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Abstract - This paper presents a distributed discrete event 
simulation environment based on GDEVS and HLA 
concepts. The chosen local simulation structure is “flatten” 
to reduce the exchange of messages between simulation 
components regarding with classical structure of DEVS 
simulators. Moreover, we present an integration method to 
create GDEVS models HLA-compliant; for that purpose, we 
introduce an effective algorithm of conservative 
synchronization using the HLA lookahead and so improving 
the distributed simulation time management. Finally, we 
detail an example of distributed GDEVS coupled models to 
show the improvement due to the new algorithm. 
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I. INTRODUCTION 

In this paper, we propose a new DEVS-GDEVS/HLA 
environment. Our solution improves GDEVS simulation 
by reducing the simulation structure. It also improves 
time management in the GDEVS/HLA integration with a 
new algorithm using the HLA lookahead and without 
moving coupling information from the RTI level to the 
federate level, regarding previous approaches as those 
proposed by [ZEI, 99] and [LAK, 00]. 

On one hand, the use of GDEVS [GIA, 00] is particularly 
suited for this environment. Indeed, GDEVS preserves 
the notion of coupled model [ZEI, 00] and uses 
polynomial functions that promises higher accuracies in 
modelling continuous processes as discrete event 
abstractions. Moreover, event driven simulations permit 
faster execution in contrast to continuous simulations. A 
key contribution of GDEVS is the possibility to develop 
uniform simulation environment for hybrid (i.e. both 
continuous and discrete) systems. 

On the other hand, GDEVS models components 
composing a GDEVS coupled model might be 
implemented on different computers with diverse 
operating systems maybe geographically distant. It is 
therefore necessary to define a communication protocol to 
integrate these components into a distributed simulation. 
The HLA specification [IEEE1,2,3, 00] satisfies this need 
by specifying message-exchange between components. 
Rather, HLA defines services for message-exchange 
within distributed components respecting determinism 
and causality by using synchronization mechanisms. 

The remainder of this paper is organized as follows. 
Section 2 gives recalls on DEVS/GDEVS formalism, 
general concepts of distributed simulation and HLA 
standard. Section 3 exposes the GDEVS/HLA 
components behaviour of our compliant environment, and 
in particular, a new algorithm. Then, an example that 
illustrates the use of the new algorithm is presented. 
Finally some conclusions and future works are given. 

II. RECALLS 

A. Discrete Event Specification 

1) Generalized Discrete EVent System Specification 
(GDEVS) 

Traditional discrete event abstraction (e.g. DEVS) 
approximates observed input-output signals as piecewise 
constant trajectory. GDEVS defines abstraction of signal 
with piecewise polynomial trajectory [GIA, 00]. Thus, 
GDEVS defines event as a list of values. These values 
represent polynomial coefficients that approximate the 
input-output trajectory. Therefore, DEVS is a particular 
case of GDEVS (i.e. an order zero GDEVS). The original 
signals representation of a dynamic system is thus more 
accurately modelled with GDEVS. Formally, GDEVS 
represents a dynamic system as an n order discrete event 
model with: 

SEDN = <XM, YM, S, δint, δext, λ, D> 
 
The following mappings are required: 
XM = A n+1, where A is a subset of integers or real 

numbers 
 
YM = A n+1 
 
S = Q x (A n+1) 
For all total state (q, (an, an-1,......, a0), 0) and a continuous 
polynomial input segment w : <t1, t2> → X, are defined: 
 
The internal transition function: 
δint (q, (an, an-1,......, a0)) = 

Straj q, x ((t1+D((q, (an, an-1,......, a0)), x) 
with x =antn+an-1tn-1+…….+a1t+a0 and Straj 
model state trajectory 
∀ q de Q et ∀ w :<t1, t2> → X, 
Straj q,w:<t1, t2> → Q 



The external transition function: 
δext (q, (an, an-1,......, a0), e, (an’, an-1’,......, a’0)) = 
 (Straj q, x(t1+e), x’) 

with: Coef (x) = (an, an-1,......, a0) 
and Coef (x’) = (an’, an-1’,......, a’0) 

