ)

)
(F , G)‖Y = 0.

Moreover, we recall from [14, Cor. 18.15] that, since Ω is a polygon or a polyhedron, the
inverse Laplace operator maps Ht(Ω) into Ht+2(Ω) for some real number t > d

2 − 2. Since

this Ht+2(Ω) is compactly imbedded in C 0(Ω), we deduce from the previous property that

lim
h→0

sup
(F ,G)∈K

‖
(
M(ξ) −Mh(ξ)

)
(F , G)‖Y = 0, (5.18)
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for any bounded set K of the space

Y⋄ = Hτ (Ω)d ×Ht(Ω), −1 < τ < 0,
d

2
− 2 < t < 0.

Let also E(Y) denote the space of endomorphisms of Y. We are now in a position to
prove the following lemmas.

Lemma 5.2. Let (u∗, p∗, k∗) be a solution of problem (4.4) such that U∗ = (u∗, k∗)T

belongs to Hs+1(Ω)d ×W 1,r(Ω), s > d−2 and r > d, and that DF̃(U∗) is an isomorphism

of Y. When property (5.16) holds, there exists an h0 > 0 such that, for all h ≤ h0,

DFh(U∗) is an isomorphism of Y and the norm of its inverse is bounded independently of

h.

Proof: By writing the identity

DFh(U∗) = DF̃(U∗)
(
Id −DF̃(U∗)−1

(
DF̃(U∗) −DFh(U∗)

))
,

we observe that it suffices to check that

lim
h→0

‖DF̃(U∗) −DFh(U∗)‖E(Y) = 0.

We have

DF̃(U∗) −DFh(U∗) =
(
M(k∗) −Mh(k∗)

)
DG̃(U∗) +

(
DS(k∗) −DSh(k∗) 0

0 0

)
G̃(U∗),

and we now prove successively that each term in the right-hand side tends to zero.
1) Thanks to (5.18),it suffices to check that the mapping: W 7→ DG̃(U∗) ·W sends the
unit sphere of Y into a bounded set of Y⋄. We have, for W = (w, κ),

DG̃(U∗) ·W =

(
(u∗ · ∇)w + (w · ∇)u∗

−2ν∗(·, k∗)∇u∗ : ∇w − (∂ξν
∗(·, k∗)κ) |∇u∗|2

)
.

When W runs though the unit sphere of Y, (u∗ · ∇)w + (w · ∇)u∗ belongs to a bounded
set of Lq(Ω)d for all q < 2 in dimension d = 2 and all q < 3

2 in dimension d = 3, and
hence to a bounded set of Hτ (Ω)d for some τ , −1 < τ < 0. On the other hand, the two

terms in the second component of DG̃(U∗) ·W are bounded in Lq(Ω), for all q such that
1
q
≥ 1 − s

d
and 1

q
≥ 1 − 2s

d
, respectively. So their sum belongs to a bounded set of Lq(Ω)

with 1
q

= 1 − s
d
, and it follows from the assumption on s that this space is imbedded in

Ht(Ω), t > d
2 − 2. By combining this with (5.18), we obtain the convergence result.

2) It is readily checked that, for all F in H−1(Ω)d,

(
DS(k∗)κ

)
F = S(k∗)

(
−div (∂ξν

∗(·, k∗)κ∇S(k∗)F )
)
,

(
DSh(k∗)κ

)
F = Sh(k∗)

(
−div (∂ξν

∗(·, k∗)κ∇Sh(k∗)F )
)
,

(5.19)
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so that
(
DS(k∗) −DSh(k∗) 0

0 0

)
G̃(U∗) = −

( (
S(k∗) − Sh(k∗)

)
div

(
(∂ξν

∗(·, k∗)κ)∇u∗
)

0

)

−
(
Sh(k∗) 0

0 0

) (
div

(
(∂ξν

∗(·, k∗)κ)∇
(
S(k∗) − Sh(k∗)

)(
(u∗ · ∇)u∗ − f

))

0

)
.

There also, the convergence of the first term follows from the fact that (∂ξν
∗(·, k∗)κ)∇u∗

belongs to a compact set of L2(Ω)d×d, hence that div
(
(∂ξν

∗(·, k∗)κ)∇u∗
)

belongs to a
compact set of H−1(Ω)d when κ runs through the unit sphere of H1(Ω) ∩ L∞(Ω). The
convergence of the second term is an easy consequence of (5.11) and the convergence of(
S(k∗) − Sh(k∗)

)(
(u∗ · ∇)u∗ − f

)
in H1(Ω)d.

The stability property (5.16) seems unsufficient in view of what follows. So we now
prove two modified results.

Lemma 5.3. The following result holds for any distribution G in H−1(Ω)

‖LhG‖L∞(Ω) ≤ c λh ‖G‖H−1(Ω), (5.20)

where the quantity λh is defined by

λh =

{
| log hmin|

1
2 if d = 2,

h
− 1

2

min if d = 3,
with hmin = min

K∈Th

hK . (5.21)

Proof: Setting kh = LhG, we define the piecewise constant function kh by

∀K ∈ Th, kh|K =
1

meas(K)

∫

K

kh(x) dx,

and set: k̃h = kh − kh. We now estimate sucessively ‖k̃h‖L∞(Ω) and ‖kh‖L∞(Ω).
1) We note that

‖k̃h‖L∞(Ω) = max
K∈Th

‖k̃h‖L∞(K).

By going to a reference element, we have on each K in Th and with the standard notation

‖k̃h‖L∞(K) = ‖ˆ̃kh‖L∞(K̂) ≤ c ‖ˆ̃kh‖H1(K̂),

where we have used the fact that all norms are equivalent on P2(K̂). Since k̃h has a

null integral on K, the same property holds for
ˆ̃
kh on K̂, so that we derive from the

Bramble–Hilbert inequality (see for instance [6, Chap. I, Lemme 2.11])

‖k̃h‖L∞(K) ≤ c |ˆ̃kh|H1(K̂),

and switching back to K yields

‖k̃h‖L∞(K) ≤ c h
1− d

2

K |k̃h|H1(K).
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Noting that k̃h − kh is constant on each K, so that |k̃h|H1(K) is equal to |kh|H1(K), and
also that the maximum of the |kh|H1(K) is bounded by |kh|H1(Ω), we obtain

‖k̃h‖L∞(Ω) ≤ c h
1− d

2

min |kh|H1(Ω). (5.22)

2) Let p be a real number > 1 such that H1(Ω) is imbedded in Lp(Ω). Setting 1
p

+ 1
p′ = 1,

we have from the definition of kh and on each K

|kh| ≤
meas(K)

1

p′

meas(K)
‖kh‖Lp(K) ≤ c h

− d
p

K ‖kh‖Lp(K).

This yields

‖kh‖L∞(Ω) ≤ c h
− d

p

min ‖kh‖Lp(Ω).

In dimension d = 2, we recall from [40] that the norm of the imbedding of H1(Ω) into

Lp(Ω) for any p < +∞ behaves like c
√
p and we take p = | log hmin|, so that

√
p h

− d
p

min is

equal to e2 | log hmin|
1
2 . In dimension d = 3 we take p equal to 6, such that h

− d
p

min is equal

to h
− 1

2

min. This gives
‖kh‖L∞(Ω) ≤ c λh ‖kh‖H1(Ω). (5.23)

Finally, it follows from (5.22) and (5.23) that

‖kh‖L∞(Ω) ≤ c λh ‖kh‖H1(Ω), (5.24)

and combining this result with (5.13) gives the desired estimate.

