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Abstract. In this paper, a new algorithm for source recovery in under-
determined Sparse Component Analysis (SCA) or atomic decomposition
on over-complete dictionaries is presented in the noisy case. The algo-
rithm is essentially a method for obtaining sufficiently sparse solutions
of under-determined systems of linear equations with additive Gaussian
noise. The method is based on iterative Expectation-Maximization of
a Maximum A Posteriori estimation of sources (EM-MAP) and a new
steepest-descent method is introduced for the optimization in the M-
step. The solution obtained by the proposed algorithm is compared to
the minimum `

1-norm solution achieved by Linear Programming (LP). It
is experimentally shown that the proposed algorithm is about one order
of magnitude faster than the interior-point LP method, while providing
better accuracy.
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1 Introduction

Finding (sufficiently) sparse solutions of under-determined systems of linear
equations (possibly in the noisy case) has been studied extensively in recent
years [1–9]. The problem has a growing range of applications in signal processing.
One of these applications is the noisy under-determined sparse source separation
which is also called Sparse Component Analysis (SCA) [2, 3, 5, 6, 8]. Another ap-
plication is the so-called ’atomic decomposition’ problem which aims at finding
a sparse representation for a signal in an overcomplete dictionary [1, 2, 4, 7, 9].
In this paper, we will mainly use the context of SCA stating our approach. The
discussions, however, may be easily followed in other contexts of application such
as atomic decomposition.

SCA can be viewed as a method to achieve separation of sparse sources. The
Blind Source Separation (BSS) problem is to recover m unknown sources from n
observed mixtures of them, where little or no information is available about the
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sources (except their statistical independence) and the mixing system. In this
paper we consider the noisy linear instantaneous model:

x(t) = As(t) + n(t) . (1)

where x(t), s(t) and n(t) are n× 1, m× 1 and n× 1 vectors of sources, mixtures
and white Gaussian noises, respectively, and A is the n × m mixing matrix.
In the under-determined case (m > n), estimating the mixing matrix is not
sufficient to recover the sources, since the mixing matrix is not invertible. Then,
the estimation of sources requires some prior information on the sources and
passes from a blind problem to a semi-blind problem. One such prior information
is the sparsity of sources. It means that only a few samples of the sources are
nonzero (say they are active) and most of them are almost zero (say they are
inactive).

Then SCA can be solved in two steps: first estimating the mixing matrix,
and then estimating the sources. The first step may be accomplished by means
of clustering [2] or other methods [6]. The second step requires finding the sparse
solution of (1) assuming A to be known [7]. In this paper, we focus on the source
estimation assuming A is known.

In the atomic decomposition viewpoint [9], we have one signal whose samples
are collected in the m × 1 signal vector s and the objective is to express it
as a linear combination of a set of predetermined signals where their samples
are collected in vector {ϕi}

m
i=1. After [10], the ϕi’s are called atoms and they

collectively form a dictionary over which the signal is to be decomposed. In this
paper, we also consider a noise term for the decomposition. So we can write
s =

∑m
i=1 αiϕi = Φα + n, where Φ is the n × m dictionary (matrix) where the

columns are the atoms and α is the m × 1 vector of coefficients. The vector n

can be interpreted as either the noisy term of the original signal that we intend
to decompose or the allowed error for the decomposition process.

To obtain the sparse solution of (1), an approach is to search solutions having
minimal `0 norm, i.e., minimum number of nonzero components. This method
is intractable when the dimension increases (due to combinatorial search), and
it is too sensitive to noise (due to discontinuity of `0 norm). One of the most
successful approaches is Basis Pursuit (BP) [9] which finds the minimum `1 norm
of (1) which can be easily implemented by Linear Programming (LP) methods
(especially fast interior-point LP solvers). Another approach is Matching Pursuit
(MP) [10] which is very fast, but is somewhat heuristic and does not provide
good estimation of sources.

In [8], we proposed a three step (sub-)optimum (in MAP sense) method for
SCA in the noisy under-determined case (briefly called MAP) which has the
drawback of great complexity and is not tractable for sparse decomposition ap-
plication, when we have many sources and mixtures. In this article, we propose
an iterative method to tackle the great complexity of our MAP method. In the
maximization step of our algorithm, we propose here an optimization method
based on steepest-descent rather than the exhaustive search used in the previ-
ous paper [8]. Our method results in a fast sparse decomposition (faster than
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LP) while improving the quality of source recovery because of its optimality in
the MAP sense and dealing with noise. Our approach can be categorized as a
Bayesian method for source separation [5, 11] which is applied here to sparse
decomposition.