 
Coef: function to associates n-coefficient of all 

continuous polynomial function segments over a 
time interval <ti, tj>, to the constants (n+1) 
values (an, an-1,......, a0) such as: 
w(t) = antn+an-1tn-1+…….+a1t+a0 

 
InCoef: λ (q, (an, an-1,......, a0)) = Λ(q, x) 
 
The output function: 
λ: S → An+1 

 
The function defining the life time of the states: 
D(q, (an, an-1,......, a0)) = 

MIN(e/Coef (Otraj q, x(t1)) ≠ 
Coef (Otraj q, x(t1 + e)) 
with Otraj model output trajectory: 
Otraj q,w:<t1, t2> → Y 

2) Coupled model 
Reference [ZEI, 00] has introduced the concept of 
coupled model that is a structural model. It describes a 
structure by interconnection of basic models. Every basic 
model of the coupled model interacts with the other 
models to produce a global behaviour. The basic models 
are, either atomic models, or coupled models stored in a 
library. The models’ coupling is done using a hierarchical 
approach. Note that GDEVS models with same order 
events could be as well coupled. 

A discrete event coupled model is defined by the 
following structure: 

MC = < X, Y, D, {Md/d∈D}, EIC, EOC, IC, Select> 
 
X:  set of external events. 
Y:  set of output events. 
D:  set of components names. 
Md:  DEVS models. 
EIC:  External Input Coupling relations. 
EOC:  External Output Coupling relations. 
IC:  Internal Coupling relations. 
Select: defines priorities between simultaneous events 

intended for different components. 

3) DEVS Simulator 
The concept of abstract simulator has been developed in 
[ZEI, 00]. The architecture of simulation is diverted from 
the DEVS hierarchical model structure. An abstract 
simulator executes functions to express the dynamic of 
the model. Such a simulator is obtained by matching each 
element of a model to a component of the simulator. The 
originality of this method is the independence of 

simulators from models behaviour. Moreover, this 
simulator can also simulate same order GDEVS coupled 
models, the distinction lies only in the message structure. 

The Components involved in a hierarchical simulation are 
Simulators, which insures the simulation of the atomic 
models by using the functions defined in DEVS or 
GDEVS, Coordinators, which insures the routing of 
messages between coupled models according to coupling 
definitions, and the Root Coordinator, which insures the 
global management of the simulation. It orders beginning 
and end of the simulation and manages the global clock. 

The simulation runs thanks to exchange of specific 
messages between the different processors. The first three 
types of messages below represent the various events 
defined in DEVS. 

Xmessage: Represents an external event (e.g. 
coefficient-event vector in GDEVS) 

*message: Represents an internal event, 
Ymessage: Represents an output event, 
Imessage: Initializes the model with all the default 

values chosen by the user. (This 
message has only a computing interest) 

B. Distributed Simulation 

The purpose of distributed simulation is to optimize 
computers use, to work on distant computers and/or to 
reuse existing simulations by interconnecting them. As 
well, a distributed treatment has to guaranty the temporal 
causality relations. 

The causality thus imposes a partial order between 
events treated. [LAM, 78] defines a method based on 
local logical clocks. For any ‘a’ and ‘b’ events, if ‘a’ 
occurs before ‘b’ (a → b), implies that the local logical 
time C(a) must be strictly lower than C(b). To respect 
causality, synchronization mechanisms have been created. 

A first kind of synchronization is called conservative (or 
pessimistic). Processors treat local events or received 
events from an influencer time stamped T (and 
increments its actual time) when they are sure not to 
receive any more events time stamped T’ < T, and thus to 
respect the principle of causality. The firsts algorithms 
were proposed by [BRY, 77] [CHA, 79]. 

