
GDEVS/HLA Environment: A Time Management Improvement

G. Zacharewicz, N. Giambiasi, C. Frydman
LSIS UMR CNRS 6168
Université Paul Cézanne

Avenue Escadrille Normandie Niemen
13397 - Marseille cedex 20

Phone: +334 91 05 60 30, Fax: +334 91 05 60 33
E-mail: {Gregory.Zacharewicz, Norbert.Giambiasi, Claudia.Frydman}@lsis.org

Abstract - This paper presents a distributed discrete event
simulation environment based on GDEVS and HLA
concepts. The chosen local simulation structure is “flatten”
to reduce the exchange of messages between simulation
components regarding with classical structure of DEVS
simulators. Moreover, we present an integration method to
create GDEVS models HLA-compliant; for that purpose, we
introduce an effective algorithm of conservative
synchronization using the HLA lookahead and so improving
the distributed simulation time management. Finally, we
detail an example of distributed GDEVS coupled models to
show the improvement due to the new algorithm.

Keywords: DEVS, GDEVS, Distributed Simulation,
Synchronization, HLA, Lookahead.

I. INTRODUCTION

In this paper, we propose a new DEVS-GDEVS/HLA
environment. Our solution improves GDEVS simulation
by reducing the simulation structure. It also improves
time management in the GDEVS/HLA integration with a
new algorithm using the HLA lookahead and without
moving coupling information from the RTI level to the
federate level, regarding previous approaches as those
proposed by [ZEI, 99] and [LAK, 00].

On one hand, the use of GDEVS [GIA, 00] is particularly
suited for this environment. Indeed, GDEVS preserves
the notion of coupled model [ZEI, 00] and uses
polynomial functions that promises higher accuracies in
modelling continuous processes as discrete event
abstractions. Moreover, event driven simulations permit
faster execution in contrast to continuous simulations. A
key contribution of GDEVS is the possibility to develop
uniform simulation environment for hybrid (i.e. both
continuous and discrete) systems.

On the other hand, GDEVS models components
composing a GDEVS coupled model might be
implemented on different computers with diverse
operating systems maybe geographically distant. It is
therefore necessary to define a communication protocol to
integrate these components into a distributed simulation.
The HLA specification [IEEE1,2,3, 00] satisfies this need
by specifying message-exchange between components.
Rather, HLA defines services for message-exchange
within distributed components respecting determinism
and causality by using synchronization mechanisms.

The remainder of this paper is organized as follows.
Section 2 gives recalls on DEVS/GDEVS formalism,
general concepts of distributed simulation and HLA
standard. Section 3 exposes the GDEVS/HLA
components behaviour of our compliant environment, and
in particular, a new algorithm. Then, an example that
illustrates the use of the new algorithm is presented.
Finally some conclusions and future works are given.

II. RECALLS

A. Discrete Event Specification

1) Generalized Discrete EVent System Specification
(GDEVS)

Traditional discrete event abstraction (e.g. DEVS)
approximates observed input-output signals as piecewise
constant trajectory. GDEVS defines abstraction of signal
with piecewise polynomial trajectory [GIA, 00]. Thus,
GDEVS defines event as a list of values. These values
represent polynomial coefficients that approximate the
input-output trajectory. Therefore, DEVS is a particular
case of GDEVS (i.e. an order zero GDEVS). The original
signals representation of a dynamic system is thus more
accurately modelled with GDEVS. Formally, GDEVS
represents a dynamic system as an n order discrete event
model with:

SEDN = <XM, YM, S, δint, δext, λ, D>

The following mappings are required:
XM = A n+1, where A is a subset of integers or real

numbers

YM = A n+1

S = Q x (A n+1)
For all total state (q, (an, an-1,......, a0), 0) and a continuous
polynomial input segment w : <t1, t2> → X, are defined:

The internal transition function:
δint (q, (an, an-1,......, a0)) =

Straj q, x ((t1+D((q, (an, an-1,......, a0)), x)
with x =antn+an-1tn-1+…….+a1t+a0 and Straj
model state trajectory
∀ q de Q et ∀ w :<t1, t2> → X,
Straj q,w:<t1, t2> → Q

The external transition function:
δext (q, (an, an-1,......, a0), e, (an’, an-1’,......, a’0)) =
 (Straj q, x(t1+e), x’)

with: Coef (x) = (an, an-1,......, a0)
and Coef (x’) = (an’, an-1’,......, a’0)

Coef: function to associates n-coefficient of all

continuous polynomial function segments over a
time interval <ti, tj>, to the constants (n+1)
values (an, an-1,......, a0) such as:
w(t) = antn+an-1tn-1+…….+a1t+a0