2 System Model

The noise vector in the model (1) is assumed zero-mean Gaussian with covariance
matrix σ2

nI. For modeling the sparse sources the following model is used: the
sources are inactive with probability p, and are active with probability 1 − p
(sparsity of sources implies that p should be near 1). In the inactive case the
sample of sources is zero and in the active case the sample has a Gaussian
distribution. We call this model the ‘spiky model’ which is a special case of the
Bernoulli-Gaussian model used in [8] with the variance of the inactive samples
being zero. This model allows us to deal with Gaussian noise. So the probability
density of the sources is:

p(si) = pδ(si) + (1 − p)N(0, σ2
r ) . (2)

In this model, any sample of the sources can be written as si = qiri where qi

is a binary variable (with binomial distribution) and ri is the amplitude of i’th
source with Gaussian distribution. So the source vector can be written as:

s = Qr Q = diag(q) . (3)

We refer the vector q , [q1, . . . , qm]′ as the ‘source activity vector’, where ′

denotes vector transpose. Each element of this vector shows the activity of the
corresponding source. That is:

qi =

{
1 if si is active with probability p
0 if si is inactive with probability 1 − p

(4)

The probability of source activity vector p(q) is equal to:

p(q) = (1 − p)na(p)m−na . (5)

where na is the number of active sources or the number of 1’s in q.

3 Review of our MAP Algorithm [8]

In [8] we proposed a three step MAP algorithm for the noisy sparse component
analysis. The parameter estimation step is done by a novel method based on
second and fourth order moments of one mixture and an EM algorithm. The
source activity estimation step is done with a MAP method that maximizes the
posterior probability. This step is the maximization of:

p(q)p(x|q) =
p(q)√

det(2πQq)
exp(

−1

2
x′Q−1

q x) . (6)
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where Q = AVqA
′ + σ2

nI and Vq = σ2
rQ. After finding the optimum source

activity vector, the source amplitudes are estimated as:

r̂ = σ2
rQA′(σ2

rAQA′ + σ2
nI)−1x . (7)

Maximization of (6) is done over discrete space of vector q with 2m discrete
elements. In [8] this maximization had been done through an exhaustive search
on all these 2m cases.

In this paper, this maximization is done by first converting it to a continuous
maximization and then to use a steepest descent algorithm (this is similar to
the idea used in [7]). To convert our discrete problem to a continuous one, we
use a Mixture of two Gaussians model centered around 0 and 1 with sufficient
small variances. By this method our discrete binomial variable qi is converted
to a continuous variable. To avoid falling into local maxima of (6) a gradually
decreasing variance can be used in the different iterations (similar to simulated
annealing methods). But (6) is still very complex to derive for providing an
efficient optimization method such as steepest-descent.

4 Our Iterative EM-MAP Algorithm

The main idea of our algorithm is that the source estimation is equal to estima-
tion of vectors q and r, as observed from (3). Estimation of q and r can be done
iteratively. First, an estimated vector q̂ is assumed and then the MAP estimate
of vector r based on the known estimated vector q̂ and the observation vector
x is obtained (we refer to it as r̂). Secondly, the MAP estimate of vector q is
obtained based on the estimated vector r̂ and the observation vector x (we refer
to it as vector q̂). Therefore, the MAP estimation of sources is done in two other
MAP estimation steps.

In the first step a source activity vector q̂ is assumed and the estimation of
r will be computed. Because the vector r is Gaussian, its MAP estimation is
equal to the Linear Least Square (LLS) estimation [12] and can be computed as
follows:

r̂MAP = r̂LLS = E(r|x, q̂) = E(rx′|q̂)E(xx′|q̂)−1x . (8)

This step can be nominated as Expectation step or Estimation step (E-step).
Computation and simplification of (8) (like what done in [8]) leads to the fol-
lowing equation which is similar to (7).

r̂ = σ2
rQ̂A′(σ2

rAQ̂A′ + σ2
nI)−1x . (9)

In the second step we estimate q based on the known r̂ and the observed x.
The MAP estimation is:

q̂MAP = argmax
q

p(q|x, r̂) ≡ p(q|r̂)p(x|q, r̂) ≡ p(q)p(x|q, r̂) . (10)

In (10), p(q) can be computed as a continuous variable:

p(q) =

m∏

i=1

p(qi) =

m∏

i=1

[p exp(
−q2

i

2σ2
0

) + (1 − p) exp(
−(qi − 1)2

2σ2
0

)] . (11)
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Also the term p(x|q, r̂) in (10) can be computed as:

p(x|q, r̂) = pn(x − AQr̂) = (2πσ2
n)

−m

2 exp(
−1

2σ2
n

(x −AQr̂)′(x −AQr̂)) . (12)

The second step can be called Maximization step (M-step). The maximization
can be done over the logarithm of (10). So this step can be simplified as:

