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Abstract 
In this article, we present new methods to evaluate 

lookahead of DEVS/G-DEVS federates participating in 
a HLA federation. 

We propose first, an algorithm to compute the loo-
kahead according to the current state of a DEVS/G-
DEVS model. This solution is designed for models 
with lifetime function depending on one state variable. 

Then, we extend this computation to models with 
lifetime functions defined with several state variables. 
We use the Dijkstra graph theory search to compute 
the different values of state variables and a mathe-
matical function analysis to determine the lookahead 
for the model states. Finally, we illustrate with an ex-
ample how this solution extends the range of 
DEVS/G-DEVS models that can be involved into dis-
tributed simulations and we present some simulation 
results. 

1. Introduction 
On the one hand, G-DEVS [7] lies in its ability to 

develop uniform discrete event executable specifica-
tions for hybrid dynamic systems with a scientifically 
controlled degree of accuracy. Hence, models of con-
tinuous and discrete components can be represented 
with the same formalism using only a continuous time 
representation. 

On the other hand, HLA [16] allows integrating dis-
tributed simulations, located on several computers 
with different operating systems, into a global simula-
tion. HLA-compliant distributed simulations intercom-
municate by exchanging messages eventually syn-
chronized. 

A first DEVS/HLA compliant environment was pro-
posed by Zeigler et al. in [20,21]. In this environment, 
distributed DEVS simulations intercommunicate 
through the interface (RTI) specified by HLA. In [14], 
Lake et al. have proposed a DEVS/HLA environment 
improvement by using the HLA lookahead. In [18], we 
have proposed a DEVS/HLA environment using the 
HLA lookahead without moving the management of 
the coupling relations from the RTI level to the feder-
ate level as in [14]. 

The focus of this article is to improve the 
DEVS/HLA environment proposed in [18]. For that 
purpose, in a first part, we compute a lookahead de-

pending on the current state of DEVS models with life-
time function depending on only one state variable. It 
allows increasing the value of the HLA lookahead. 

Then, we propose going further in the improve-
ment of the HLA lookahead computation. This compu-
tation tackles DEVS/G-DEVS models for which state 
lifetimes are functions of more than one state variable. 
This lookahead computation is based on the shortest 
and longest path search algorithms in a graph. This 
improvement permits to compute non-zero HLA loo-
kahead values from models with complex lifetime 
functions. This result is significant because the use of 
greatest values for the lookahead improves the per-
formances of distributed simulation according to litera-
ture on distributed discrete event simulation [5]. 

This article is organized as follows. Section 2 gives 
a brief recall on DEVS/G-DEVS formalisms and HLA 
standard. Section 3 recalls previous DEVS/HLA map-
ping. Section 4 exposes the approach proposed for 
improving the lookahead computation of the DEVS/G-
DEVS HLA environment. Finally, we conclude by giv-
ing some simulation results that illustrate the perform-
ances of the proposed algorithm. 

2. Recall 
2.1 Generalized Discrete EVent System Specification 

(G-DEVS) 
Traditional discrete event abstraction (e.g. DEVS) 

approximates observed input-output signals as piece-
wise constant trajectories. G-DEVS defines abstrac-
tions of signals with piecewise polynomial trajectories 
[7]. Thus, G-DEVS defines coefficient-event as a list 
of values representing the polynomial coefficients that 
approximate the input-output trajectory. Therefore, a 
DEVS model is a zero order G-DEVS model (the in-
put-output trajectories are piecewise constants). For-
mally, G-DEVS represents a dynamic system (DESN) 
as an n order discrete event model expressed as a 
structure: 

DESN = <XM, YM, S, δ int, δ ext, λ, D, Coef> 

The following mappings are required: 

XM = A n+1, where A is a subset of integers or real 
numbers that represents external input 
events 

YM = A n+1, represents output events 
S = Q × (A n+1), is the set of sequential model states 
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Where Q is a set of state variables, and A n+1 is a 
subset of state variables that stores last input coeffi-
cient-event. 