The other main kind is called optimistic. Processors treat 
events received, without being sure to have received all 
events until this date; this incertitude can induce 
treatment omissions of some events and therefore a 
violation of the causality constraint [SAM, 85]. If a 
processor receives an event time stamped earlier than its 
local current time, it uses the “Rollback” mechanism 
[JEF, 85]. For that purpose memory of reached states, 
events received and sent is needed. 



C. HLA (High Level Architecture) 

1) Aim and Definition 
HLA was developed in 1995 by the American 
Department of Defense (DoD) Defense Modelling and 
Simulation Office (DMSO) to suit the military projects 
needs. 

The High Level Architecture (HLA) is a software 
architecture specification for creating global simulations 
that include a variety of simulation programs. These 
programs must be able to be reusable and inter-work 
without recoding them. 

In HLA, every participating simulation is called federate. 
A group of federates, interacting together, is named in 
HLA terms a federation. The set of HLA definitions was 
formalized by the creation of HLA 1.3 standard in 1996, 
which then evolved to HLA 1516 in 2000. Reference 
[DMSO, 98] and [IEEE1,2,3, 00] define HLA by three 
constituents: 

HLA Rules insure the appropriate interaction of 
simulations in a federation. They also describe the 
responsibilities of federations and federates. 

Object Model Template (OMT) supplies a common 
structure for the documentation of HLA object model. It 
contains the SOM (Simulation Object Model) which 
defines objects and interactions which can be used by a 
simulation when it participates in a HLA federation. It 
contains also the FOM (Federation Object Model) that 
defines elements effectively used between the simulations 
in this federation. 

The Interface Specification defines the functional 
interfaces between the federate and the Run Time 
Infrastructure (RTI) that must be respected during the 
execution to obtain a HLA-compliant simulation. The 
RTI is the implementation of this specification. It supplies 
services required by a simulation to be “HLA-compliant”. 

2) Implementation Components [IEEE2, 00] 
A federate is a HLA-compliant program, the code of that 
federate keeps its original features but must be extended 
by other functions to communicate with other members of 
the federation. These functions are contained in the class 
code of FederateAmbassador and make interpretable by a 
local process the information received resulting from the 
federation. Therefore, the federate program code must 
inherit of FederateAmbassador to complete abstract 
methods defined in this class used to receive information 
from the RTI. 

The “Local RTI Components code” (LRC) supplies 
external features to the federate for using RTI call back 
services such as the handle of objects and the time 
management. The implementation is the class 

RTIAmbassador, this class is used to transform the data 
coming from the federate in an intelligible format for the 
federation. The federate program calls the functions of 
RTIAmbassador to send data to the federation or to ask 
information to the RTI. Each LRC contains two queues, a 
FIFO queue and a time stamp queue to store data before 
delivering to the federate. 

Finally, the Central RTI Component manages the 
federation notably by using the information supplied by 
the FOM to define Objects and Interactions classes 
participating in the federation. Object class contains 
object-oriented data shared in the federation that persists 
during the run time; Interaction class data are just sent 
and received. 

A federate can, through the services proposed by the RTI, 
"Publish" and "Subscribe" to a class. A federate that 
"Publishes" intends to diffuse the creation of object 
instances and the update of the attributes of these 
instances. "Subscribe" is the intention of a federate to 
reflect attributes of certain classes of other federates. 

3) HLA time management 
Reference [FUJ, 98] defines that HLA proposes 
conservative and/or optimistic synchronization 
mechanisms; the RTI thus implements the following 
notions, (N.B. names depend on HLA standard version 
[DMSO, 98] [IEEE1,2,3, 00]): 

Lookahead: delay given by an influencer processor to 
the federation. Federates certify not to emit a message 
before their actual logical time plus the lookahead value. 

LBTS (Lower Bound on Time Stamp 1.3) or GALT 
(Greatest Available Logical Time 1516): Time stamp 
until a processor will not be influenced by other 
processors (i.e. minimum of its influencers lookaheads). 

NextEventRequest(t) 1.3 or NextMessageRequest(t) 1516: 
(NER(t) or NMR(t)) asks for grant to the RTI to treat an 
event time stamped t. If the RTI TimeAdvanceGrant(t), 
the federate is sure to have received all events time 
stamped t’≤t but events emitted must be time stamped > t. 