M − step : q̂ = max
q

L(q) . (13)

where

L(q) =

m∑

i=1

log(p(qi)) +
−1

2σ2
n

(x −AQr̂)′(x −AQr̂) . (14)

Maximization of L(q) in the M-step can be done with the steepest descent
method. The main steepest descent iteration is:

qk+1 = qk − µ
∂L(q)

∂q
. (15)

In the appendix, we show that the steepest descent algorithm for the M-step is:

qk+1 = qk +
µ

σ2
0

g(q) +
µ

σ2
n

Diag(A′AQr̂ −A′x).r̂ . (16)

where g(q) is defined in the appendix. In the successive iterations, we gradually

decrease the variance σ0 in the form σ
(i)
0 = ασ

(i−1)
0 where α is selected between

0.6 and 1. Also, the step-size µ should be decreasing, i.e., for smaller σ’s, smaller
µ’s should be applied. This is because for smaller variances, our function under
maximization is more fluctuating. So the step size can be decreased in the similar
form as µ(i) = αµ(i−1). Our simulations show that for α = .8 only about 4 or 5
iterations are sufficient to maximize the expression L(q) in the M-step. Also the
EM-step converges at the third or fourth iteration. The first initialization of the
EM-MAP method is done with the minimum `2 norm solution.

As we see from (16) the second summand is responsible for increasing the
prior probability p(q) while the third summand is responsible for decreasing the
noise power ||x − As||. When σ0 is much larger than σn, the second term is
more effective than the third term and as a result exactness of x = As is more
important than sparsity of s. When σ0 is decreased to be comparable to σn, both
terms are effective to yield the equilibrium point between sparsity and noise.

In summary, the overall algorithm is an iterative two step (E-step and M-step
in (9) and (13) respectively) algorithm in which the M-step is done iteratively
with the steepest descent method in (16).

5 Simulation results

In this section, we examine the performance of our algorithm in the three cases
(actual parameters, bad estimated parameters and simple estimated parameters
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Fig. 1. The result of our algorithm in three cases and the LP method. The parameters of simulation

are m = 1000, p = .9, σr = 1, σn = .01, α = .8, σ(0) =
�

σr and µ(0) = 10−6. Four iterations are
used for EM-step and five iterations for the M-step (steepest descent).

that are explained later) and then compare it to the interior-point LP method.
Our simulations has been repeated 50 times (with the same parameters, but for
different randomly generated sources and mixing matrix) and the values of SNR
(in dB) obtained over these simulations are averaged.

The values used for the experiment are m = 1000, n = 400, ..., 700, p =
.9, σr = 1 and σn = .01. The elements of the mixing matrix are randomly
chosen between 0 and 1. In the M-step the value of α is between 0.6 and 1. This
parameter effects on the speed of convergence. We use an average value of α = .8
in our simulations. The initial value of σ0 is selected equal to estimated σr. The
initial value of µ can be selected between 10−3 and 10−8. But for small values
and large values in this range, the performance is somewhat deteriorated. So we
select the value of µ = 10−6. Four iterations are used for the EM-step and five
iterations are used for the M-step (steepest descent).

Now, we consider the sensitivity of the algorithm to the accuracy of para-
meter estimation. Fortunately, our simulations show a very weak sensitivity to
parameter estimation step. To show that, we run two simulations. In the first,
estimated parameters are selected as p̂ = .8, σ̂r = .5 and σ̂n = .1 (we call it
bad estimated parameters). In the second simulation we use a very simple esti-
mation of parameters. In this case the parameter p is underestimated as p̂ = .8,
and the other parameters are simply estimated as follows. By considering the
ergodicity of sources (i.e. the mixtures are the ensembles of a random variable
x =

∑m
i=1 aisi + n where ai is a random variable with uniform distribution on

[-1,1] and si and n are random variables), and by neglecting the noise power, we
have E(x2) = mE(a2)E(s2

i ). We know that E(a2) = 1/3 and E(s2
i ) = (1− p)σ2

r .

With the assumption of p̂ = .8, we will have σ̂r =
√

15E(x2)
m

. For the noise

variance, we choose σ̂n = σr/10.
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The results of our simulation (50 Monte Carlo runs) are shown in Fig. 1.
These results show the minimum 10 dB improvment (with simple estimated
parameters) of our algorithm over LP method.

Although, the CPU time is not an exact measure of complexity, it can give
us a rough estimation of it, and we compare our algorithm with LP using this
measure. Our simulations were performed in MATLAB 7.0 environment using
an Intel 2.40 GHz processor with 512 MB of RAM and under Microsoft Windows
XP operating system. For one typical simulation, our algorithm takes about 34
seconds while the simulation time of the LP method requires about 204 seconds.
So our algorithm is roughly one order of magnitude faster.