For all total state (q, (an, an-1,......, a0), e) (with e: 
elapsed time in S, 0 ≤ e ≤ D(S)) and a continuous 
polynomial input segment w : <t1, t2> → x, the follow-
ing functions are defined : 

The internal transition function: that defines the 
autonomous state changes for the transient states, 
(i.e. states for which lifetime is a finite value): 

δint(S) = δint (q, (an, an-1,......, a0)) = 

Strajq, x (t1+D((q, (an, an-1,......, a0)), x)) 

with x =antn+an-1tn-1+…….+a1t+a0 

and Straj is the model state trajectory 

∀ q ∈ Q and ∀ w : <t1, t2> → x, 

Strajq,w : <t1, t2> →Q 

The external transition function: that defines the 
state changes caused by external events: 

δext(S, e, XM) = 

δext (q, (an, an-1,.., a0), e, (an’, an-1’,.., a0’)) = 

Strajq, x ((t1+e), x’) 

with: Coef (x) = (an, an-1,......, a0) 

and Coef (x’) = (an’, an-1’,......, a0’) 

Coef: function to associates n-coefficient of all con-
tinuous polynomial function segments w over a time 
interval <ti, tj>, to the (n+1) constants values (an, an-

1,......, a0) such as: 

w(t) = antn+an-1tn-1+….+a1t+a0 

Coef-1: the inverse function of Coef is applied to 
transform an output event in piecewise continuous 
polynomial trajectory: 

Coef-1 (an, an-1,..., a0) = antn+an-1tn-1+….+a1t+a0 

The output function: triggered by autonomous state 
changes, it produces output events: 

λ(S) = λ (q, (an, an-1,..., a0)) = (an’, an-1’,.., a0’) 

The function defining the lifetime of states: that 
represents the maximum length or lifetime of a state: 

D(S) = D (q, (an, an-1,..., a0)) = 

MIN (e/Coef (Otrajq, x (t1)) ≠  

Coef (Otrajq, x (t1 + e)) 
with Otraj is the model output trajectory: 

Otrajq,w : <t1, t2> →Y 

2.2 DEVS / G-DEVS Coupled Model 
Zeigler has introduced, in [23], the concept of cou-

pled model. Every basic model of a coupled model 
interacts with the other models to produce a global 
behaviour. The basic models are, either atomic mod-
els, or coupled models stored in a library. The model 
coupling is done using a hierarchical approach. A dis-
crete event coupled model (DEVS or G-DEVS) is de-
fined by the following structure: 

MC = < X, Y, D, {Md/d∈D}, EIC, EOC, IC, Select> 

X: set of external events. 
Y: set of output events. 
D: set of components names. 
Md: DEVS/G-DEVS models. 
EIC: External Input Coupling relations. 
EOC: External Output Coupling relations. 
IC: Internal Coupling relations. 
Select: defines priorities between simultaneous 

events intended for different components. 

Note that to allow the coupling of different degree 
models ports, Giambiasi et al. have defined, in [7], a 
coupling model component to transform the polyno-
mial order of events exchanged. 

2.3 DEVS / G-DEVS Simulator 
The concept of abstract simulator has been pro-

posed in [23] to define the simulation semantics of the 
formalism. The architecture of the simulator is derived 
from the hierarchical model structure. 

The processors involved in a hierarchical simula-
tion are Simulators, which insures the simulation of 
the atomic models, Coordinators, which insures the 
routing of messages between coupled models, and 
the Root Coordinator, which insures the global man-
agement of the simulation (e.g. Fig. 1. a, without con-
sidering crosses out). 

The simulation runs by exchanging specific mes-
sages (corresponding to different kind of events) be-
tween the different processors. 

2.4 The High Level Architecture (HLA) 
The High Level Architecture (HLA) is a software 

architecture specification for global simulations that 
can include a variety of simulation programs imple-
mented on distant computers and/or to reuse existing 
simulations by interconnecting them [6]. Dr. 
Straßburger presents in this journal an overview of 
this specification [16]. 

2.4.1. Implementation Components. An HLA federa-
tion simulation is composed of federates and a Run 
time Infrastructure (RTI) [11]. 

A federate is a HLA-compliant program, the code 
of that federate keeps its original features but must be 
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extended by other functions to communicate with 
other members of the federation. These functions, 
contained in the HLA-specified class code of Feder-
ateAmbassador, make interpretable by a local proc-
ess the information received resulting from the federa-
tion. Therefore, the federate program code must in-
herit of FederateAmbassador to complete abstract 
methods defined in this class used to receive informa-
tion from the RTI. 

The RTI supplies services required by a simula-
tion, it routes messages exchanged between feder-
ates. It is composed of two parts. 

The “Local RTI Components code” (LRC, e.g. in 
Fig. 1 b) supplies external features to the federate for 
using RTI call back services such as the handle of ob-
jects and the time management. The implementation 
is the class RTIAmbassador, this class is used to 
transform the data coming from the federate in an in-
telligible format for the federation. The federate pro-
gram calls the functions of RTIAmbassador to send 
data to the federation or to ask information to the RTI. 
Each LRC contains two queues, a FIFO queue and a 
time stamp queue to store data before delivering to 
the federate. 