InCoef: λ (q, (an, an-1,......, a0)) = Λ(q, x)

The output function:
λ: S → An+1

The function defining the life time of the states:
D(q, (an, an-1,......, a0)) =

MIN(e/Coef (Otraj q, x(t1)) ≠
Coef (Otraj q, x(t1 + e))
with Otraj model output trajectory:
Otraj q,w:<t1, t2> → Y

2) Coupled model
Reference [ZEI, 00] has introduced the concept of
coupled model that is a structural model. It describes a
structure by interconnection of basic models. Every basic
model of the coupled model interacts with the other
models to produce a global behaviour. The basic models
are, either atomic models, or coupled models stored in a
library. The models’ coupling is done using a hierarchical
approach. Note that GDEVS models with same order
events could be as well coupled.

A discrete event coupled model is defined by the
following structure:

MC = < X, Y, D, {Md/d∈D}, EIC, EOC, IC, Select>

X: set of external events.
Y: set of output events.
D: set of components names.
Md: DEVS models.
EIC: External Input Coupling relations.
EOC: External Output Coupling relations.
IC: Internal Coupling relations.
Select: defines priorities between simultaneous events

intended for different components.

3) DEVS Simulator
The concept of abstract simulator has been developed in
[ZEI, 00]. The architecture of simulation is diverted from
the DEVS hierarchical model structure. An abstract
simulator executes functions to express the dynamic of
the model. Such a simulator is obtained by matching each
element of a model to a component of the simulator. The
originality of this method is the independence of

simulators from models behaviour. Moreover, this
simulator can also simulate same order GDEVS coupled
models, the distinction lies only in the message structure.

The Components involved in a hierarchical simulation are
Simulators, which insures the simulation of the atomic
models by using the functions defined in DEVS or
GDEVS, Coordinators, which insures the routing of
messages between coupled models according to coupling
definitions, and the Root Coordinator, which insures the
global management of the simulation. It orders beginning
and end of the simulation and manages the global clock.

The simulation runs thanks to exchange of specific
messages between the different processors. The first three
types of messages below represent the various events
defined in DEVS.

Xmessage: Represents an external event (e.g.
coefficient-event vector in GDEVS)

*message: Represents an internal event,
Ymessage: Represents an output event,
Imessage: Initializes the model with all the default

values chosen by the user. (This
message has only a computing interest)

B. Distributed Simulation

The purpose of distributed simulation is to optimize
computers use, to work on distant computers and/or to
reuse existing simulations by interconnecting them. As
well, a distributed treatment has to guaranty the temporal
causality relations.

The causality thus imposes a partial order between
events treated. [LAM, 78] defines a method based on
local logical clocks. For any ‘a’ and ‘b’ events, if ‘a’
occurs before ‘b’ (a → b), implies that the local logical
time C(a) must be strictly lower than C(b). To respect
causality, synchronization mechanisms have been created.

A first kind of synchronization is called conservative (or
pessimistic). Processors treat local events or received
events from an influencer time stamped T (and
increments its actual time) when they are sure not to
receive any more events time stamped T’ < T, and thus to
respect the principle of causality. The firsts algorithms
were proposed by [BRY, 77] [CHA, 79].

The other main kind is called optimistic. Processors treat
events received, without being sure to have received all
events until this date; this incertitude can induce
treatment omissions of some events and therefore a
violation of the causality constraint [SAM, 85]. If a
processor receives an event time stamped earlier than its
local current time, it uses the “Rollback” mechanism
[JEF, 85]. For that purpose memory of reached states,
events received and sent is needed.

C. HLA (High Level Architecture)

1) Aim and Definition
HLA was developed in 1995 by the American
Department of Defense (DoD) Defense Modelling and
Simulation Office (DMSO) to suit the military projects
needs.

The High Level Architecture (HLA) is a software
architecture specification for creating global simulations
that include a variety of simulation programs. These
programs must be able to be reusable and inter-work
without recoding them.

In HLA, every participating simulation is called federate.
A group of federates, interacting together, is named in
HLA terms a federation. The set of HLA definitions was
formalized by the creation of HLA 1.3 standard in 1996,
which then evolved to HLA 1516 in 2000. Reference
[DMSO, 98] and [IEEE1,2,3, 00] define HLA by three
constituents:

HLA Rules insure the appropriate interaction of
simulations in a federation. They also describe the
responsibilities of federations and federates.

Object Model Template (OMT) supplies a common
structure for the documentation of HLA object model. It
contains the SOM (Simulation Object Model) which
defines objects and interactions which can be used by a
simulation when it participates in a HLA federation. It
contains also the FOM (Federation Object Model) that
defines elements effectively used between the simulations
in this federation.