NextEventRequestAvailable(t) 1.3 or NextMessage-
RequestAvailable(t) 1516: (NERA(t) or NMRA(t)) differs 
from previous definition in TimeAdvanceGrant(t). As an 
answer to NERA(t), the federate can (if its lookahead is 
null) emit an event time stamped t, on the other hand, the 
federate is not sure to have received all the events of t. 

MNET (Minimum Next Event Time 1.3) or LITS (Least 
Incoming Time Stamp 1516): Federate LITS is a lower 
bound until which the federate will receive no message, 
this value is calculated from its GALT and the messages 
in transit not received yet by the federate (messages 
stored in the LRC queue). 



II. GDEVS HLA COMPLIANT SIMULATION 
ENVIRONMENT 

Simulating same order GDEVS or DEVS models does 
not differ in the simulation concept. For this reason, we 
use afterward DEVS simulation structures as reference 
for the distributed GDEVS environment introduced in 
this paper. 

A. Local coupled models simulator GDEVS “flattened” 

We keep the original modular hierarchical structure of 
DEVS coupled models that allows the model composition 
by reusing models stored in libraries. However, we 
propose a hierarchical “compact” simulation structure 
that differs from the abstract simulation hierarchical 
structure defined by [ZEI, 00] (e.g. Fig 1 a)). The 
transformation is done by the environment before to run 
the simulation. 

We employ the works proposed by [KIM, 00] to reduce 
the hierarchical structure of intermediate coordinators 
between the DEVS Root Coordinator and Simulators. 
Elements remaining locally are a Local Coordinator 
linked to one or many atomic Simulator(s), this group is 
abbreviated by LCS (e.g. Fig 1 b)). Thus, the local 
Coordinator component skills must be extended to 
manage in an autonomous fashion the local simulation. 
Furthermore, the component Coordinator is renamed 
“Local Coordinator” (LC) to differ from the one of the 
original DEVS structure. The LC manipulates an event 
list containing local internal and external events. It keeps 
local Logical Time (LT). It manages the local simulation 
by selecting the next chronological message in its event 
list with regard to its current LT. Then, this selected 
message is sent to the concerned successor Simulator. 
Consequently, the GDEVS simulation “flattened” 
exchanges locally less messages between coordinators 
and simulators. 

This simulation structure improvement is not a necessity 
of distributed simulation environment but it improves the 
local performance of the environment. 
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Fig. 1. Hierarchical simulation structure Flattened 

B. Distributed simulation components structure 

Because we are interested in executing the models 

composing a GDEVS coupled model on many distributed 
computers, the environment must be able to define a way 
of communicating between these distributed models. 

According to classical distributed computers hardware 
platforms enounced in [FUJ, 00], one kind of platform is 
composed of simulation components linked to an 
interconnection network, these components 
communicates by messages passing. The structure of 
GDEVS distributed simulations generated by the 
proposed environment is based on this platform. The 
environment proposes to split a GDEVS coupled model 
into several distributed GDEVS models (i.e. each 
distributed GDEVS model is defined with the local 
structure defined in the above section). 

The environment defines local LCS groups, which 
simulate distributed parts of the GDEVS coupled model 
split (e.g. Computer 2 and 3 in Fig 2 b)). Furthermore, 
LCS must intercommunicate. For that purpose, LC must 
also be able to manage messages resulting from others 
distributed LC. 

For the global synchronization of the distributed 
simulation, the classical DEVS simulation Root 
Coordinator is transformed into a Distributed Root 
Coordinator (DRC) component, represented by the group 
Computer 1 Fig 2 b). The DRC is designed for routing 
the messages exchanged among the LCS; so it must 
exploit a synchronization mechanism for respecting the 
causality of events transmitted. It uses an Event List 
containing messages exchanged in the global simulation 
and a set of tables describing the coupling relations 
between distant models (EICList, EOCList, ICList). 
 