Finally, the “Central RTI Component” (CRC, e.g. in 
Fig. 1 b) manages the federation notably by using the 
information supplied by the FOM [16] to define Ob-
jects and Interactions classes participating in the fed-
eration. Object class contains object-oriented data 
shared in the federation that persists during the run 
time, Interaction class data are just sent and received. 

A federate can, through the services proposed by 
the RTI, "Publish" and "Subscribe" to a class of 
shared data. "Publish" allows to diffuse the creation of 
object instances and the update of the attributes of 
these instances. "Subscribe" is the intention of a fed-
erate to reflect attributes of certain classes published 
by other federates. 

2.4.2. HLA time management. In order to respect the 
temporal causality relations in the simulation stated in 
[15]; HLA [4,5] proposes classical conservative [1,2] 
or optimistic [12] synchronization mechanisms. We 
focus in this article on conservative synchronisation 
and event driven mechanism. 

We recall here the time management notions from 
[9,10,11], implemented in the 1516 compliant RTI im-
plementation, that will be exploited in the following of 
this article: 

Lookahead: Delay given by influencers federates 
to the RTI. They certify to the RTI not to emit message 
until their actual time plus their lookahead. 

GALT (Greatest Available Logical Time): Time 
stamp, computed by the RTI, until influenced feder-
ates will not receive information from the federation 
(i.e. minimum lookahead of its influencers federates). 

NextMessageRequest(t) (NMR(t)): Federate func-
tion to ask for grant to the RTI, to deal an event time 
stamped t. If the RTI call-backs the federate with 
TimeAdvanceGrant(t), this federate is sure to have 
received all events at t’ ≤ t and can emit events time 
stamped t’’ > t. 

NextMessageRequestAvailable(t) (NMRA(t)): dif-
fers from NMR(t) in the call-back function. TimeAd-
vanceGrant(t) answer to NMRA(t), ensures the feder-
ate to have received all events at t’ < t and allows it to 
emit events at t’’ ≥ t. In return, the federate is not sure 
to have received all events time stamped t. 

LITS (Least Incoming Time Stamp): Federate LITS 
is a lower bound until which the federate will receive 
no message, this value is calculated from its GALT 
and the messages in transit not received yet by the 
federate (i.e. messages stored in the LRC queue). 

3. Previous DEVS/HLA mapping 
3.1 Components mapping 

Zeigler et al., in [20,21,22], present a first integra-
tion of DEVS Coordinators in a HLA-compliant archi-
tecture. They map local coupled models in HLA feder-
ates whose coordinators of higher level will have re-
sponsibility to communicate with a “Time Manager” 
federate. TM routes messages between distributed 
coordinators. This federation of coordinators defines a 
global distributed coupled model. 

3.2 Integrating Algorithms 
As recalled in the previous section, deterministic 

distributed simulations require synchronization 
mechanisms in order to treat events in respect to cau-
sality. In consequence, DEVS/HLA federates must 
include integrating algorithms to communicate with the 
RTI (i.e. in order to handle received messages from 
the federation and to emit messages in a HLA format). 

Zeigler et al. have proposed in [22] a first integrat-
ing algorithm of DEVS models into a HLA-compliant 
environment. To guarantee the global synchronization 
of Local Coordinators, this approach exploits conser-
vative algorithm of [1,2] mechanism available in HLA 
[11]. 

In [14], Lake et al. have given a second approach 
for mapping DEVS into HLA that resolves Deadlock 
problems encountered in the first solution. To this end, 
this approach notably uses the NMRA(t) service pro-
posed by HLA instead of NMR(t). This two solutions 
use a zero or negligible value of HLA lookahead for 
every federate [4]. 
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Reference [14] also introduced another approach 
that uses a not negligible lookahead by globally 
broadcasting event messages among federates and 
giving to each federate a global view of DEVS cou-
pling relations. So, the federates decide to treat or not 
an event regarding to their history of received events 
and to their knowledge of coupling relations. This 
DEVS/HLA environment uses a non-zero constant for 
the lookahead. However, some responsibilities of the 
RTI are transferred to the federates, what bypasses 
some RTI functions. 

4. New G-DEVS/HLA mapping 
4.1 Components mapping 

We have proposed, in [18], an environment for 
creating DEVS/G-DEVS models HLA compliant. This 
environment proposes two-step for distributing models 
(and simulators associated to). 