The Interface Specification defines the functional
interfaces between the federate and the Run Time
Infrastructure (RTI) that must be respected during the
execution to obtain a HLA-compliant simulation. The
RTI is the implementation of this specification. It supplies
services required by a simulation to be “HLA-compliant”.

2) Implementation Components [IEEE2, 00]
A federate is a HLA-compliant program, the code of that
federate keeps its original features but must be extended
by other functions to communicate with other members of
the federation. These functions are contained in the class
code of FederateAmbassador and make interpretable by a
local process the information received resulting from the
federation. Therefore, the federate program code must
inherit of FederateAmbassador to complete abstract
methods defined in this class used to receive information
from the RTI.

The “Local RTI Components code” (LRC) supplies
external features to the federate for using RTI call back
services such as the handle of objects and the time
management. The implementation is the class

RTIAmbassador, this class is used to transform the data
coming from the federate in an intelligible format for the
federation. The federate program calls the functions of
RTIAmbassador to send data to the federation or to ask
information to the RTI. Each LRC contains two queues, a
FIFO queue and a time stamp queue to store data before
delivering to the federate.

Finally, the Central RTI Component manages the
federation notably by using the information supplied by
the FOM to define Objects and Interactions classes
participating in the federation. Object class contains
object-oriented data shared in the federation that persists
during the run time; Interaction class data are just sent
and received.

A federate can, through the services proposed by the RTI,
"Publish" and "Subscribe" to a class. A federate that
"Publishes" intends to diffuse the creation of object
instances and the update of the attributes of these
instances. "Subscribe" is the intention of a federate to
reflect attributes of certain classes of other federates.

3) HLA time management
Reference [FUJ, 98] defines that HLA proposes
conservative and/or optimistic synchronization
mechanisms; the RTI thus implements the following
notions, (N.B. names depend on HLA standard version
[DMSO, 98] [IEEE1,2,3, 00]):

Lookahead: delay given by an influencer processor to
the federation. Federates certify not to emit a message
before their actual logical time plus the lookahead value.

LBTS (Lower Bound on Time Stamp 1.3) or GALT
(Greatest Available Logical Time 1516): Time stamp
until a processor will not be influenced by other
processors (i.e. minimum of its influencers lookaheads).

NextEventRequest(t) 1.3 or NextMessageRequest(t) 1516:
(NER(t) or NMR(t)) asks for grant to the RTI to treat an
event time stamped t. If the RTI TimeAdvanceGrant(t),
the federate is sure to have received all events time
stamped t’≤t but events emitted must be time stamped > t.

NextEventRequestAvailable(t) 1.3 or NextMessage-
RequestAvailable(t) 1516: (NERA(t) or NMRA(t)) differs
from previous definition in TimeAdvanceGrant(t). As an
answer to NERA(t), the federate can (if its lookahead is
null) emit an event time stamped t, on the other hand, the
federate is not sure to have received all the events of t.

MNET (Minimum Next Event Time 1.3) or LITS (Least
Incoming Time Stamp 1516): Federate LITS is a lower
bound until which the federate will receive no message,
this value is calculated from its GALT and the messages
in transit not received yet by the federate (messages
stored in the LRC queue).

II. GDEVS HLA COMPLIANT SIMULATION
ENVIRONMENT

Simulating same order GDEVS or DEVS models does
not differ in the simulation concept. For this reason, we
use afterward DEVS simulation structures as reference
for the distributed GDEVS environment introduced in
this paper.

A. Local coupled models simulator GDEVS “flattened”

We keep the original modular hierarchical structure of
DEVS coupled models that allows the model composition
by reusing models stored in libraries. However, we
propose a hierarchical “compact” simulation structure
that differs from the abstract simulation hierarchical
structure defined by [ZEI, 00] (e.g. Fig 1 a)). The
transformation is done by the environment before to run
the simulation.

We employ the works proposed by [KIM, 00] to reduce
the hierarchical structure of intermediate coordinators
between the DEVS Root Coordinator and Simulators.
Elements remaining locally are a Local Coordinator
linked to one or many atomic Simulator(s), this group is
abbreviated by LCS (e.g. Fig 1 b)). Thus, the local
Coordinator component skills must be extended to
manage in an autonomous fashion the local simulation.
Furthermore, the component Coordinator is renamed
“Local Coordinator” (LC) to differ from the one of the
original DEVS structure. The LC manipulates an event
list containing local internal and external events. It keeps
local Logical Time (LT). It manages the local simulation
by selecting the next chronological message in its event
list with regard to its current LT. Then, this selected
message is sent to the concerned successor Simulator.
Consequently, the GDEVS simulation “flattened”
exchanges locally less messages between coordinators
and simulators.