Lemma 5.4. The following result holds for any distribution G in L1(Ω)

‖LhG‖H1(Ω) ≤ c λh ‖G‖L1(Ω), ‖LhG‖L∞(Ω) ≤ c λ2
h ‖G‖L1(Ω), (5.25)

where λh is defined in (5.21).

Proof: Owing to (5.24), it suffices to check the first part of (5.25). Setting once more
kh = LhG, we observe from the definition (5.9) of Lh and a Poincaré–Friedrichs inequality
that

‖kh‖2
H1(Ω) ≤

c

α
‖G‖L1(Ω)‖kh‖L∞(Ω).

Using once more (5.24) yields the desired estimate.

Lemma 5.5. If the function ν belongs to W 2,∞(R), the mapping DFh satisfies the fol-

lowing Lipschitz property, for all V1 and V2 in a bounded subset of Y,

‖DFh(V1) −DFh(V2)‖E(Y) ≤ c λ2
h ‖V1 − V2‖Y , (5.26)

where λh is defined in (5.21).

Proof: Setting Vi = (vi, ℓi), we have

DFh(V1) −DFh(V2) =
(
Mh(ℓ1) −Mh(ℓ2)

)
DG̃(V1) + Mh(ℓ2)

(
DG̃(V1) −DG̃(V2)

)

+
(
DMh(ℓ1) −DMh(ℓ2)

)
G̃(V1) +DMh(ℓ2)

(
G̃(V1) − G̃(V2)

)
.
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Let W = (w, κ) be any function in Y. The proof now proceeds in two steps. All constants
c in what follows only depend on the norms ‖V1‖Y , ‖V2‖Y and ‖ν‖W 2,∞(R).
1) We have

(
Mh(ℓ1) −Mh(ℓ2)

)
DG̃(V1)W

= Mh(ℓ1)

(
−div

(
(ν∗(·, ℓ1) − ν∗(·, ℓ2))∇Sh(ℓ2)

(
(v1 · ∇)w + (w · ∇)v1

))

0

)
,

which yields in an obvious way

‖
(
Mh(ℓ1) −Mh(ℓ2)

)
DG̃(V1)W‖Y ≤ c ‖V1 − V2‖Y‖W‖Y . (5.27)

On the other hand, since ∂ξν
∗(x, ·) is zero on Ωℓ while on Ωt it coincides with ∂ξν, it

belongs to W 1,∞(R) for a.e. x in Ω. So, combining the second part of (5.19) with a
further triangle inequality also yields

‖
((
DMh(ℓ1) −DMh(ℓ2)

)
κ
)
G̃(V1)‖Y ≤ c ‖V1 − V2‖Y‖W‖Y . (5.28)

2) It follows from (5.19) that

Mh(ℓ2)
(
DG̃(V1) −DG̃(V2)

)
+DMh(ℓ2)

(
G̃(V1) − G̃(V2)

)
= Mh(ℓ2)

(
ΓS

ΓL

)
, (5.29)

where

〈ΓS ,W 〉 =
(
(v1 − v2) · ∇

)
w + (w · ∇)(v1 − v2)

− div
((
∂ξν

∗(·, ℓ2)κ
)
∇S∗

h(ℓ2)
(
(v1 · ∇)v1 − (v2 · ∇)v2

))
,

〈ΓL,W 〉 = −2ν∗(·, ℓ1)∇v1 : ∇w + 2ν∗(·, ℓ2)∇v2 : ∇w

− ∂ξν
∗(·, ℓ1)κ |∇v1|2 + ∂ξν

∗(·, ℓ2)κ |∇v2|2.

To conclude, we note that:
• It can be checked through technical arguments that

‖〈ΓS ,W 〉‖H−1(Ω)d ≤ c ‖V1 − V2‖Y‖W‖Y ,

This estimate together with (5.11) gives the Lipschitz–continuity of the first component in
(5.29).
• Similar arguments also yield

‖〈ΓL,W 〉‖L1(Ω) ≤ c ‖V1 − V2‖Y‖W‖Y .

Together with the first part of (5.25) this implies the Lipschitz–continuity of the second
component in (5.29) with values in H1

0 (Ω), with Lipschitz constant smaller than c λh.
• By combining the previous estimate with the second part of (5.25), we derive that the
second component in (5.29) is also Lipschitz–continuous with values in L∞(Ω), but now
with Lipschitz constant smaller than c λ2

h.
Combining these last results with (5.27) and (5.28) leads to the desired property.
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The next lemma relies on estimates (5.12), (5.14) and (5.15). We also derive the
following result by combining (5.15) and (5.16), using the imbedding of Hs+sd(Ω) into
W s,∞(Ω) for a any real number sd >

d
2 and applying an interpolation argument: For any

data G in H−1(Ω)d such that LG belongs to Hs+sd(Ω) for 1 ≤ s ≤ 3,

‖(L − Lh)G‖L∞(Ω) ≤ c hs ‖LG‖Hs+sd (Ω). (5.30)

Lemma 5.6. Let (u∗, p∗, k∗) be a solution of problem (4.4) which belongs to Hs+1(Ω)d ×
Hs(Ω)×Hs+sd(Ω), 0 < s ≤ 2, for a fixed real number sd >

d
2 . When property (5.16) holds,

the following estimate is satisfied

‖Fh(U∗)‖Y ≤ c(u∗, p∗, k∗)hs, (5.31)

where the constant c(u∗, p∗, k∗) only depends on the solution (u∗, p∗, k∗).

Proof: We have

‖Fh(U∗)‖Y = ‖F̃(U∗) −Fh(U∗)‖Y = ‖
(
M(k∗) −Mh(k∗)

)
G̃(U∗)‖Y ,

so that the lemma is a direct consequence of (5.12), (5.14) and (5.30) together with the

regularity properties of U∗ = −M(k∗)G̃(U∗).

Thanks to Lemmas 5.2, 5.5 and 5.6, we are in a position to apply the Brezzi–Rappaz–
Raviart theorem [9]. We also recall the existence of a discrete inf-sup condition between
the spaces Xh and Mh, see [20, Chap. II, Cor. 4.1]: There exists a constant β > 0
independent of h such that

∀qh ∈Mh, sup
vh∈Xh

−
∫
Ω
(div vh)(x)qh(x) dx

‖vh‖H1(Ω)d

≥ β ‖qh‖L2(Ω). (5.32)

This leads to the main result of this section.

Theorem 5.7. Let (u∗, p∗, k∗) be a solution of problem (4.4) which belongs to Hs+1(Ω)d×
Hs(Ω)×Hs+sd(Ω), d−2 < s ≤ 2, for a fixed real number sd >

d
2 , and such that DF∗(U

∗),
with U∗ = (u∗, k∗)T, is an isomorphism of Y. We moreover assume that property (5.16)
holds, that the function ν belongs to W 2,∞(R) and that

lim
h→0

λ2
h h

s = 0, (5.33)

where λh is defined in (5.21). Then, there exist positive numbers κ and h0 such that, for

any h ≤ h0, problem (5.3) has a unique solution (uh, ph, kh) such that (uh, kh) belongs to

the ball of Y with centre (u∗, k∗) and radius κλ−2
h . Moreover this solution satisfies

‖u∗ − uh‖H1(Ω)d + ‖p∗ − ph‖L2(Ω) + ‖k∗ − kh‖H1(Ω)∩L∞(Ω) ≤ c(u∗, p∗, k∗)hs, (5.34)

where the constant c(u∗, p∗, k∗) only depends on the solution (u∗, p∗, k∗).