In the first step, the GDEVS coupled model is flat-
tened. The hierarchical structure of a model is a user 
facility, which is not necessary adapted to a simulation 
purpose. This new simulation structure decreases the 
algorithm complexity and so increases simulation per-
formance regarding to the hierarchical one as stated 
by Kim et al. and Glinsky et al. in [8,13]. The flattening 
of the structure induces eliminating the crossed out 
Coordinators on Fig.1 a. 

In the second step, the flattened G-DEVS simula-
tion structure is split into coupled model by federate 
(Fig.1 b) in order to build an HLA federation (i.e. a dis-
tributed G-DEVS coupled model). The environment 
conforms to [22] mapping of Local Coordinator and 
Simulators into HLA federates, but does not use the 

“Time Manager” federate. It maps directly the Root 
Coordinator into the RTI. The reason of this mapping 
is the specification of interface (RTI) proposes ser-
vices that enclose those defined in the DEVS Root 
Coordinator. Thus, the “global distributed” model (i.e. 
the federation) is constituted of federates intercom-
municating. 

The G-DEVS models federates intercommunicate 
by publishing/subscribing to HLA interactions that map 
the coupling relations of the global distributed coupled 
model. This information is routed between federates 
by the RTI in respect to time management and FOM 
description. 

4.2 G-DEVS/HLA integrating Algorithms 
From the first algorithm of [14], we have proposed 

in [18] a solution integrating the use of the HLA looka-
head. This solution can be applied to G-DEVS or 
DEVS coupled model. It considers a local G-DEVS 
coupled model integrated in a HLA federate. This fed-
erate communicates with other G-DEVS models within 
the federation. We set the federate lookahead as in 
function (1). 

Lookahead = Min D(s) / s ∈ S (1) 
Where S is the set of model states. 

We assume to use, G-DEVS models with D(S) > 0 
to define a non-zero lookahead. 

Moreover, we state that, in the case of simultane-
ous events, we choose to treat first the internal event, 
then, after having emitted an output event and done a 
state change, we process simultaneous external 
events using a confluent function. 
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Figure 1. Components mapping 
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We recall from [18], in the Fig. 2 pseudo-code, the 
federate algorithm to communicate with the RTI. The 
initial settings define that the actual logical time of this 
federate is “Tact” and it possesses a next local event 
planned in its local event list at “TnextLocal”. It uses 
the queryLITS() RTI service defined in the HLA stan-
dard. Using this service, a federate can preserve a 
non-zero lookahead value by treating local events with 
timestamps earlier than LITS (that evolves depending 

on influencers federates data delivering behaviour and 
processing speed). In consequence, a non-zero loo-
kahead federate frees of constraint federates under its 
influence for a period equal to the lookahead. Thus, 
this situation increases the parallelism of the global 
simulation. 

It should be noted that our pseudo-code is de-
signed for the 1516 version of HLA specification and 
the 1516 compliant RTI implementation. 

 
Do queryLITS() 

If (TNextLocal ≤ LITS) 
ComputeOutput() // associated to next local internal event timestamped TNextLocal 
SendInteraction(TnextLocal) // send output without reducing federate Lookahead 
NMRA(TNextLocal) // RTI 1516 NextMessageRequestAvailable(TNextLocal) and then wait for RTI an-
swer 

 

Else // if (TNextLocal > LITS) 
NMRA(TnextLocal - Lookahead) 
Wa
If (TimeAdvanceGrant (TNextLocal - Lookahead)) 
itUntil(RTI responds callback) 

queryLITS() 
If ((TNextLocal) > LITS) 

M
Else // If ((TNextLocal) ≤ LITS) 

odifyLookahead(zero) 

ComputeOutput() // associated to next local internal event timestamped TNextLocal 
SendInteraction(TnextLocal) // send output without reducing federate Lookahead 

NMRA(TNextLocal) // then wait for RTI answer 
 

Else If (ReceiveInteraction(T’≤ (TnextLocal - Lookahead)) & TimeAdvanceGrant(T’)) 
Do 

NMRA(T’+ε) // guaranty to have received simultaneous event timestamped T’. 
WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(T’+ε)) 

ComputeExternalTransition() // associated to external events timestamped T’ 
Break to beginning // with new TnextLocal. 