This simulation structure improvement is not a necessity
of distributed simulation environment but it improves the
local performance of the environment.

Root
Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Local
Coordinator

ABCD

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

a) b)
Fig. 1. Hierarchical simulation structure Flattened

B. Distributed simulation components structure

Because we are interested in executing the models

composing a GDEVS coupled model on many distributed
computers, the environment must be able to define a way
of communicating between these distributed models.

According to classical distributed computers hardware
platforms enounced in [FUJ, 00], one kind of platform is
composed of simulation components linked to an
interconnection network, these components
communicates by messages passing. The structure of
GDEVS distributed simulations generated by the
proposed environment is based on this platform. The
environment proposes to split a GDEVS coupled model
into several distributed GDEVS models (i.e. each
distributed GDEVS model is defined with the local
structure defined in the above section).

The environment defines local LCS groups, which
simulate distributed parts of the GDEVS coupled model
split (e.g. Computer 2 and 3 in Fig 2 b)). Furthermore,
LCS must intercommunicate. For that purpose, LC must
also be able to manage messages resulting from others
distributed LC.

For the global synchronization of the distributed
simulation, the classical DEVS simulation Root
Coordinator is transformed into a Distributed Root
Coordinator (DRC) component, represented by the group
Computer 1 Fig 2 b). The DRC is designed for routing
the messages exchanged among the LCS; so it must
exploit a synchronization mechanism for respecting the
causality of events transmitted. It uses an Event List
containing messages exchanged in the global simulation
and a set of tables describing the coupling relations
between distant models (EICList, EOCList, ICList).

Distributed
Root

Coordinator

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Computer 1

Computer 2 Computer 3

Local
Coordinator

AB

Local
Coordinator

ACD

Root
Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Interconnexion Network

a) b)
Fig. 2. Flattening and distribution of hierarchical simulation structure

C. Creating a HLA GDEVS Federation

For a compatibility and reusability purpose, the proposed
environment generates HLA-compliant GDEVS
simulations.

The environment follows the HLA Federation
Development and Execution Process (FEDEP) [IEEE, 03]
that proposes process steps in the federations creation.
This formalization helps development information reuse.

First, the objectives of the federation have to be defined.

The common goal of all federation created by the
environment consists in defining GDEVS coupled model.

As described in the FEDEP second step, the environment
generates a conceptual model. It contains GDEVS models
represented as entities and actions that represent external
events exchanged between GDEVS Local Coordinators.

References [ZEI1, 98] [ZEI2, 98] [ZEI, 99] present a first
integration of DEVS Coordinators in a HLA-compliant
architecture. They map the local coupled models in HLA
federates whose coordinators of higher level will have for
responsibility to communicate with the “Time Manager”
federate. As FEDEP third step, the environment conforms
to [ZEI, 99] mapping of LCS into HLA federates, but
does not use the “Time Manager” federate. It maps
directly the DRC into the RTI. The reason of this
mapping is the specification of interface (RTI) proposes
services that enclose those defined in the DRC. Thus, the
“global distributed” model (i.e. the federation) is
constituted of federates intercommunicating (e.g. Fig. 3).

RTI Central
Component Local RTI

Component

Federate A

Local RTI
Component

Federate B

Computer 1 Computer 3Computer 2

FOM file

Communication Network

Distributed
Root

Coordinator

Coordinator
AB

Coordinator
ACD

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Fig. 3. DEVS integration with HLA Run Time Infrastructure

In the FEDEP fourth step, the environment integrates
GDEVS models coupling relations into HLA interactions
as in [ZEI, 99] and generates the associated FOM. Indeed,
a GDEVS model possessing an influencer output port
“publishes” on an Interaction Class defining the coupling
relation by publishInteractionClass(). A GDEVS model
possessing an influenced input port “subscribes” to the
Interaction Class published by the port which influence it
by using subscribeInteractionClass(). The environment
may also generate, in the FOM, an object that defines the
shared elements of local simulations; for tracking some
state variables values. Tracked federate publishes using
RTIAmbassador publishObjectClassAttributes() and
tracker federate subscribes using
subscribeObjectClassAttributes().

To respect the causality, the interactions among federates
are defined “Time Stamped Order”. They are emitted
with a timestamp related to the local logical time of
supplier federate in order to the RTI handles them
respecting the causality.

In consequence, the “coupled GDEVS” federates
generated by the environment can be reused and

interfaced with varied programs HLA-compliant. For
instance, “event generators” federates can be upstream
connected to “coupled GDEVS” federates and “GDEVS
outputs user” federates can be downstream connected.