Estimate (5.34) is fully optimal since it leads to a convergence order equal to 2 for
very smooth solutions (u∗, p∗, k∗). Moreover assumption (5.33) is not at all restrictive
in dimension d = 2. But neither this assumption nor the regularity property required
on the solution (u∗, p∗, k∗) is likely in dimension d = 3. However the convergence of the
discretization when the following condition holds

lim
h→0

h−1
min h

2 = 0, (5.35)

can easily be derived from Theorem 5.7. This last condition is now much more likely and
can be enforced in the adaptivity process.
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6. A posteriori estimates.

For each K in Th, we introduce the set EK of edges (d = 2) or faces (d = 3) of K
which are not contained in ∂Ω. The diameters (or lengths) of K and of each e in EK are
denoted by hK and he, respectively. For each e in EK , [·]e stands for the jump through e
in a fixed direction (it seems useless to make the sign precise). We also consider the space

Zh =
{
vh ∈ L2(Ω)d; ∀K ∈ Th, vh|K ∈ P0(K)d

}
, (6.1)

and, assuming that the datum f belongs to L2(Ω)d, we choose an approximation fh of f

in Zh.

We again use the real number ρ defined in (4.14) and we set

1

ρ
+

1

ρ′
= 1. (6.2)

We are now in a position to define the two types of error indicators which are needed for
applying the algorithm described in Section 2.
(i) An indicator linked to the modelization error
The definition of this indicator relies on Proposition 4.5. The error indicator ηm is given
by

ηm = ‖div
(
µ∗(·, kh)∇uh

)
‖W−1,ρ(Ω)d + ‖µ∗(·, kh) |∇uh|2‖W−1,ρ(Ω), (6.3)

where the function µ∗ is defined in (4.16).
(ii) Indicators linked to the finite element error
These indicators are of residual type and are now standard both for the Stokes and Laplace
equations, see [41, §1.2]. For each K in Th, the error indicator ηK is given by

ηK = ηSK + ηLK , (6.4)

with

ηSK = hK ‖fh + div
(
ν∗(·, kh)∇uh

)
− (uh · ∇)uh − grad ph‖Lρ(K)d

+
∑

e∈EK

h
1
ρ
e ‖[ν∗(·, kh) ∂nuh]e‖Lρ(e)d + ‖div uh‖Lρ(K),

ηLK = hK ‖ν∗(·, kh) |∇uh|2 + α∆kh‖Lρ(K) +
∑

e∈EK

h
1
ρ
e ‖[α∂nkh]e‖Lρ(e).

(6.5)

It must be noted that each term which appears in the definition of the indicators ηK is
easy to compute once the discrete solution (uh, ph, kh) is known.

In a first step, we intend to prove an upper bound for the error between a solution
(u, p, k) of problem (3.3) and the solution (uh, ph, kh) of problem (5.3) in a neighbourhood
of it (see Proposition 4.5 and Theorem 5.7), in the norm of the space W 1,ρ

0 (Ω)d ×Lρ(Ω)×
W 1,ρ

0 (Ω). Relying on the triangle inequality

‖u − uh‖W 1,ρ(Ω)d ≤ ‖u − u∗‖W 1,ρ(Ω)d + ‖u∗ − uh‖W 1,ρ(Ω)d ,
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and similar ones for the other unknowns, we proceed in two steps. We again use the space
X defined in (4.8).

Proposition 6.1. If the function ν belongs to W 2,∞(R) and Assumption 4.4 is satisfied,

let (u, p, k) be a solution of problem (3.3) such that DF(U) with U = (u, k)T, is an

isomorphism of X . There exists a positive number R only depending on this solution such

that the following a posteriori error estimate holds

‖u − u∗‖W 1,ρ(Ω)d + ‖k − k∗‖W 1,ρ(Ω)

≤ c ηm + c(f)
(
‖u∗ − uh‖W 1,ρ(Ωℓ)d + ‖k∗ − kh‖W 1,ρ(Ωℓ)

) (6.6)

for any solution (u∗, p∗, k∗) of problem (4.4) such that (u∗, k∗) belongs to the ball of X
with centre (u, k) and radius R and for a constant c(f) only depending on the data f .

Proof: It follows from Assumption 4.4 and Proposition 4.3 that the solution (u∗, p∗, k∗)
satisfies, for a real number q1 > ρ,

ν0 ‖u∗‖W 1,q1 (Ω)d + α ‖k∗‖W 1,q1 (Ω) ≤ c
(
‖f‖W−1,q1 (Ω)d + ‖f‖2

H−1(Ω)d

)
. (6.7)

We also need the inequality (which is easily derived by a duality argument)

∀w ∈ Lρ(Ω)d, ‖div w‖W−1,ρ(Ω) ≤ ‖w‖Lρ(Ω)d . (6.8)

Moreover, noting that all assumptions of Proposition 4.5 are satisfied and that the support
of µ∗ is contained in Ωℓ, we derive from (4.17) combined with (6.8) that

‖u − u∗‖W 1,ρ(Ω)d + ‖k − k∗‖W 1,ρ(Ω)d

≤ c
(
ηm + ‖µ(k∗)∇u∗ − µ(kh)∇uh‖Lρ(Ωℓ)d×d

+ ‖µ∗(·, k∗) |∇u∗|2 − µ∗(·, kh) |∇uh|2‖W−1,ρ(Ω)

)
.

(6.9)

We then use the further triangle inequality

‖µ(k∗)∇u∗ − µ(kh)∇uh‖Lρ(Ωℓ)d×d ≤ ‖
(
µ(k∗) − µ(kh)

)
∇u∗‖Lρ(Ωℓ)d×d

+ ‖µ(kh)∇(u∗ − uh)‖Lρ(Ωℓ)d×d .

The second term in the right hand-side is obviously bounded by

‖µ(kh)∇(u∗ − uh)‖Lρ(Ωℓ)d×d ≤ (ν2 − ν0) ‖u∗ − uh‖W 1,ρ(Ω)d .