Distributed
Root

Coordinator

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Computer 1

Computer 2 Computer 3

Local
Coordinator

AB

Local
Coordinator

ACD

Root
Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Interconnexion Network

a) b)  
Fig. 2. Flattening and distribution of hierarchical simulation structure 

C. Creating a HLA GDEVS Federation 

For a compatibility and reusability purpose, the proposed 
environment generates HLA-compliant GDEVS 
simulations. 

The environment follows the HLA Federation 
Development and Execution Process (FEDEP) [IEEE, 03] 
that proposes process steps in the federations creation. 
This formalization helps development information reuse. 

First, the objectives of the federation have to be defined. 



The common goal of all federation created by the 
environment consists in defining GDEVS coupled model. 

As described in the FEDEP second step, the environment 
generates a conceptual model. It contains GDEVS models 
represented as entities and actions that represent external 
events exchanged between GDEVS Local Coordinators. 

References [ZEI1, 98] [ZEI2, 98] [ZEI, 99] present a first 
integration of DEVS Coordinators in a HLA-compliant 
architecture. They map the local coupled models in HLA 
federates whose coordinators of higher level will have for 
responsibility to communicate with the “Time Manager” 
federate. As FEDEP third step, the environment conforms 
to [ZEI, 99] mapping of LCS into HLA federates, but 
does not use the “Time Manager” federate. It maps 
directly the DRC into the RTI. The reason of this 
mapping is the specification of interface (RTI) proposes 
services that enclose those defined in the DRC. Thus, the 
“global distributed” model (i.e. the federation) is 
constituted of federates intercommunicating (e.g. Fig. 3). 
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Fig. 3. DEVS integration with HLA Run Time Infrastructure 

In the FEDEP fourth step, the environment integrates 
GDEVS models coupling relations into HLA interactions 
as in [ZEI, 99] and generates the associated FOM. Indeed, 
a GDEVS model possessing an influencer output port 
“publishes” on an Interaction Class defining the coupling 
relation by publishInteractionClass(). A GDEVS model 
possessing an influenced input port “subscribes” to the 
Interaction Class published by the port which influence it 
by using subscribeInteractionClass(). The environment 
may also generate, in the FOM, an object that defines the 
shared elements of local simulations; for tracking some 
state variables values. Tracked federate publishes using 
RTIAmbassador publishObjectClassAttributes() and 
tracker federate subscribes using 
subscribeObjectClassAttributes(). 

To respect the causality, the interactions among federates 
are defined “Time Stamped Order”. They are emitted 
with a timestamp related to the local logical time of 
supplier federate in order to the RTI handles them 
respecting the causality. 

In consequence, the “coupled GDEVS” federates 
generated by the environment can be reused and 

interfaced with varied programs HLA-compliant. For 
instance, “event generators” federates can be upstream 
connected to “coupled GDEVS” federates and “GDEVS 
outputs user” federates can be downstream connected. 

D. DEVS/HLA integrating Algorithms 

The first HLA/DEVS integration algorithm is presented 
by [ZEI, 99]. To guarantee the global synchronization of 
the Local Coordinators, the authors choose to exploit a 
conservative algorithm mechanism based on [BRY, 77] 
and [CHA, 81] proposed by the HLA specification. This 
method presents the advantage of reducing message 
exchange regarding to the Rollback situations of the 
optimistic approach proposed in [JEF, 85]. 

In the implementation of the HLA concepts of [ZEI, 99], 
DEVS federates code inherits from the 
FederateAmbassador class to be able to use HLA 
services. Federates contain NER(t) calls to the RTI to 
demand of treatment their next local event. When the RTI 
receives such a demand, it determines according to the 
LBTS and messages stored in LRC’s queues of the 
concerned federate, if it can grant this federate to treat its 
next event. If the RTI allows the federate to treat the 
expected message, it sends TimeAdvanceGrant(t). If the 
RTI contains message, intended to this federate, time 
stamped t’ earlier than the time stamp of its next local 
event, the RTI delivers it to the federate before to provide 
the TimeAdvanceGrant(t’). 