D. DEVS/HLA integrating Algorithms

The first HLA/DEVS integration algorithm is presented
by [ZEI, 99]. To guarantee the global synchronization of
the Local Coordinators, the authors choose to exploit a
conservative algorithm mechanism based on [BRY, 77]
and [CHA, 81] proposed by the HLA specification. This
method presents the advantage of reducing message
exchange regarding to the Rollback situations of the
optimistic approach proposed in [JEF, 85].

In the implementation of the HLA concepts of [ZEI, 99],
DEVS federates code inherits from the
FederateAmbassador class to be able to use HLA
services. Federates contain NER(t) calls to the RTI to
demand of treatment their next local event. When the RTI
receives such a demand, it determines according to the
LBTS and messages stored in LRC’s queues of the
concerned federate, if it can grant this federate to treat its
next event. If the RTI allows the federate to treat the
expected message, it sends TimeAdvanceGrant(t). If the
RTI contains message, intended to this federate, time
stamped t’ earlier than the time stamp of its next local
event, the RTI delivers it to the federate before to provide
the TimeAdvanceGrant(t’).

When a federate receives a message and/or a grant from
the RTI, it sends the received or first of its event list
message to its child. In return, it receives the new logical
time and next internal event of its child model and
possibly an output message that it sends to the RTI with
sendInteraction() service. If shared objects have been
defined, their attributes change, the federate informs the
federation about it with sendAttributesUpdates() service.

The gap of this solution results from the treatment of the
simultaneous events by federates that are influenced and
influencer. TimeAdvanceGrant(t) is granted to an
imminent federate (i.e. a federate that can publish Time
stamped objects or interactions). Federate not imminent
has to wait for all imminent federate emitted their
interactions of timestamp t' ≥ t to receive
TimeAdvanceGrant(t). In the case of cyclic influences
between federates, it is impossible to determine which to
deliver TimeAdvanceGrant() first.

Using works cited in the above paragraphs in reference,
[LAK, 00] present two approaches of integrating DEVS
models in HLA. They notably introduce a distinction
between “DEVS lookahead” and “HLA lookahead”.
DEVS lookahead = Min D(S) / s ∈ S with S set of model
states. “HLA Lookahead” is a minimum delay from the
treatment of an event to the emission of the output event

associated. The authors present in this solution a direct
implementation of DEVS into HLA that resolves the
problem found by [ZEI, 99]. They use the NERA(t)
service. This solution uses, as the previous one, a null
HLA lookahead for every federate.

Reference [LAK, 00] second solution proposes to
broadcast the events messages among the federates and to
give to all the federates a global awareness of the
coupling relations. The local entities make their decisions
regarding to their history of received messages and to
their knowledge of the coupling relations. In that case, it
is possible to define a positive not null HLA lookahead.
We do not take into account this last solution because it
transfers responsibilities of the RTI towards the
simulators entities. As a result, we consider that these
responsibilities migrations short-circuit some RTI
function.

E. GDEVS/HLA integrating Algorithms

From the first algorithm of [LAK, 00], we propose a
solution integrating the use of the HLA lookahead. This
solution could be applied to GDEVS or DEVS coupled
model as order zero GDEVS.

Consider a local GDEVS coupled model integrated in a
HLA federate. This federate communicates with the other
GDEVS models within the federation. The actual logical
time of this federate is “Tact” and it possesses a next local
event planned in its local event list at “TnextLocal”. We
set the federate lookahead value = Min D(S) / s ∈ S
where S is the set of model States. It is to note that we
use, similarly as the previous solutions, GDEVS models
with constant D(S) > 0.

Moreover, we state that, in the case of simultaneous
events, we choose to treat first the internal event
independently of the others, then, after having emitted an
output event and done state changes, we process
simultaneous external events using a confluent function.
Note that our pseudo-code is designed for RTI 1516.

We propose a pseudo-code algorithm in Fig. 4 that uses
the queryLITS() RTI service defined in the HLA standard.
In many cases, depending on influencer data and on the
use of queryLITS(), a federate can preserve a not null
lookahead value. In consequence, it frees of constraint
federates under its influence for a period equal to the
lookahead. Thus, this situation increases the parallelism
of the global simulation.