To evaluate the first term, we consider the four cases where
• ν1

√
(k∗)ε+ ≥ ν2 − ν0 and ν1

√
(kh)ε+ ≥ ν2 − ν0,

• ν1
√

(k∗)ε+ < ν2 − ν0 and ν1
√

(kh)ε+ ≥ ν2 − ν0,

• ν1
√

(k∗)ε+ ≥ ν2 − ν0 and ν1
√

(kh)ε+ < ν2 − ν0,

• ν1
√

(k∗)ε+ < ν2 − ν0 and ν1
√

(kh)ε+ < ν2 − ν0,
and observe that, in all of them,

|µ(k∗) − µ(kh)| ≤ ν1
∣∣√(k∗)ε −

√
(kh)ε

∣∣.
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Since q1 is > ρ, setting 1
r

= 1
ρ
− 1

q1
and noting that W 1,ρ(Ωℓ) is imbedded in Lr(Ωℓ), we

obtain

‖
(
µ(k∗) − µ(kh)

)
∇u∗‖Lρ(Ωℓ)d×d ≤ ν1‖

√
(k∗)ε −

√
(kh)ε‖Lr(Ωℓ)‖∇u∗‖Lq1 (Ω)d×d

≤ ν1
2
√
ε
‖k∗ − kh‖W 1,ρ(Ωℓ)‖u∗‖W 1,q1 (Ω)d ,

where the last estimate is obtained by multiplying and dividing by
√

(k∗)ε +
√

(kh)ε.
Combining all this with (6.7) gives

‖µ(k∗)∇u∗−µ(kh)∇uh‖Lρ(Ωℓ)d×d ≤ c(f)
(
‖u∗−uh‖W 1,ρ(Ωℓ)d+‖k∗−kh‖W 1,ρ(Ωℓ)

)
, (6.10)

where the quantity c(f) only depends on f . On the other hand, we use the inequality

‖µ∗(·, k∗) |∇u∗|2 − µ∗(·, kh) |∇uh|2‖W−1,ρ(Ω)

≤ ‖
(
µ∗(·, k∗) − µ∗(·, kh)

)
|∇u∗|2‖W−1,ρ(Ω)

+ ‖µ∗(·, kh)∇(u∗ + uh) · ∇(u∗ − uh)‖W−1,ρ(Ω),

whence, by combining the same arguments as previously with the imbedding of Lr(Ω) into
W−1,ρ(Ω) for 1

r
= 1

ρ
+ 1

d
and again using (6.7),

‖µ∗(·, k∗) |∇u∗|2 − µ∗(·, kh) |∇uh|2‖W−1,ρ(Ω)

≤ c(f)
(
‖u∗ − uh‖W 1,ρ(Ωℓ)d + ‖k∗ − kh‖W 1,ρ(Ωℓ)

)
.

(6.11)

Combining (6.10) and (6.11) with (6.9) leads to the desired estimate.

To prove the analogous estimate for the pressure, we need the following inf-sup con-
dition which is proven in [2, Cor. 3.2] for instance: There exists a constant βρ such that

∀q ∈ Lρ(Ω), sup
v∈W

1,ρ′

0
(Ω)d

−
∫
Ω
(div v)(x)q(x) dx

‖v‖W 1,ρ′ (Ω)d

≥ βρ ‖q‖Lρ(Ω). (6.12)

Note that this condition holds with ρ replaced by any r, 1 < r < +∞. Indeed, we observe
from (3.3) and (4.4) that, for any function v in H1

0 (Ω)d,

−
∫

Ω

(div v)(x)(p− p∗)(x) dx = −
∫

Ω

(
ν(k)∇u − ν∗(k∗)∇u∗

)
: ∇v dx

−
∫

Ω

(
(u · ∇)u − (u∗ · ∇)u∗

)
· v dx.

Thus, using the density of H1
0 (Ω) into W 1,ρ′

0 (Ω), we derive from the inf-sup condition (6.12)
an estimate for ‖p− p∗‖Lρ(Ω) in terms of the already evaluated quantities.

Corollary 6.2. If the assumptions of Proposition 6.1 hold and for the R introduced in

this proposition, the following a posteriori error estimate holds

‖p− p∗‖Lρ(Ω) ≤ c ηm + c(f)
(
‖u∗ − uh‖W 1,ρ(Ωℓ)d + ‖k∗ − kh‖W 1,ρ(Ωℓ)

)
, (6.13)
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for any solution (u∗, p∗, k∗) of problem (4.4) such that (u∗, k∗) belongs to the ball of X
with centre (u, k) and radius R and for a constant c(f) only depending on the data f .

Proving the bound for the second part of the error still relies on the theorem of
J. Pousin and J. Rappaz [38]. We first observe that the triple (uh, ph, kh) satisfies the

system of residual equations: For all v in W 1,ρ′

0 (Ω)d and vh in Xh,
∫

Ω

ν∗(x, kh)∇uh : ∇v dx +

∫

Ω

(uh · ∇)uh · v dx −
∫

Ω

(div v)(x)ph(x) dx − 〈f ,v〉

= −
∑

K∈Th

(∫

K

(
f + div

(
ν∗(·, kh)∇uh

)
− (uh · ∇)uh − grad ph

)
(x) · (v − vh)(x) dx

+
1

2

∑

e∈EK

∫

e

[ν∗(·, kh) ∂nuh]e(τ ) · (v − vh)(τ ) dτ
)
,

(6.14)

and, for all χ in W 1,ρ′

0 (Ω) and χh in Yh,

α

∫

Ω

grad kh · gradχdx −
∫

Ω

ν∗(x, kh) |∇uh|2(x)χ(x) dx

= −
∑

K∈Th

(∫

K

(
ν∗(·, kh) |∇uh|2 + α∆kh

)
(x) (χ− χh)(x) dx

+
1

2

∑

e∈EK

∫

e

α [∂nkh]e(τ ) (χ− χh)(τ ) dτ
)
.

(6.15)

However, the discrete velocity uh is no longer divergence-free in the general case.
So we derive from the inf-sup condition (6.12), with ρ replaced by ρ′, the existence of a
function u in W 1,ρ

0 (Ω)d such that

div u = div uh in Ω and ‖u‖W 1,ρ(Ω)d ≤ βρ′ ‖div uh‖Lρ(Ω). (6.16)

Thus, when setting u0 = uh −u, equation (6.14) can equivalently be written: For all v in

W 1,ρ′

0 (Ω)d, vh in Xh and q in L2
0(Ω),

∫

Ω

ν∗(x, kh)∇u0 : ∇v dx +

∫

Ω

(u0 · ∇)u0 · v dx −
∫

Ω

(div v)(x)ph(x) dx − 〈f ,v〉

= −
∑

K∈Th

(∫

K

(
f + div

(
ν∗(·, kh)∇uh

)
− (uh · ∇)uh − grad ph

)
(x) · (v − vh)(x) dx

+
1

2

∑

e∈EK

∫

e

[ν∗(·, kh) ∂nuh]e(τ ) · (v − vh)(τ ) dτ
)
− r(u,v),

−
∫

Ω

(div u0)(x)q(x) dx = 0,

(6.17)
where the quantity r(u, ·) is defined by

r(u,v) =

∫

Ω

ν∗(x, kh)∇u : ∇v dx +

∫

Ω

(u · ∇)u · v dx

+

∫

Ω

(u · ∇)u0 · v dx +

∫

Ω

(u0 · ∇)u · v dx.

(6.18)
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When using the notation introduced in Section 4, we write the system (6.17)− (6.15)
in the more compact form

U0 +

(
S 0
0 L

)
G∗(U0) =

(
S 0
0 L

)
R(U0), (6.19)

where U0 stands for the pair (u0, kh) and the two components RS(U0) and RL(U0) of
R(U0) are defined by duality

∀v ∈W 1,ρ′

0 (Ω)d, 〈RS(U0),v〉

= −
∑

K∈Th

(∫

K

(
f + div

(
ν∗(·, kh)∇uh

)
− (uh · ∇)uh − grad ph

)
(x) · (v − Πhv)(x) dx

+
1

2

∑

e∈EK

∫

e

[ν∗(·, kh) ∂nuh]e(τ ) · (v − Πhv)(τ ) dτ
)
− r(u,v),

∀χ ∈W 1,ρ′

0 (Ω), 〈RL(U0), χ〉 = −
∑

K∈Th

(∫

K

(
ν(kh) |∇uh|2 + α∆kh

)
(x) (χ− Πhχ)(x) dx

+
1

2

∑

e∈EK

∫

e

α [∂nkh]e(τ ) (χ− Πhχ)(τ ) dτ
)
,

where the operator Πh is defined below.