When a federate receives a message and/or a grant from 
the RTI, it sends the received or first of its event list 
message to its child. In return, it receives the new logical 
time and next internal event of its child model and 
possibly an output message that it sends to the RTI with 
sendInteraction() service. If shared objects have been 
defined, their attributes change, the federate informs the 
federation about it with sendAttributesUpdates() service. 

The gap of this solution results from the treatment of the 
simultaneous events by federates that are influenced and 
influencer. TimeAdvanceGrant(t) is granted to an 
imminent federate (i.e. a federate that can publish Time 
stamped objects or interactions). Federate not imminent 
has to wait for all imminent federate emitted their 
interactions of timestamp t' ≥ t to receive 
TimeAdvanceGrant(t). In the case of cyclic influences 
between federates, it is impossible to determine which to 
deliver TimeAdvanceGrant() first. 

Using works cited in the above paragraphs in reference, 
[LAK, 00] present two approaches of integrating DEVS 
models in HLA. They notably introduce a distinction 
between “DEVS lookahead” and “HLA lookahead”. 
DEVS lookahead = Min D(S) / s ∈ S with S set of model 
states. “HLA Lookahead” is a minimum delay from the 
treatment of an event to the emission of the output event 



associated. The authors present in this solution a direct 
implementation of DEVS into HLA that resolves the 
problem found by [ZEI, 99]. They use the NERA(t) 
service. This solution uses, as the previous one, a null 
HLA lookahead for every federate. 

Reference [LAK, 00] second solution proposes to 
broadcast the events messages among the federates and to 
give to all the federates a global awareness of the 
coupling relations. The local entities make their decisions 
regarding to their history of received messages and to 
their knowledge of the coupling relations. In that case, it 
is possible to define a positive not null HLA lookahead. 
We do not take into account this last solution because it 
transfers responsibilities of the RTI towards the 
simulators entities. As a result, we consider that these 
responsibilities migrations short-circuit some RTI 
function. 

E. GDEVS/HLA integrating Algorithms 

From the first algorithm of [LAK, 00], we propose a 
solution integrating the use of the HLA lookahead. This 
solution could be applied to GDEVS or DEVS coupled 
model as order zero GDEVS. 

Consider a local GDEVS coupled model integrated in a 
HLA federate. This federate communicates with the other 
GDEVS models within the federation. The actual logical 
time of this federate is “Tact” and it possesses a next local 
event planned in its local event list at “TnextLocal”. We 
set the federate lookahead value = Min D(S) / s ∈ S 
where S is the set of model States. It is to note that we 
use, similarly as the previous solutions, GDEVS models 
with constant D(S) > 0. 

Moreover, we state that, in the case of simultaneous 
events, we choose to treat first the internal event 
independently of the others, then, after having emitted an 
output event and done state changes, we process 
simultaneous external events using a confluent function. 
Note that our pseudo-code is designed for RTI 1516. 

We propose a pseudo-code algorithm in Fig. 4 that uses 
the queryLITS() RTI service defined in the HLA standard. 
In many cases, depending on influencer data and on the 
use of queryLITS(), a federate can preserve a not null 
lookahead value. In consequence, it frees of constraint 
federates under its influence for a period equal to the 
lookahead. Thus, this situation increases the parallelism 
of the global simulation. 

 
Do queryLITS() 

If (TNextLocal ≤ LITS) 
ComputeOutput() // associated to next local internal event timestamped TNextLocal 
SendInteraction(TnextLocal) // send output without reducing federate Lookahead 
NMRA(TNextLocal) // RTI 1516 NextMessageRequestAvailable(TNextLocal) and then wait for RTI answer 

 
Else // if (TNextLocal > LITS) 

NMRA(TnextLocal - Lookahead) 
WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant (TNextLocal - Lookahead)) 

queryLITS() 
If ((TNextLocal) > LITS) 

ModifyLookahead(zero) 
Else // If ((TNextLocal) ≤ LITS) 