Else If ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’)) 
AddtoSimultaneousMessageList() 

While (TimeAdvanceGrant(T’) < T’+ε) 
 

WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(TNextLocal)) 

If (output not already sends with positive lookahead) 
ComputeOutput() // associated to next local internal event timestamped TNextLocal 
SendInteraction(TNextLocal) // send output with zero federate Lookahead 

ComputeInternalTransition() // associated to internal event timestamped TNextLocal 
Do 

NMRA(TNextLocal+ε) // guaranty to have received simultaneous event timestamped TNextLocal. 
Wa
If (TimeAdvanceGrant(TNextLocal+ε)) 
itUntil(RTI responds callback) 

ComputeExternalTransition() // associated to eventual external event(s) timestamped T 
ModifyLookahead(min of D(S)) 
Break to beginning 

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’)) 
AddtoSimultaneousMessageList() 

While (TimeAdvanceGrant(TNextLocal) < TNextLocal +ε) 
 

Else If ReceiveInteraction(T<TNextLocal) & TimeAdvanceGrant(T) 
Do 

NMRA(T+ε) // guaranty to have received simultaneous event timestamped T. 
WaitUntil(RTI responds callback) 
If (TimeAdvanceGrant(T+ε)) 

ComputeExternalTransition() // associated to external event(s) timestamped T 
Break to beginning // with new TnextLocal. 

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’)) 
AddtoSimultaneousMessageList() 

While (TimeAdvanceGrant(T) < T +ε) 
 

While (Simulation not end) 
Figure 2. Federate Algorithm 
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4.3 First G-DEVS/HLA Lookahead computation im-
provement 
In the two last integrating algorithms [14,18] pre-

sented in the above section, the lookahead is set to 
the minimum of all the states lifetime D(s) of the 
model. Indeed, in DEVS/G-DEVS, output events are 
produced by output function λ(s) associated to internal 
transitions δint that occur when a state lifetime D(s) is 
elapsed. Therefore, these solutions always consider 
the worst case. In concrete term, the event to be ear-
liest emitted will not have a time stamp lower than the 
minimum states lifetime as defined in (1), but this so-
lution does not take into account the behaviour of the 
model (i.e. its current state). 

We have proposed in [19] a first improvement in 
the lookahead computation in the case of G-DEVS 
models with only one state variable, named “phase”, 
and a constant lifetime function defined for each sym-
bolic value of the phase. Lookaheads relative to the 
current state (of the model simulated) are computed 
by considering the reachable state list by external 
transitions δext for each state. The lookahead relative 
to the phase is set to the minimum lifetime of the cur-
rent state reachable state list, what gives a relative 
value superior (or equal in worst case) to the solution 
of the previous section that was using a unique looka-
head value during the simulation. 

In more details, for a G-DEVS model, the next 
output event to be emitted is associated to an upcom-
ing internal transition. As a result, we have to find the 
sooner next internal transition that could be executed 
from the current state of the model. We propose to 
use a graph search to explore and to determine for 
each state all reachable states by a sequence of ex-
ternal transitions. 

For that purpose, we defined an algorithm that ex-
plores, from a considered state, the graph of reach-
able states in order to compute a state relative looka-
head. In Fig. 3, we present a pseudo-code algorithm 
of this solution that is based on oriented graphs clas-
sical depth-first search algorithm. 

We use the list of adjacencies of a considered 
node of the graph to obtain the Succed-
ing_States_List. This algorithm computes the relative 
Lookahead for an Initial_State, which is equal to 
Min_D at the end of the graph exploration (i.e. Min_D 
is the min D(S) of reachable states). 

Let us focus on Fig. 4 that represents a simple 
DEVS atomic model (i.e. a G-DEVS model of 0 order) 
with the graphical representation of [17]. The discrete 
state of the models considered in this sub-section is 
defined only by the phase state variable (with values 
represented by circles). For that reason, a lifetime 
value can be associated to each phase value (refer-

enced by numbers inside circles). Solid arcs represent 
external transitions δext; for instance, mark “com?o1” 
on an arc of this type describes that the model state 
will transit by receiving an input event of “o1” value on 
the input port “com”. Dotted arcs represent internal 
transitions δint; if it elapses lifetime length in the 
source phase of this type of arc, mark “out!set” shows, 
for instance, that the model state will transit and emit 
an output event of “set” value on output port “out”. Tri-
angles represent input and output ports. 
 
depth_First_Search (graph, Initial_State) 
x    // considered state 
Min_D    // minimum lifetime function D(S) value 
Succeding_States_List // List of reachable states from a 

// considered state by an External Transition
x <- Initial_State 
Min_D <- D(x) 
Succeding_States_List <- Get_Succeding_States(graph, x) 
 
Do 

If (Existing_Not_Explored_State(Succeding_States_List)) 
x <- First_State_Not_Explored(Succeding_States_List) 
Succeding_States_List <- Get_Succeding_States(graph, x) 
Mark_Explored(x) 
Min_D <- min(D(x), Min_D) 