As standard in a posteriori analysis, the next result requires that Πh is a Clément
type operator, see [13], more precisely an operator from L1(Ω) with values in Yh and such

that, for any function ϕ in W 1,ρ′

0 (Ω), for all K in Th and e in EK ,

‖ϕ− Πhϕ‖Lρ′ (K) ≤ c hK ‖ϕ‖W 1,ρ′ (∆K),

‖ϕ− Πhϕ‖Lρ′ (e) ≤ c h
1− 1

ρ′

K ‖ϕ‖W 1,ρ′ (∆e),
(6.20)

where ∆K and ∆e denote the union of the elements of Th that share at least a vertex with
K and e, respectively. Such an operator was first constructed in [13], where the first part of
estimate (6.20) is proved for ρ = ρ′ = 2 in the two-dimensional case. A modified operator
is constructed in [6, Th. IX.3.11], where the first part of estimate (6.20) is extended to
the case d = 3 and to any value of ρ. The second part of (6.20) is proved for this same
operator in [6, Cor. IX.3.12]. We are now in a position to prove the next statement.

Proposition 6.3. Assume that there exists a constant R♯ such that all solutions of problem

(5.3) satisfy

‖div uh‖Lρ(Ω) ≤ R♯. (6.21)

If the function ν belongs to W 2,∞(R), let (u∗, p∗, k∗) be a solution of problem (4.4) which

belongs to X and such that DF∗(U
∗) with U∗ = (u∗, k∗)T, is an isomorphism of X . Then,

there exists a positive number R♭ only depending on this solution such that the following a

posteriori error estimate holds

‖u∗ − uh‖W 1,ρ(Ω)d + ‖k∗ − kh‖W 1,ρ(Ω) ≤ c
( ∑

K∈Th

(
ηρ

K + hρ
K ‖f − fh‖ρ

Lρ(K)d

)) 1
ρ

, (6.22)
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for a solution (uh, ph, kh) of problem (5.3) such that (uh, kh) belongs to the ball of X with

centre (u∗, k∗) and radius R♭.

Proof: We first note from (6.16) that

‖u‖W 1,ρ(Ω)d ≤
( ∑

K∈Th

(
ηSK)ρ

) 1
ρ , (6.23)

and we use the triangle inequality

‖u∗ − uh‖W 1,ρ(Ω)d ≤ ‖u∗ − u0‖W 1,ρ(Ω)d + ‖u‖W 1,ρ(Ω)d .

Indeed, the same arguments as in Section 4 yield that all the assumptions of [41, Prop.
2.1] are satisfied by the solution U∗ of problem (4.11), so that applying this proposition
leads to the following result: There exists a constant R0 > 0 independent of h such that
any solution U0 of (6.19) in the ball with centre U∗ and radius R0 satisfies

‖U∗ − U0‖X∗ ≤ c

∥∥∥∥
(
S 0
0 L

)
R(U0)

∥∥∥∥
X∗

.

The pair (uh = u0 + u, kh) belongs to the ball with centre U∗ and radius R♭ = R0 + R♯.
On the other hand, the standard properties of the operators S and L give

‖u∗ − u0‖W 1,ρ(Ω)d + ‖k∗ − kh‖W 1,ρ(Ω)

≤ c (‖RS(U0)‖W−1,ρ(Ω)d + ‖RL(U0)‖W−1,ρ(Ω)

)
.

(6.24)

We now evaluate successively each term in the right-hand side.
1) By combining (6.16), (6.21) and the fact that ‖u0‖W 1,ρ(Ω)d is bounded, we easily derive
that

|r(u,v)| ≤ c ‖div uh‖Lρ(Ω) ‖v‖W 1,ρ′ (Ω)d .

To bound the other terms in RS(U0), we use estimates (6.20), a Hölder inequality, the
fact that each element of Th is included in a finite number of ∆K and ∆e, only depending
on the regularity parameter σ, and a further triangle inequality to replace f by fh. All
this leads to

|〈RS(U0),v〉| ≤ c
( ∑

K∈Th

(
(ηSK)ρ + hρ

K ‖f − fh‖ρ
Lρ(K)d

)) 1
ρ ‖v‖W 1,ρ′ (Ω)d . (6.25)

2) Similarly, using (6.20) and the same arguments as previously gives

|〈RL(U0), χ〉| ≤ c
( ∑

K∈Th

(ηLK)ρ
) 1

ρ ‖χ‖W 1,ρ′ (Ω). (6.26)

Inserting (6.25) and (6.26) into (6.24) and combining this with (6.23) yield the desired
estimate.

Remark 6.4. Assumption (6.21) can easily be avoided by replacing the Stokes operator
S by the “complete” Stokes operator which associates with any data (F , G) in H−1(Ω)d ×
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L2
0(Ω), the solution (u, p) of a generalized problem (4.6) (see [41, §3.5] for more details).

However we prefer to work with the operator S in order that the assumptions of Proposition
6.3 are coherent with their analogues in Proposition 6.1. Anyhow assumption (6.21) is not
restrictive since it results from the convergence of the discretization.

Proving the estimate on the pressure now relies on the following argument. By com-

bining (6.14) and the first equation of problem (4.4), we obtain for all v in W 1,ρ′

0 (Ω)d and
vh in Xh,

−
∫

Ω

(div v)(x)(p∗ − ph)(x) dx = −
∫

Ω

ν∗(x, k∗)∇u∗ : ∇v dx

+

∫

Ω

ν∗(x, kh)∇uh : ∇v dx −
∫

Ω

(u∗ · ∇)u∗ · v dx +

∫

Ω

(uh · ∇)uh · v dx

+
∑

K∈Th

(∫

K

(
f + div

(
ν∗(·, kh)∇uh

)
− (uh · ∇)uh − grad ph

)
(x) · (v − vh)(x) dx

− 1

2

∑

e∈EK

∫

e

[ν∗(·, kh) ∂nuh]e(τ ) · (v − vh)(τ ) dτ
)
.

(6.27)
Thus, the inf-sup condition (6.12) leads to a bound for ‖p−ph‖Lρ(Ω) in terms of the ηK and
the quantities ‖u∗ −uh‖W 1,ρ(Ω)d and ‖k∗ − kh‖W 1,ρ(Ω) which are evaluated in Proposition
6.3.

Corollary 6.5. If the assumptions of Proposition 6.3 hold and for the R♭ introduced in

this proposition, the following a posteriori error estimate holds

‖p∗ − ph‖Lρ(Ω) ≤ c
( ∑

K∈Th

(
ηρ

K + hρ
K ‖f − fh‖ρ

Lρ(K)d

)) 1
ρ

, (6.28)

for a solution (uh, ph, kh) of problem (5.3) such that (uh, kh) belongs to the ball of X ∗ with

centre (u∗, k∗) and radius R♭.