ComputeOutput() // associated to next local internal event timestamped TNextLocal 
SendInteraction(TnextLocal) // send output without reducing federate Lookahead 

NMRA(TNextLocal) // then wait for RTI answer 
 

Else If (ReceiveInteraction(T’≤ (TnextLocal - Lookahead)) & TimeAdvanceGrant(T’)) 
Do 

NMRA(T’+ε) // guaranty to have received simultaneous event timestamped T’. 
WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(T’+ε)) 

ComputeExternalTransition() // associated to external event(s) timestamped T’ 
Break to beginning // with new TnextLocal. 

Else If ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’)) 
AddtoSimultaneousMessageList() 

While (TimeAdvanceGrant(T’) < T’+ε) 
 

WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(TNextLocal)) 

If (output not already sends with positive lookahead) 
ComputeOutput() // associated to next local internal event timestamped TNextLocal 
SendInteraction(TNextLocal) // send output with zero federate Lookahead 

ComputeInternalTransition() // associated to internal event timestamped TNextLocal 
Do 

NMRA(TNextLocal+ε) // guaranty to have received simultaneous event timestamped TNextLocal. 
WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(TNextLocal+ε)) 

ComputeExternalTransition() // associated to eventual external event(s) timestamped T 
ModifyLookahead(min of D(S)) 
Break to beginning 

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’)) 
AddtoSimultaneousMessageList() 

While (TimeAdvanceGrant(TNextLocal) < TNextLocal +ε) 
 

Else If ReceiveInteraction(T<TNextLocal) & TimeAdvanceGrant(T) 
Do 

NMRA(T+ε) // guaranty to have received simultaneous event timestamped T. 
WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(T+ε)) 

ComputeExternalTransition() // associated to external event(s) timestamped T 
Break to beginning // with new TnextLocal. 

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’)) 
AddtoSimultaneousMessageList() 

While (TimeAdvanceGrant(T) < T +ε) 
 
While (Simulation not end) 
 

Fig. 4. Federate Algorithm 



F. GDEVS/HLA Communicating Example 

Consider an order zero GDEVS coupled model, 
illustrated Fig. 5 using the graphical notation defined by 
[SON, 94]. The states of the model are represented by the 
nodes of the graph. Every node contains the name of the 
phase and the associated life time. Solid arcs represent the 
external transitions and dotted arcs represent the internal 
transitions. 
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Fig. 5. Distributed coupled models example 

The coupled model System (S) is defined by: 
IportsS = {Com} and OportsS = {Ø} 
D = {Command, Commanded Syst.} 
EIC = {((System, Com), (Commanded Syst., Com)), 
IC = {((Command, E), (Commanded Syst., E)), 

     ((Commanded Syst., O), (Command, O))} 

The atomic model Command is defined as follow: 
S = {S1, S2, S3, S4, S5} ; XM = {Com, O} ; 

   YM = {E} ; s° = S1 

The atomic model Commanded Syst. is defined as follow: 
S = {S1, S2, S3, S4} ; XM = {E} ; 

   YM = {O} ; s° = S1 

We wish to execute models Command and Commanded 
Syst. on two distant computers. For that purpose, the 
environment proposes to integrate them into a HLA-
compliant distributed simulation, to create a federation 
and to fill an associated FOM. 

Thus the federation contains two federates associated to 
both coupled models, the federate A (FA) contains the 
Command GDEVS model and federate B (FB) contains 
the Commanded Syst. GDEVS model. 

The FOM contains objects and interactions classes shared 
into the federation. In the considered case, the attributes 
of both models are mapped as objects and the coupling 
relations are mapped as interactions. The federation thus 
contains two interactions “E” and “O”. FA subscribes to 
the interaction O and publishes on the interaction E; 
while FB subscribes to the interaction E and publishes on 
the interaction O. Note that the SOM of FA also contains 
an interaction “Com” not includes in the FOM considered 
because no federate will publish on it. 