 
Else // x is a leaf or next states are already explored 

// Go up to 1st preceding state with not-explored child
While (x =! Initial_State &&  

!(Existing_Not_Explored_State(Succeding_States_List))) 
Do 

x <- Preceding_State(x) 
Succeding_States_List <- Get_Succeding_States(graph, x)

EndWhile 
 

If (Existing_Not_Explored_State(Succeding_States_List)) 
x <- First_State_Not_Explored(Succeding_States_List) 
Succeding_States_List <- Get_Succeding_States(graph, x)
Mark_Explored(x) 
Min_D <- min(D(x), Min_D) 

 EndIf 
EndIf 

While (x =! Initial_State && 
!( Existing_Not_Explored_State(Succeding_States_List)))  

Figure 3. G-DEVS model current state relative lookahead 
 

If we consider an absolute lookahead not depend-
ing on the current state, the lookahead of the Fig. 4 
example is equal to one time unit. If B state is the cur-
rent state of the example, considering the current 
state relative lookahead, the lookahead can be in-
creased to five times units (Fig. 4. minimum lifetime of 
not shadowed states). Moreover, the computation of 
all lookahead values is done before run time and so 
does not affect simulation performance. 
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Figure 4. DEVS model current state relative lookahead 
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The restriction of the computation presented in this 
sub-section comes from the fact that it can only be 
applied to models with D(S) functions depending on 
only one state variable called the phase. Because 
DEVS/G-DEVS formalism can express more complex 
models, we propose in the next sub-section to gener-
alise this computation for models with D(S) function 
depending on several state variables. 

4.4  Second G-DEVS/HLA Lookahead computation im-
provement 

In the following, we define an extension of the compu-
tation of the lookahead in order to consider G-DEVS 
models with state defined by (2). 

S = Q × (An+1) (2) 

Where: 

Q: (phase, sigma, Bn) where sigma is the lifetime 
function D(S) of the current state, phase is a state 
variable with symbolic values and Bn (b0,..., bn) is a 
(n)-tuple set of discrete state variables. 

An+1: state variables (a0,..., an+1) stores the (n+1)-
tuple polynomial coefficients of the last external event 
occurred with A subset of real numbers or integers [7]. 

The phase defines explicit subset of state set, 
which allows representing graphically the DEVS/G-
DEVS models as stated in [17] and recalled in 3.4. 

The Bn n-tuple finite set of integer valued state 
variables completes the definition of the considered 
G-DEVS model state. 

The values of the state variables are modified by 
the δext and δint transition functions. Note that we do 
not consider the elapsed time in the current state to 
change the values of the next state. 

Moreover, in the G-DEVS models considered, 
each lifetime is a mathematical function of D(phase, 
Bn), it does not depend on An+1 (e.g. Fig. 5 a). 

4.4.1. Path search in G-DEVS models. The looka-
head is the minimum delay to emit an output event, 
which corresponds to the earliest next λ(s) among the 
reachable phase values by a sequence of δext. 

Path search algorithms seem to be suited to ana-
lyze the variation of state variables involved as pa-
rameters of D(s), because the considered G-DEVS 
models can be represented by nodes/arcs. The only 
mismatch comes from classical graph path search al-
gorithms only consider one variable (i.e. that is the 
path weight between two nodes) but G-DEVS models 
graphs can possess more than one state variable. In 
the considered model, there are n state variables B. 

A key to this mismatch is to decompose a consid-
ered G-DEVS model (e.g., Fig. 5 a) into as many sub-

models as the model contains state variables B. From 
each sub-model with S = ((phase, sigma, B), An+1), we 
create an oriented graph by representing the phase 
values of the G-DEVS model as nodes and the δext as 
edges (e.g. Fig. 5 b,c,d). 

The edges of a G-DEVS sub-model are weighted 
by the part of the δext function that handles the con-
sidered B state variable. Therefore, it implies that the 
state variables of Bn are independent in the expres-
sion of δext (i.e. each B variable must only be depend-
ent on constant values or on itself in the δext func-
tions). We can apply on the obtained oriented graphs 
a path search algorithm to track the variations of state 
variable B. 

4.4.2. Dijkstra path search. Considering an oriented 
graph (obtained from a G-DEVS sub-model) and the 
phase value phasei, we define a function (3), which 
computes the shortest path (in terms of a considered 
bj of Bn) to reach each other phasek by a sequence of 
δext. 