We are now interested in upper bounds for the error indicators.

Proposition 6.6. If Assumption 4.4 is satisfied, the following estimate holds for the

indicator ηm defined in (6.3),

ηm ≤ c(f)
(
‖u − u∗‖W 1,ρ(Ω)d + ‖p− p∗‖Lρ(Ω) + ‖k − k∗‖W 1,ρ(Ω)

)

+ c′(f)
(
‖u∗ − uh‖W 1,ρ(Ωℓ)d + ‖k∗ − kh‖W 1,ρ(Ωℓ)

)
,

(6.29)

for constants c(f) and c′(f) only depending on the data f .

Proof: It is performed in three steps.
1) By subtracting the first line of problem (4.4) from the first line of problem (3.3), we

obtain for any v in W 1,ρ′

0 (Ω)d and with obvious notation for the duality pairing
∫

Ω

(
ν(k)∇u − ν(k∗)∇u∗

)
: ∇v dx +

∫

Ω

(
(u · ∇)u − (u∗ · ∇)u∗

)
· v(x) dx

−
∫

Ω

(div v)(x)(p− p∗)(x) dx =
〈
div

(
µ∗(·, k∗)∇u∗

)
,v

〉
.
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Thus, we obtain

‖div
(
µ∗(·, k∗)∇u∗

)
‖W−1,ρ(Ω)d ≤ ‖ν(k)∇u − ν(k∗)∇u∗‖Lρ(Ω)d×d

+ ‖(u · ∇)u − (u∗ · ∇)u∗‖Lρ(Ω)d + ‖p− p∗‖Lρ(Ω).

It follows from standard arguments and estimate (6.7) that

‖div
(
µ∗(·, k∗)∇u∗

)
‖W−1,ρ(Ω)d

≤ c(f)
(
‖u − u∗‖W 1,ρ(Ω)d + ‖p− p∗‖Lρ(Ω) + ‖k − k∗‖W 1,ρ(Ω)

)
.

(6.30)

2) Similarly, by subtracting the third line of problem (4.3) from the third line of problem
(1.2), we obtain

−α∆(k − k∗) = ν(k) |∇u|2 − ν(k∗) |∇u∗|2 − µ∗(·, k∗) |∇u∗|2,

whence

‖µ∗(·, k∗) |∇u∗|2‖W−1,ρ(Ω) ≤ c
(
‖k − k∗‖W 1,ρ(Ω)d + ‖ν(k) |∇u|2 − ν(k∗) |∇u∗|2‖W−1,ρ(Ω)

)
.

Owing to (6.7), this yields

‖µ∗(·, k∗) |∇u∗|2‖W−1,ρ(Ω) ≤ c(f)
(
‖u − u∗‖W 1,ρ(Ω)d + ‖k − k∗‖W 1,ρ(Ω)

)
. (6.31)

3) A triangle inequality and (6.8) lead to

ηm ≤ ‖div
(
µ∗(·, k∗)∇u∗

)
‖W−1,ρ(Ω)d + ‖µ∗(·, k∗) |∇u∗|2‖W−1,ρ(Ω)

+ ‖µ(k∗)∇u∗ − µ(kh)∇uh‖Lρ(Ωℓ)d×d

+ ‖µ∗(·, k∗) |∇u∗|2 − µ∗(·, kh) |∇uh|2‖W−1,ρ(Ω).

We conclude by using (6.10) and (6.11), combined with (6.30) and (6.31).

Proving the upper bounds for the indicators ηK presents two difficulties:
• the quantities that appear in their definition are no longer polynomial, due to the non
polynomial function ν∗,
• the norms in their definition are no longer Hilbertian.
To handle both of them, we use some arguments presented in [41, §3.3] and [41, Lemma
3.3].

We bound separately the terms ηSK and ηLK . We recall from Remark 5.1 the definition
of the function νh: For each K in Th, νh|K belongs to P2(K) and is equal to ν∗(a, kh(a))
at each vertex or midpoint a of an edge of K. According to [41, §3.3], we introduce the
quantities

εSK = hK ‖div
((
ν∗(·, kh) − νh(·)

)
∇uh

)
‖Lρ(K)d

+
∑

e∈EK

h
1
ρ
e ‖[

(
ν∗(·, kh) − νh(·)

)
∂nuh]e‖Lρ(e)d .

(6.32)
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In a first step, we prove a bound for the quantity εSK . For each K in Th, we denote by ωK

the union of elements of Th that share at least an edge (d = 2) or a face (d = 3) with K.

Lemma 6.7. The following estimate holds for all K in Th,

εSK ≤ c hK ‖grad kh‖L∞(K)d ‖∇uh‖Lρ(ωK)d×d . (6.33)

Proof: We bound successively the two terms in εSK .
1) We have

div
((
ν∗(·, kh) − νh(·)

)
∇uh

)
=

(
ν∗(·, kh) − νh(·)

)
∆uh + grad

(
ν∗(·, kh) − νh(·)

)
: ∇uh,

whence

hK ‖div
((
ν∗(·, kh) − νh(·)

)
∇uh

)
‖Lρ(K)d

≤ hK ‖
(
ν∗(·, kh) − νh(·)

)
‖L∞(K) ‖∆uh‖Lρ(K)d

+ hK ‖grad
(
ν∗(·, kh) − νh(·)

)
‖L∞(K)d ‖∇uh‖Lρ(K)d×d

.

Noting that νh(·) is the Lagrange interpolate of ν∗(·, kh), therefore we derive from standard
estimates [6, Lemmes IX.1.1 & IX.1.2] and the fact that ν∗(·, kh) belongs to W 1,∞(Ω)

‖
(
ν∗(·, kh)−νh(·)

)
‖L∞(K) +hK ‖grad

(
ν∗(·, kh)−νh(·)

)
‖L∞(K)d ≤ c hK ‖grad kh‖L∞(K)d .

Combining this with a standard inverse inequality [6, Prop. VII.4.1] to bound the term
‖∆uh‖Ld(K)d , we obtain

hK ‖div
((
ν∗(·, kh)−νh(·)

)
∇uh

)
‖Lρ(K)d ≤ c hK ‖grad kh‖L∞(K)d ‖∇uh‖Lρ(K)d×d . (6.34)

2) Similarly, we have

h
1
ρ
e ‖[

(
ν∗(·, kh) − νh(·)

)
∂nuh]e‖Lρ(e)d ≤ h

1
ρ
e ‖ν∗(·, kh) − νh‖L∞(e)‖[∂nuh]e‖Lρ(e)d .

Using the properties of the Lagrange interpolation operator on e together with the fact
that the trace operator from W 1,∞(K) into W 1,∞(e) has a norm bounded independently
of hK , we derive

‖ν∗(·, kh) − νh‖L∞(e) ≤ c he ‖grad kh‖L∞(K)d .

On the other hand, combining a duality argument together with a less standard inverse
inequality leads to

‖[∂nuh]e‖Lρ(e)d ≤ c h
− 1

ρ
e ‖[∂nuh]e‖

W
−

1
ρ

,ρ
(e)d

≤ c′ h
− 1

ρ
e ‖∇uh‖Lρ(ωK)d×d .