Do queryLITS()

If (TNextLocal ≤ LITS)
ComputeOutput() // associated to next local internal event timestamped TNextLocal
SendInteraction(TnextLocal) // send output without reducing federate Lookahead
NMRA(TNextLocal) // RTI 1516 NextMessageRequestAvailable(TNextLocal) and then wait for RTI answer

Else // if (TNextLocal > LITS)

NMRA(TnextLocal - Lookahead)
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant (TNextLocal - Lookahead))

queryLITS()
If ((TNextLocal) > LITS)

ModifyLookahead(zero)
Else // If ((TNextLocal) ≤ LITS)

ComputeOutput() // associated to next local internal event timestamped TNextLocal
SendInteraction(TnextLocal) // send output without reducing federate Lookahead

NMRA(TNextLocal) // then wait for RTI answer

Else If (ReceiveInteraction(T’≤ (TnextLocal - Lookahead)) & TimeAdvanceGrant(T’))
Do

NMRA(T’+ε) // guaranty to have received simultaneous event timestamped T’.
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(T’+ε))

ComputeExternalTransition() // associated to external event(s) timestamped T’
Break to beginning // with new TnextLocal.

Else If ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’))
AddtoSimultaneousMessageList()

While (TimeAdvanceGrant(T’) < T’+ε)

WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(TNextLocal))

If (output not already sends with positive lookahead)
ComputeOutput() // associated to next local internal event timestamped TNextLocal
SendInteraction(TNextLocal) // send output with zero federate Lookahead

ComputeInternalTransition() // associated to internal event timestamped TNextLocal
Do

NMRA(TNextLocal+ε) // guaranty to have received simultaneous event timestamped TNextLocal.
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(TNextLocal+ε))

ComputeExternalTransition() // associated to eventual external event(s) timestamped T
ModifyLookahead(min of D(S))
Break to beginning

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’))
AddtoSimultaneousMessageList()

While (TimeAdvanceGrant(TNextLocal) < TNextLocal +ε)

Else If ReceiveInteraction(T<TNextLocal) & TimeAdvanceGrant(T)
Do

NMRA(T+ε) // guaranty to have received simultaneous event timestamped T.
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(T+ε))

ComputeExternalTransition() // associated to external event(s) timestamped T
Break to beginning // with new TnextLocal.

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’))
AddtoSimultaneousMessageList()

While (TimeAdvanceGrant(T) < T +ε)

While (Simulation not end)

Fig. 4. Federate Algorithm

F. GDEVS/HLA Communicating Example

Consider an order zero GDEVS coupled model,
illustrated Fig. 5 using the graphical notation defined by
[SON, 94]. The states of the model are represented by the
nodes of the graph. Every node contains the name of the
phase and the associated life time. Solid arcs represent the
external transitions and dotted arcs represent the internal
transitions.

Federate BFederate A

S1
∞

S4
50

S3
∞

S2
10

E?e1

E?e4

E?e3

O!o1
O!o2

S1
20

S4
∞

S3
30

S2
∞

S5
10

O?o1

E!e3

O?o1

E!e1

Com?com

E!e4

« Com »

« O »

« E »« E » « O »« Com »

System
Command Commanded Syst.

Federate BFederate A

S1
∞

S4
50

S3
∞

S2
10

E?e1

E?e4

E?e3

O!o1
O!o2

S1
20

S4
∞

S3
30

S2
∞

S5
10

O?o1

E!e3

O?o1

E!e1

Com?com

E!e4

« Com »

« O »

« E »« E » « O »« Com »

System
Command Commanded Syst.

Fig. 5. Distributed coupled models example

The coupled model System (S) is defined by:
IportsS = {Com} and OportsS = {Ø}
D = {Command, Commanded Syst.}
EIC = {((System, Com), (Commanded Syst., Com)),
IC = {((Command, E), (Commanded Syst., E)),

 ((Commanded Syst., O), (Command, O))}

The atomic model Command is defined as follow:
S = {S1, S2, S3, S4, S5} ; XM = {Com, O} ;

 YM = {E} ; s° = S1

The atomic model Commanded Syst. is defined as follow:
S = {S1, S2, S3, S4} ; XM = {E} ;

 YM = {O} ; s° = S1

We wish to execute models Command and Commanded
Syst. on two distant computers. For that purpose, the
environment proposes to integrate them into a HLA-
compliant distributed simulation, to create a federation
and to fill an associated FOM.

Thus the federation contains two federates associated to
both coupled models, the federate A (FA) contains the
Command GDEVS model and federate B (FB) contains
the Commanded Syst. GDEVS model.

The FOM contains objects and interactions classes shared
into the federation. In the considered case, the attributes
of both models are mapped as objects and the coupling
relations are mapped as interactions. The federation thus
contains two interactions “E” and “O”. FA subscribes to
the interaction O and publishes on the interaction E;
while FB subscribes to the interaction E and publishes on
the interaction O. Note that the SOM of FA also contains
an interaction “Com” not includes in the FOM considered
because no federate will publish on it.