ShortestPath(phasei, bj, phasek) = min bj in phasek (3) 

/ considering an initial value of bj in phasei 

and k ∈ reachable phase value list of phasei 

For example in Fig. 5 b), the shortest path from 
phase A to the others phase values, considering state 
variable b1, is 10 for reaching phase B, 2 for C, 10 for 
D and not defined for E because it is not linked from A 
by external transition. 

To implement the ShortestPath function, we ap-
plied the Dijkstra Algorithm [3] that fulfils requirements 
of the function. The limitation is that this algorithm is 
not suited for graphs that contain circuits with edges 
of negative weight; indeed the looping of such circuits 
decreases iteratively the weight of the path. As a re-
sult, the considered G-DEVS models must contain 
only B variables defined on R+ and δext functions that 
only increment the state variables of Bn. We notice 
that others algorithms (e.g. Warshall and Floyd) allow 
the use of negative weight edges but the studied 
graphs still must no contain negative weight circuit. 

We use the modified Dijkstra Algorithm (by chang-
ing the values searched from min to Max) to find the 
longest path from a considered phase value to all oth-
ers. This search computes the state variable B maxi-
mal values for each reachable phase value. It implies 
a restriction on graphs type; it can be applied only to 
acyclic graphs (i.e. without circuits) because finding 
the longest path in a cyclic graph has been shown to 
be an NP-hard problem. Notice that cyclic graphs can 
be considered only if all state lifetimes D(s) contain no 
decreasing part since we do not search for the maxi-
mum of the state variables. 
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4.4.3. State lifetime D(s) analysis. Using min/Max 
values of state variables of Bn (obtained from short-
est/longest path computation), we exploit mathemati-
cal backgrounds to study the variations of state life-
time D(s). We consider D(s) as real-valued functions 
of several variables. The functions must be continu-
ous, defined and derivable in all points of the state 
variables values range in order to determine their 
minimal value regarding to min/Max values of the 
state variables of Bn. To respect these definitions, we 
bound the study to linear state lifetimes D(s) defined 
by independents state variables (i.e. a linear function 
of several variables b1, b2, ... , bn is described by (4)). 

f(b1, b2, ..., bn) = α0 + α1b1 + ... + αnbn (4) 

/ {α0, ..., αn} are constants real values. 

Taking into account the restrictions on state life-
time D(s), we can compute a minimum value of state 
lifetime of a reachable phase value from a considered 
one regarding to min/Max values of the state vari-
ables. More formally, for a phase value phasek and 
the state variables b1, ..., bn, the state lifetime is de-
fined by (5). 

D((phasek, sigma, Bn), An+1) = α0 + α1b1 + ... + αnbn (5) 

if αi < 0 we consider maximum value of bi / i ∈ {0,…, n} 

if αi ≥ 0 we consider minimum value of bi / i ∈ {0,…, n} 

By repeating this computation for each reachable 
phasek from a considered phasei, we calculate the 
lookahead (6) of the considered phase value equal to 
the minimum of all the reachable phase value state 
lifetime D(s) (we do not consider sigma and An+1). 

Lookahead (phasei) = min D(phasek, min/Max (Bn)) (6) 

∀ k ∈ reachable phase value list of phasei 

If some G-DEVS models federates in a G-DEVS 
coupled model federation do not respect the restric-
tion on state lifetime D(s) and on the state variables 
variations or if state lifetime D(s) computation con-
cludes to a negative value result, then no minimum of 
state lifetime D(s) can be computed. We set, in that 
case, the lookahead of these G-DEVS model feder-
ates equal to a minimum value ε negligible regarding 
to values taken by state lifetime D(s). Thereby, the 
simulation is constrained and slowed, by the looka-
head of this federate. 

4.4.4. Lookahead computation example. Fig. 5 a) 
example is an order 1 G-DEVS model. We consider 
an initial state with phase=A and b1=b2=b3=a0=a1=0. 

We focus on the computation of the lookahead of 
phase A. As a result, we determine the reachable 
phase values from A by a sequence of external transi-
tions that are B, C, and D. The state lifetime D(s) val-
ues of these phase values are dependent on the ex-
ternal transition passed from A to attain the consid-
ered phase value. 

For instance, state lifetime D(S) of phase D is 
equal to 3b1+b2-2b3. It implies to consider the mini-
mum value of b1 and b2 and the maximum value of b3. 
Djikstra algorithms find out the extremes values of the 
state variables for each phase value. 

We focus first on the sub-model represented in 
Fig. 5 graph b) that only considers the phase and b1. 
From the initial state, we compute that b1 minimum 
value is 10 time units in phase B, 2 for C, 10 for D and 
not defined for E. 