All this yields

h
1
ρ
e ‖[

(
ν∗(·, kh) − νh(·)

)
∂nuh]e‖Lρ(e)d ≤ c he ‖grad kh‖L∞(K)d ‖∇uh‖Lρ(ωK)d×d . (6.35)

The desired estimate follows from (6.34) and (6.35) by noting that he ≤ hK .

32



To derive the error for the ηSK , we write the residual equation (6.14) in the modified

form: For all v in W 1,ρ′

0 (Ω)d,
∫

Ω

(
ν∗(x, k∗)∇u∗ − ν∗(x, kh)∇uh

)
: ∇v dx

+

∫

Ω

(
(u∗ · ∇)u∗ − (uh · ∇)uh

)
· v dx −

∫

Ω

(div v)(x)(p∗ − ph)(x) dx

=
∑

K∈Th

(∫

K

(
fh + div

(
νh(·)∇uh

)
− (uh · ∇)uh − grad ph

)
(x) · v(x) dx

+

∫

K

(f − fh)(x) · v(x) dx +

∫

K

div
((
ν∗(·, kh) − νh(·)

)
(x)∇uh

)
· v(x) dx

+
1

2

∑

e∈EK

(∫

e

[νh(·) ∂nuh]e(τ ) · v(τ ) dτ

+

∫

e

[
(
ν∗(·, kh) − νh(·)

)
∂nuh]e(τ ) · v(τ ) dτ

))
.

(6.36)
We also have, for all q in L2

0(Ω),
∫

Ω

(
div (u − uh)

)
(x)q(x) dx = −

∫

Ω

(
div uh

)
(x)q(x) dx. (6.37)

Even if equation (6.36) is rather complex, the estimate for ηSK is now derived from these
equations by standard arguments, that we present in an abridged way.

Proposition 6.8. If Assumption 4.4 is satisfied, the following estimate holds for the

indicators ηSK defined in (6.5), K ∈ Th,

ηSK ≤ c(f)
(
‖u∗ − uh‖W 1,ρ(ωK)d + ‖p∗ − ph‖Lρ(ωK) + ‖k∗ − kh‖W 1,ρ(ωK)

)

+ c
(
hK ‖f − fh‖Lρ(ωK)d +

∑

κ⊂ωK

εSκ
)
, (6.38)

for a constant c(f) only depending on the data f .

Proof: We evaluate separately the three terms in ηSK .
1) Setting

ϕh = fh + div
(
νh(·)∇uh

)
− (uh · ∇)uh − grad ph,

and using [41, Lemma 3.3], we derive that, for a finite-dimensional subspace VK̂ of H1(K̂)d

on the reference triangle or tetrahedron K̂, denoting by VK the space of functions on K
obtained from VK̂ by affine transformation,

‖ϕh‖Lρ(K)d ≤ c sup
w∈VK

∫
K

ϕh(x)ψK(x) · w(x) dx

‖w‖Lρ′ (K)d

,

where ψK denotes the bubble function on K, equal to the product of the barycentric
coordinates associated with the vertices of K. Thus, taking v equal to ψKw in (6.36),
where w runs through VK and using the standard inverse inequality [6, Prop. VII.4.1]

‖wψK‖W 1,ρ′ (K)d ≤ c h−1
K ‖wψK‖Lρ′ (K)d ≤ c h−1

K ‖w‖Lρ′ (K)d ,
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we obtain the desired bound for hK ‖ϕh‖Lρ(K)d . A further triangle inequality involving

εSK leads to the bound for

hK ‖fh + div
(
ν∗(·, kh)∇uh

)
− (uh · ∇)uh − grad ph‖Lρ(K)d .

2) Setting ϕ̃h = [νh(·) ∂nuh]e, we start from the similar formula

‖ϕ̃h‖Lρ(e)d ≤ c sup
w∈Ve

∫
e
ϕ̃h(x)ψe(x) · w(x) dx

‖w‖Lρ′ (e)d

,

where Ve is contructed by affine transformation from a finite-dimensional space Vê on the
reference edge or face ê, and ψe is the bubble function on e. Next, assuming that e is an
edge of another element K ′, we set

v =

{
Re,κ

(
ψew) on κ ∈ {K,K ′},

0 on Ω \ (K ∪K ′),

where Re,κ denotes a lifting operator from functions on e vanishing on ∂e into functions
on κ vanishing on ∂κ\ e, constructed by affine transformation from a fixed lifting operator

from ê onto K̂. This leads to the bound for h
1
ρ
e ‖[νh(·) ∂nuh]e‖Lρ(e)d . A further triangle

inequality involving εSK finally gives the bound for h
1
ρ
e ‖[ν∗(·, kh) ∂nuh]e‖Lρ(e)d .

3) It follows from (6.37) in an obvious way that

‖div uh‖Lρ(K) ≤ c |u∗ − uh|W 1,ρ(K)d .

This concludes the proof.

The arguments for bounding ηLK are similar but simpler. So we skip the proofs. We
next introduce the quantities

εLK = hK ‖
(
ν∗(·, kh) − νh(·)

)
|∇uh|2‖Lρ(K). (6.39)

Lemma 6.9. The following estimate holds for all K in Th,

εLK ≤ c h2
K ‖grad kh‖L∞(K)d ‖∇uh‖2

L2ρ(K)d×d . (6.40)

We need the following modified form of the residual equation (6.15): For all χ in

W 1,ρ′

0 (Ω),

α

∫

Ω

grad (k∗ − kh) · gradχdx

−
∫

Ω

(
ν∗(x, k∗) |∇u∗|2 − ν∗(x, kh) |∇uh|2

)
(x)χ(x) dx

=
∑

K∈Th

(∫

K

(
νh(x) |∇uh|2(x) + α∆kh

)
(x)χ(x) dx

−
∫

K

(
ν∗(x, kh) − νh(x)

)
|∇uh|2(x)χ(x) dx

+
1

2

∑

e∈EK

∫

e

α [∂nkh]e(τ )χ(τ ) dτ
)
.

(6.41)
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Proposition 6.10. If Assumption 4.4 is satisfied, the following estimate holds for the

indicators ηLK defined in (6.5), K ∈ Th,

ηLK ≤ c(f)
(
‖u∗ − uh‖W 1,ρ(ωK)d + ‖k∗ − kh‖W 1,ρ(ωK)

)
+ c

∑

κ⊂ωK

εLκ , (6.42)

for a constant c(f) only depending on the data f .

These estimates are no longer optimal according to the standard criteria. But this
seems unavoidable for non polynomial coefficients, even in the linear case of coefficients
only depending on the space variable x, see [41, §3.2]. Moreover, if Eh denote the full error

Eh = ‖u − u∗‖W 1,ρ(Ω)d + ‖p− p∗‖Lρ(Ω) + ‖k − k∗‖W 1,ρ(Ω)

+ ‖u∗ − uh‖W 1,ρ(Ω)d + ‖p∗ − ph‖Lρ(Ω) + ‖k∗ − kh‖W 1,ρ(Ω),
(6.43)

we observe from Proposition 6.1 and Corollary 6.2, Proposition 6.3 and Corollary 6.5 that
it admits the upper bound

Eh ≤ c ηm + c′
( ∑

K∈Th

(
ηρ

K + hρ
K ‖f − fh‖ρ

Lρ(K)d

)) 1
ρ

, (6.44)

which is fully optimal. On the other hand, it follows from Propositions 6.6, 6.8 and 6.10
that it admits the lower bound

Eh ≥ c ηm + c′
( ∑

K∈Th

ηρ
K

) 1
ρ − c′′

( ∑

K∈Th

(
hρ

K ‖f − fh‖ρ
Lρ(K)d + (εSK)ρ + (εLK)ρ

)) 1
ρ

, (6.45)

and the lack of optimality here comes from the εSK and εLK . However, since it follows from
Lemmas 6.7 and 6.9 that a local bound for these terms can be computed explicitly, the
adaptivity process can be performed in the usual way with the further requirement to be
cautious for the K such that εSK and εLK are not negligible with respect to ηSK and ηLK .