6 Conclusions

In this paper, a relatively fast method for finding sparse solution of an under-
determined system of linear equations was proposed. The method was based on
the iterative MAP estimation of the sources. This algorithm is approximately
one order of magnitude faster than LP, while providing more than 10dB RSB
improvment (in the special case of our simulation). The better performance is
obtained due to the optimality of our algorithm which is based on optimum
MAP estimation of sources. The simplicity of our algorithm (and its high speed)
is obtained due to iterative estimation of source activities and amplitudes and
also utilizing an efficient steepest descent for the M-step.

References

1. Donoho, D.L.: For most large underdetermined systems of linear equations the min-
imal `

1norm is also the sparsest solution. Technical Report, (2004)
2. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition

in a signal dictionary. In: Neural Computation, Vol. 13, No. 4. (2001) 863–882
3. Gribonval, R., Lesage, S.: A survey of sparse component analysis for blind source sep-

aration: principles, perspectives, and new challanges. In: Proceeding of ESANN’06.
(2006) 323–330

4. Donoho, D.L., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete
representations in the presence of noise. In: IEEE Transaction on Information theory,
Vol. 52, No. 1. (2006) 6–18

5. Davies, M., Mitianoudis, N.: Simple mixture model for sparse overcomplete ICA.
In: IEE Proceeding on Visual Image and Signal Processing. (2004) 35–43

6. Li, Y.Q., Amari, S., Cichocki, A., Ho, D.W.C, Xie, S.: Underdetermined blind source
separation based on sparse representation. In: IEEE Transaction on Signal Process-
ing, Vol. 54, No. 2. (2006) 423–437

7. Mohimani, G.H, Babaie-Zadeh, M., Jutten, C.: Fast sparse representation based on
smoothed `

0norm. Submitted to ICA’2007. (2007)
8. Zayyani, H., Babaie-Zadeh, M., Jutten, C.: Source estimation in noisy sparse com-

ponent analysis. Submitted to DSP’2007. (2007)
9. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.

In: SIAM Journal on Scientific Computing, Vol. 20, No. 1. (1999) 31–61



8 Sparse Decomposition in Presence of Noise

10. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. In: IEEE
Transaction on Signal Processing, Vol. 41, No. 12. (1993) 3397–3415

11. Djafari, A.M.: Bayesian source separation: beyond PCA and ICA. In: Proceeding
of ESANN’06. (2006)

12. Anderson, B.D., Moor, J.B.: Optimal filtering. 2rd edn. Prentice Hall. (1979)

Appendix: Steepest Descent Algorithm

From (13), we have:

∂L(q)

∂q
=

∂

∂q

m∑

i=1

log(p(qi)) −
1

2σ2
n

∂

∂q
(x −AQr̂)′(x −AQr̂) . (17)

we define g(q) , −σ2
0

∂
∂q

∑m
i=1 log(p(qi)) and n(q) , (x − AQr̂)′(x − AQr̂).

With these definitions the scalar function g(qi) and the n(q) (with omitting the
constant terms) can be computed as:

g(qi) =
pqi exp(

−q2
i

2σ2
0
) + (1 − p)(qi − 1) exp(−(qi−1)2

2σ2
0

)

p exp(
−q2

i

2σ2
0
) + (1 − p) exp(−(qi−1)2

2σ2
0

)
. (18)

n(q) = −2x′AQr̂ + r̂′QA′AQr̂ . (19)

with the definitions C , A′A and n1(q) , −2x′AQr̂ and n2(q) , r̂′QCQr̂ we
can write:

∂n1(q)

∂q
= diag(−2x′A).r̂ . (20)

If we define W , Qr̂ (m × 1 vector) then n2(q) = W′CW and so we have:

∂n2(q)

∂qi

=

m∑

j=1

∂n2(q)

∂Wj

∂Wj

∂qi

. (21)

From the vector derivatives, we have ∂n2(q)
∂W

= 2CW , d. Also from the defini-

tion of W we have
∂Wj

∂qi
= r̂iδij . So (21) is converted to ∂n2(q)

∂qi
=

∑m
j=1 dj r̂iδij =

r̂idi. So the vector form of (21) is equal to:

∂n2(q)

∂q
= diag(d).r̂ . (22)

From (20) and (22) and n(q) = n1(q) + n2(q) and definitions of vectors d and
C, we can write:

∂n(q)

∂q
= 2diag(A′AQr̂ −A′x).r̂ . (23)

Finally, (23) and (17) and (15) with the definitions of n(q) and g(q) yields the
steepest descent iteration in (16).