By repeating the same process, we compute b2 
minimum, values in Fig. 5 graph c). The min of b2 is 2 
for B, 2 for C, 3 for D and not defined for E. 

In Fig. 5 graph d): b3 minimum is 2 for B, 1 for C, 2 
for D and not defined for E. 

Because the D(s) function of phase D contains a 
subtraction, it is necessary to compute b3 maximum 
value in Fig. 5 graph d) that is equal to 8 for D. 

Using these values, we compute the minimum val-
ues of the D(s) functions for each reachable phase 
value from A: 

min D(A, min/Max (Bn)) = b1 + b2 + 5 = 0 + 0 + 5 = 5 
min D(B, min/Max (Bn)) = b2 + b3 = 2 + 2 = 4 
min D(C, min/Max (Bn)) = 2b1 + b2 = 4 + 2 = 6 
min D(D, min/Max (Bn)) = 3b1 + b2 - 2b3 = 30 + 3 – 16 = 17 

The lookahead of phase A is equal to the minimum 
D(s) of all reachable phase values. It is thus set, to 4 
time units. 

Using the same approach, we can compute the 
HLA lookahead for all phase values of the model. The 
lookahead is employed in the communication algo-
rithm defined in [18] and recalled Fig. 2. 

The limitation of this solution comes from its non-
generic capabilities to handle all DEVS formalised 
models. In more details, this improvement does not 
allow to extend the lookahead computation to all kinds 
of DEVS/G-DEVS models; e.g. models with non-
explicit phase, state variables defined on R and non 
linear D(s) functions are not considered in this study. 
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Figure 5. Lookahead computing in G-DEVS model with complex lifetime function 

 
5. Simulation results 

We have implemented the algorithm of Fig. 2 on 
two distributed Pentium 4-based computers with 2.4 
GHz, 256 Mo RAM, Windows XP OS, interconnected 
by a 10 Mbps LAN. We ran G-DEVS coupled models 
federations, of 2, 4, 6 and 8 G-DEVS federates dis-
tributed on the two computers, in order to measure the 
influence of the lookahead value on the execution 
time. In the tests, each federate contained a G-DEVS 
atomic model and published/subscribed to coupling 
HLA interactions to define the federation as a “closed-
chain” of coupled model federates. The code was de-
veloped in Java and the RTI (running on a third similar 
computer of the LAN) was the pRTI1516 of Pitch. 
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Figure 6. Execution time versus Lookahead value 

The Fig. 6 shows that G-DEVS federation execu-
tion is speeded up using a maximum lookahead (com-
puted from the lifetime of the G-DEVS models phase 
as presented in 4.3 and 4.4). This assertion is done 
regarding the run time of the same federates models 
with half-reduced lookahead (representing the first so-
lution proposed in 4.2 with a unique lookahead) and 
with negligible (min) lookahead (representing the pre-
vious solutions recalled in 3.2). 

The experiment also deduces that the speedup is 
nearly linear in number of federates. Thus, federates 
with a negligible lookahead value always produce an 
important overhead regarding federates with a maxi-
mal lookahead. This overhead increases with the fed-
eration size and appears clearly in Fig. 6 to slow sig-
nificantly the simulation as stated theoretically. 

6. Future work 
The lookahead computation algorithm is still under 

the scope of our studies. 

We are working on the improvement of this com-
putation, particularly in the case of computing a long-
est path. Because computing the longest path is re-
strictive on the class of G-DEVS models that can be 
handled, we try to compute it using algorithms of es-
timate for the longest path proposed in the literature. 



 

 10 

SIMULATION NEWS EUROPE

S
pe

ci
al

 Is
su

e 
1 

S
pe

ci
al

 Is
su

e 
1 

We are also studying other kind of state lifetime 
D(s) functions to be considered (e.g. real valued of 
several variables interaction functions, distance func-
tions, constrained functions). 

7. Conclusions 
In this article, we have presented a new HLA loo-

kahead computing algorithm for distributed G-
DEVS/DEVS models that uses the Dijkstra path 
search in a graph. It considers G-DEVS models with 
explicit phase and D(s) depending on several state 
variables instead of previous solutions that were con-
sidering DEVS models with D(s) depending only on 
one state variable. In addition, a benchmark experi-
ment has been performed to confirm the speedup of 
the G-DEVS federation execution due to the new loo-
kahead computation. 

Finally, this improvement extends the class of G-
DEVS models that can be involved in a G-DEVS fed-
eration. These models can be, more generally, cou-
pled with heterogeneous HLA-compliant programs 
that respect, of their sides, the distributed time man-
agement constraints and the event exchanged format. 
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