Then, the federates define their lookahead values. In the 

studied case, FA and FB both have a lookahead of 10 
time units; it will thus pass by at least 10 time units 
between a message reception and a message emission as a 
result of the received message. Federates are both time 
regulating and time constrained at the same moment, so 
they can send and receive “Time Stamped” messages. 
The environment defines in the program of every federate 
an algorithmic loop, presented in the above section, to 
select the next local event of the federate and to 
interrogate the RTI about the authorization to treat it. 

Fig. 6 presents the communication, through the RTI, 
between FA and FB of Fig. 5. This example illustrates the 
interest of using the service queryLITS() as proposed in 
Fig. 4. Numbers represent units of logical time, 
corresponding in the schema to federates logical times or 
sent messages timestamp. Arcs represent causal relations. 
Note that the temporal comparisons of the example are 
done with regard to a “wall clock” time as defined in 
[FUJ, 00] which measures the time during the execution 
of the simulation (e.g. in Fig. 6, the alphabetical order of 
letters surrounded represents a wall clock time order). 

We focus on the succession of causal relations, depicted 
in Fig. 6 by dotted arcs and surrounded letters, where FA 
asks queryLITS() (noted e) after the RTI has received 
queryLITS() (noted a) and NMRA(∞) (noted c) of FB. 
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Fig. 6. Communication between federates trough RTI 

On the one hand, FB has informed with NMRA(∞) (noted 
c) the RTI, that it would not emit output message on “O” 
at time stamp 0 (i.e. no internal transition associated to 
the current state). Thereby, the next output message of FB 



must be a consequence of a received message on port 
“E”. Furthermore, received messages of FB result from 
FA and FA has informed the RTI that its logical time is 
zero, so its next emitted message will be dated minimum 
10 because of FA lookahead. In result, the next outgoing 
message of FB will be at least dated equal to: 
FB LITS (Min (FA lookahead(=10), RTI Message time for FB)) + FB lookahead(=10) = 20 

On the other hand, FA LITS is computed by the RTI 
regarding to FA HLA-subscriptions to the interaction “O” 
published by FB. As a response to queryLITS() (noted e), 
the RTI computes the LITS of FA equal to least output 
message of FB: 20. Therefore, the federate FA can emit at 
once its output message planned at timestamp 20 (noted 
g) and preserve a lookahead of 10 time units because we 
defined a priority to internal event in case of simultaneity. 

A federate that conserves a not null lookahead releases of 
constraint its influenced federates for a period equal at 
least to its lookahead and so improves the simulation 
parallelism. Note that this situation is very desirable but 
not occurs all the time. Sometimes, depending on various 
federates wall clock time progression, federates must 
reduce their lookahead to zero as described by full circled 
letters and plain arcs sequences represented in Fig. 6. 

III. FUTURE WORK 

Reference [FUJ, 98] defined the lookahead as a 
performance factor for distributed simulations. For this 
purpose, we think that refining the computation of this 
value could speed up the simulation. 

Indeed, we use a minimal lookahead value for distributed 
GDEVS models. Our current work consists in improving 
the lookahead computation to find maximal lookahead for 
GDEVS models with explicit states and constant D(S). 

Distributed GDEVS models, wherein D(S) depends on 
state variables, are also under our scope. We will try to 
define methods to compare D(S) functions of the different 
model states to obtain a maximal value of the lookahead. 

IV. CONCLUSION 

In this paper, a GDEVS HLA-compliant simulation 
environment has been proposed. The key contribution is a 
new HLA integrating algorithm that uses conservative 
synchronization mechanism and the HLA lookahead. This 
algorithm does not move decision functions of the RTI 
towards local GDEVS simulators. In addition, we present 
a “flatten” GDEVS simulation structure that reduces 
message exchanges and so improves execution speed. 
These two propositions improve the performance of the 
distributed simulation. 

Finally, this GDEVS HLA-compliant simulation 
environment generates distributed GDEVS models that 

can be integrated into heterogeneous HLA-compliant 
programs with respect of time management constraints. 
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