Then, the federates define their lookahead values. In the

studied case, FA and FB both have a lookahead of 10
time units; it will thus pass by at least 10 time units
between a message reception and a message emission as a
result of the received message. Federates are both time
regulating and time constrained at the same moment, so
they can send and receive “Time Stamped” messages.
The environment defines in the program of every federate
an algorithmic loop, presented in the above section, to
select the next local event of the federate and to
interrogate the RTI about the authorization to treat it.

Fig. 6 presents the communication, through the RTI,
between FA and FB of Fig. 5. This example illustrates the
interest of using the service queryLITS() as proposed in
Fig. 4. Numbers represent units of logical time,
corresponding in the schema to federates logical times or
sent messages timestamp. Arcs represent causal relations.
Note that the temporal comparisons of the example are
done with regard to a “wall clock” time as defined in
[FUJ, 00] which measures the time during the execution
of the simulation (e.g. in Fig. 6, the alphabetical order of
letters surrounded represents a wall clock time order).

We focus on the succession of causal relations, depicted
in Fig. 6 by dotted arcs and surrounded letters, where FA
asks queryLITS() (noted e) after the RTI has received
queryLITS() (noted a) and NMRA(∞) (noted c) of FB.

Federate A Federate B
Initial Logical Time = 0 Initial Logical Time = 0

Lookahead = 10 Lookahead = 10
A asks for queryLITS() B asks for queryLITS()

RTI answers RTI answers

LITS = 20
LITS = 10 LITS = 10

Reduces its lookahead
 to zero and asks for

NMRA(20)
or

SendInteraction(e1, 20) &
NMRA(20)

Reduces its lookahead to
zero and asks NMRA(∞).

RTI answers
demand took

into account by
RTI

TimeAdvanceGrant(20)

SendInteraction(e1, 20)

NMRA(20+ ε)

Treatment by
RTI RTI answers

TimeAdvanceGrant(20+ε)
Reset lookahead to 10

NMRA(∞)

ReceiveInteraction(e1, 20)
TimeAdvanceGrant(20)

NMRA(20+ ε)
demand took

into account by
RTI

RTI answers

TimeAdvanceGrant (20+ ε)
Traitement de (e1, 20)

NMRA(30)

RTI answers

TimeAdvanceGrant(30)
SendInteraction(o1, 30)

NMRA(30+ ε)

RTI answers Treatment by
RTI

ReceiveInteraction(o1, 30)
TimeAdvanceGrant(30)

NMRA(30+ ε)

TimeAdvanceGrant (30+ ε)
Treatment of (*, 20)

NMRA(∞)
,,, ,,, ,,, ,,,

RTI

or

a

c

d

f

a

b

d

f

c

b e

e

g

g

,
,

Fig. 6. Communication between federates trough RTI

On the one hand, FB has informed with NMRA(∞) (noted
c) the RTI, that it would not emit output message on “O”
at time stamp 0 (i.e. no internal transition associated to
the current state). Thereby, the next output message of FB

must be a consequence of a received message on port
“E”. Furthermore, received messages of FB result from
FA and FA has informed the RTI that its logical time is
zero, so its next emitted message will be dated minimum
10 because of FA lookahead. In result, the next outgoing
message of FB will be at least dated equal to:
FB LITS (Min (FA lookahead(=10), RTI Message time for FB)) + FB lookahead(=10) = 20

On the other hand, FA LITS is computed by the RTI
regarding to FA HLA-subscriptions to the interaction “O”
published by FB. As a response to queryLITS() (noted e),
the RTI computes the LITS of FA equal to least output
message of FB: 20. Therefore, the federate FA can emit at
once its output message planned at timestamp 20 (noted
g) and preserve a lookahead of 10 time units because we
defined a priority to internal event in case of simultaneity.

A federate that conserves a not null lookahead releases of
constraint its influenced federates for a period equal at
least to its lookahead and so improves the simulation
parallelism. Note that this situation is very desirable but
not occurs all the time. Sometimes, depending on various
federates wall clock time progression, federates must
reduce their lookahead to zero as described by full circled
letters and plain arcs sequences represented in Fig. 6.

III. FUTURE WORK

Reference [FUJ, 98] defined the lookahead as a
performance factor for distributed simulations. For this
purpose, we think that refining the computation of this
value could speed up the simulation.

Indeed, we use a minimal lookahead value for distributed
GDEVS models. Our current work consists in improving
the lookahead computation to find maximal lookahead for
GDEVS models with explicit states and constant D(S).

Distributed GDEVS models, wherein D(S) depends on
state variables, are also under our scope. We will try to
define methods to compare D(S) functions of the different
model states to obtain a maximal value of the lookahead.