Another difficulty comes from the fact that the W−1,ρ(Ω)-norm which appears in the
definition of ηm is not local. However, when setting

ηm
K = ‖µ(kh)∇uh‖Lρ(K)d×d + ‖µ(kh)

1
2 ∇uh‖2

Lρ(K)d×d , (6.46)

and denoting by T ℓ
h the set of elements of Th which are contained in Ωℓ, we observe from

(6.8) that

ηm ≤
( ∑

K∈T ℓ
h

(ηm
K )ρ

) 1
ρ . (6.47)

So these ηm
K can reasonably be used in the strategy proposed in Section 2.

Remark 6.11. When replacing ν∗(·, kh) by νh in the discrete problem (5.3), as suggested
in Remark 5.1, it seems more natural to define the indicators ηSK and ηLK by

ηSK = hK ‖fh + div
(
νh(·)∇uh

)
− (uh · ∇)uh − grad ph‖Lρ(K)d

+
∑

e∈EK

h
1
ρ
e ‖[νh(·) ∂nuh]e‖Lρ(e)d + ‖div uh‖Lρ(K),

ηLK = hK ‖νh(·) |∇uh|2 + α∆kh‖Lρ(K) +
∑

e∈EK

h
1
ρ
e ‖[α∂nkh]e‖Lρ(e).

(6.48)

All the estimates of this section remains valid in this case with only a further term, equal

to
(∑

K∈Th

(
(εSK)ρ + (εLK)ρ

)) 1
ρ , in the right-hand side of (6.22) and (6.28).
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7. Numerical experiments.

According to the adaptivity strategy proposed in Section 2, we must now solve the
discrete problem (5.3) for the sequence of subdomains Ωn

t and Ωn
ℓ , provided with the

triangulation T n
h . Since problem (5.3) is nonlinear, we also use the algorithm studied in

[11] in a slightly different case (see also [42]), i.e. for a given k0
h in Yh, we iteratively solve

the uncoupled problems

Find (um
h , p

m
h ) in Xh ×Mh such that

∀vh ∈ Xh,

∫

Ω

ν∗(x, km−1
h )∇um

h : ∇vh dx +

∫

Ω

(um
h · ∇)um

h · vh(x) dx

−
∫

Ω

(div vh)(x)pm
h (x) dx = 〈f ,vh〉,

∀qh ∈Mh, −
∫

Ω

(div um
h )(x)qh(x) dx = 0,

(7.1)

Find km
h in Yh such that

∀χh ∈ Yh, α

∫

Ω

grad km
h · gradχh dx =

∫

Ω

ν∗(x, km−1
h ) |∇um

h |2 χh(x) dx. (7.2)

The convergence of this algorithm is proved in [11, Th. 2] only under the assumption
that the data f are small enough, however it seems likely in our case. The nonlinear
term (um

h · ∇)um
h in problem (7.1) is handled via the standard characteristics method,

introduced in [37].

The numerical experiments that we present are performed on the code FreeFem++,
see [23]. They correspond to the standard backward step problem. The domain Ω is
L-shaped, given by

Ω =] − 4, 10[×]0, 1[ \ ] − 4, 0]×]0,
1

2
]. (7.3)

The data f are equal to zero but the boundary conditions are now that of problem (1.1),
i.e. {

u = g on ∂Ω,

k = 0 on ∂Ω,
(7.4)

where the function g is zero on all edges of ∂Ω except on the vertical edges contained in
the lines x = −4 and x = 10, where it is given by

g(−4, y) =
(
16(y − 1

2
)(1 − y), 0

)
,

1

2
≤ y ≤ 1,

g(10, y) =
(
2y(1 − y), 0

)
, 0 ≤ y ≤ 1.

(7.5)

The parameters ν0, ν1, ν2, α and ε satisfy the following conditions

ν1 = 10 ν0, ν2 = 1, α = 10−3, ε = 10−20. (7.6)
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The next figures deal with the part of the flow between the lines x = −1 and x = 5. Figure
2 presents, for ν0 = 10−4 and from top to bottom,
• the final decomposition of Ω into Ωt (in light blue) and Ωℓ (in dark blue),
• the final triangulation,
• and the curves of isovalues of the stream function associated with the velocity uh.
Figure 3 present the same quantities for ν0 = 10−5.

From these two figures, it can be observed that, when ν0 decreases, the size of Ωt

and the density of triangles in this Ωt increase, which seems in good coherence with the
behaviour of the flow.

Figure 2. Decomposition, triangulation and streamlines of the flow for ν0 = 10−4
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Figure 3. Decomposition, triangulation and streamlines of the flow for ν0 = 10−5
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8. Conclusions.

As already said in the introduction, high Reynolds number flows are not turbulent
in the whole domain. Moreover, any turbulence model requires additional computational
cost, in particular Reynolds Averaged Navier–Stokes (RANS) models such as the k − ǫ
system and its by-products. It is also known that usually direct numerical simulations
fail in real situations and therefore using the model is essential even in dimension 2 or for
axisymmetric cases (see [30]). Thus, our algorithm is useful to select turbulence regions
and reduce the computational cost.

Though the turbulence model that we have considered in this work is more a mathe-
matical game than a real turbulence one, we stress that it contains the main mathematical
features of a realistic RANS model. Our mathematical framework confirms that it is
harder to analyze than the standard Navier–Stokes equations. Regularity assumptions are
required to obtain a priori and a posteriori error estimates. Moreover, uniqueness is only
proved in the two-dimenional case, with a smallness assumption on the source term which
is standard for the Navier–Stokes equations. Of course, the corresponding evolution equa-
tions could have no steady state although the aim of the turbulence model is to compute
statistical mean values of the real field. Nevertheless it is observed in [30] that such a
model evoluates quickly to a steady state for a real physical situation; but this remains an
open problem in the general case.

The numerical simulations in this present work show a good and stable numerical
behavior of the selective algorithm introduced in the paper. Convergence is observed and
in the case of the classical backward facing step, we get the usual structure. This makes our
regularity assumptions likely. The concentration of finite elements observed in some regions
however could be due to the lack of dissipation of the turbulence and near the wall to a
boundary layer and the lack of wall laws. Indeed, using only one closure equation as we did
is not sufficient: The mixing length and/or the turbulent dissipation must be parametrized
to get a realistic scale separation. Nevertheless, the analysis and the numerical simulations
that we performed make our selective algorithm promising. It should now be tested over a
realistic case, though this was not the aim of this first introducing and theoretical paper.

Acknowledgement: We are very grateful toward our colleague B. Mohammadi for his
help concerning the derivation of the model. This work was partially supported by the
Marie Curie EIF Programme of the European Union and also by the Programa Nacional
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