IV. CONCLUSION

In this paper, a GDEVS HLA-compliant simulation
environment has been proposed. The key contribution is a
new HLA integrating algorithm that uses conservative
synchronization mechanism and the HLA lookahead. This
algorithm does not move decision functions of the RTI
towards local GDEVS simulators. In addition, we present
a “flatten” GDEVS simulation structure that reduces
message exchanges and so improves execution speed.
These two propositions improve the performance of the
distributed simulation.

Finally, this GDEVS HLA-compliant simulation
environment generates distributed GDEVS models that

can be integrated into heterogeneous HLA-compliant
programs with respect of time management constraints.

REFERENCES
[BRY, 77] Bryant R.E., “Simulation of packet communication
architecture computer systems”, Technical Report MIT/LCS/TR-188,
MIT, 1977.
[CHA, 79] Chandy K.M., Misra J., “Distributed simulation: A case study
in design and verification of distributed programs”, IEEE Transactions
Software Engineering, Vol. SE-5 No.5, pp 440-452, 1979.
[DMSO, 98] DMSO : High Level Architecture, DMSO, 1998
[FUJ, 97] Fujimoto R.M., “Zero lookahead and repeatability in the high
level architecture”, Spring Simulation Interoperability Workshop,
Orlando, FL, 3-7 March 1997.
[FUJ, 98] Fujimoto R.M., “Time management in the high level
architecture”. Simulation, vol. 71, no. 6, pp. 388-400, 1998.
[FUJ, 00] Fujimoto R.M., “Parallel discrete event simulation”, Fujimoto,
R.M., Wiley Interscience, January, 2000.
[GIA 00] Giambiasi N., Escude B., Ghosh S., “GDEVS A Generalized
Discrete Event Specification for Accurate Modeling of Dynamic
Systems”. SCS Transactions Volume 17, 3, p.120-134 2000.
[IEEE1, 00] IEEE std 1516-2000, “IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) - Framework and
Rules” The Institute of Electrical and Electronic Engineers, 2001.
[IEEE2, 00] IEEE std 1516.1-2000, “IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) - Object Model
Template (OMT) Specification” The Institute of Electrical and
Electronic Engineers, 2001.
[IEEE3, 00] IEEE std 1516.2-2000, “IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) - Federate Interface
Specification” Institute of Electrical and Electronic Engineers, 2001.
[IEEE, 03] IEEE std 1516.3-2003, “IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) - Federation
Development and Execution Process (FEDEP)” The Institute of
Electrical and Electronic Engineers, 2003.
[JEF, 85] Jefferson D.R, “Virtual Time”. ACM, Vol 7, 3, 1985.
[KIM, 00] Kim K., Kang W., Sagong B., Seo H., Yeungnam University
“Efficient Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-Hierarchical One” 33rd ASS,
2000 Washington, D.C. p. 227, 2000
[LAK, 00] Lake, T., B.P. Zeigler, H.S. Sarjoughian, J. Nutaro, “DEVS
Simulation and HLA Lookahead”, Simulation Interoperability
Workshop (SIW), 00S-SIW-160, 2000.
[LAM, 78] Lamport L., “Time, clocks and the ordering of events in a
distributed system”. Communication of the ACM, Vol 21, 7, 1978.
[SAM, 85] Samadi B., “Distributed simulation, algorithms and
performance analysis”. Phd, UCLA, USA, 1985.
[SON, 94] Song H.S. Gon K T. “The DEVS framework for discrete
event systems control” 5th Annual Conference on AI, Simulation and
Planning in High Autonomous Systems (Gainesville, FL, USA), pp.
228-234. 1994.
[ZEI, 76] Zeigler B.P. Theory of Modelling and Simulation. Wiley &
Sons, New York, NY, 1976.
[ZEI1, 98] Zeigler B. P., J. S. Lee, “Theory of quantized systems: formal
basis for DEVS/HLA distributed simulation environment”, Proc. SPIE
Vol. 3369, p. 49-58, Enabling Technology for Simulation Science II;
Alex F. Sisti; Ed. Aug 1998
[ZEI2, 98] Zeigler, B.P., G. Ball, et al. “The DEVS/HLA Distributed
Simulation Environment And Its Support for Predictive Filtering.” ECE
Dept., UA, Tucson, AZ, DARPA Contract N6133997K-0007. 1998.
[ZEI, 99] Zeigler, B.P., G. Ball, H.J. Cho, J.S. Lee. “Implementation of
the DEVS formalism over the HLA/RTI: Problems and solutions.”
Simulation Interoperation Workshop (SIW), Orlando, FL, 1999.
[ZEI, 00] Zeigler B.P., Praehofer H., Kim T. G., “Theory of Modeling
and Simulation.” 2nd Edition, Academic Press, New York, NY 2000.

