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ABSTRACT

As any estimation method, results provided by ICA are de-
pendent of a model - usually a linear mixture and separation
model - and of a criterion - usually independence. In many
actual problems, the model is a coarse approximation of the
system physics and independence can be more or less satis-
fied, and consequently results are not reliable. Moreover, with
many actual data, there is a lack of reliable knowledge on
the sources to be extracted, and the interpretation of the inde-
pendent components (IC) must be done very carefully, using
partial prior information and with interactive discussions with
experts. In this talk, we explain how such a scientific method
can take place on the example of analysis of Mars hyperspec-
tral images.

Index Terms— source separation, independent compo-
nent analysis, hyperspectral images, Mars Express, positivity,
Bayesian source separation

1. INTRODUCTION

Currently, independent component analysis (ICA) is a very
popular method for solving blind source separation problems.
Its success is probably due to a good theoretical framework
and especially to a very large range of applications (see in
[1, 2]), in many domains like biomedical signal processing,
audio signal processing, communications, smart sensor ar-
rays, hyperspectral image processing, etc.

So, an important question is the following : can one apply
ICA like a simple blackbox ? In other works, can one be con-
fident of the results provided by ICA ?

In fact, such a question is very usual for any estimation
method. And ICA is nothing but a particular one. Basi-
cally, any estimation method is based on three ingredients: a
parametric model, a criterion and an optimization algorithm.
The parametric model provides a simple representation and
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restricts the solution to a particular space. The criterion, sta-
tistical indedependence for ICA methods, is a measure of the
quality of the solution. The optimization algorithm is the way
for optimizing (usually minimizing or maximizing) the crite-
rion in the parametric model space. If we assume the opti-
mization algorithm does not stop in spurious local extrema,
ICA algorithms always converges to a solution which will be
optimal with respect to the chosen criterion in the parametric
model space.

When applying ICA, we consider n-dimensional observa-
tion vector, x(t), which are assumed to be mixtures - through
an unknown function F from R

n to R
p- of p-dimensional un-

observed sources, s(t), assumed to be statistically indepen-
dent:

x(t) = Fs(t). (1)

In the following, we assume there are more observations than
sources (n ≤ p) and F is invertible. Then, ICA methods
result in estimating a separating transform G which provides:

y(t) = G(x(t)) = (G ◦ F)(s(t)), (2)

with statistically independent components. Theoretical re-
sults prove that independence is sufficient for estimating the
unknown sources, especially for linear mixtures, instantaneous
[3] or convolutive [4, 5, 6], and even for particular nonlinear
mixtures [7, 8, 9, 10, 11].

Of course, the estimated transform B, and sources y(t),
even optimal in the sense of the criterion, leads to relevant
solution if:

• the nature of the separating transform G is suited to the
mixing model F ,

• the independence assumption is actually satisfied by the
unknown sources, s(t).

On the contrary, i.e. when the mixing model is wrong (and
then the separating model) or the independence assumption is
wrong, ICA can lead to irrelevant results.
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Practically, in actual applications, for applying success-
fully ICA, one has first to model, according to the physics
of the system, the relationships between the observations and
the sources, and to check if the independence assumption of
sources is realistic. Of course, the model as well as the inde-
pendence assumption are usually approximations. If approxi-
mations is too coarse, ICA can lead to irrelevant results.

In this paper, we illustrate these general ideas on an ac-
tual application in Astrophysics: the analysis of Mars hyper-
spectral images, whose the goal is to classify the planet Mars
surface (see [12] for details). The paper is organized as fol-
lows. In Section 2, we derive a mixing model of observations
(hyperspectral images) based on physics. In Section 3, we
consider two possible ICA models. Section 4 presents the
ICA results and discuss them. Section 5 show how one can
improve results, taking into account extra informations, here
positivity. Conclusions are summarized in Section 6.

2. PHYSICAL MODEL OF HYPERPSECTRAL
IMAGES

The OMEGA spectrometer, carried by Mars Express space-
craft on an elliptical orbit, has a spatial resolution range from
300 m to 4 km. This instrument has three channels, a visible
channel and two near infrared (IR) channels. In this paper,
we focus on a data set consisting of a single hyperspectral
data cube of the South Polar Cap of Mars in the local sum-
mer where CO2 ice, water ice and dust were previously de-
tected [13, 14]. This data cube consists of 2 IR channels:
128 spectral planes from 0.93 μm to 2.73 μm with a reso-
lution of 0.013μm and 128 spectral planes from 2.55μm to
5.11μm with a resolution of 0.020μm. After calibration, the
dimensionless physical unit used to express the spectra is the
”reflectance”, which is the ratio between the irradiance leav-
ing each pixel toward the sensor and the solar irradiance at
the ground. Interactions between photons coming from the
sun and the planet Mars, through its atmosphere and surface,
allows us to identify the different compounds present in the
planet. Those compounds are mixed and usually different
chemical species can be identified in each measured spec-
tra. Two kinds of physical mixing at the ground can be ob-
served [15]:

• Geographic mixture: each pixel is a patchy area made
of several pure compounds. This type of mixture hap-
pens when the spatial resolution is not large enough to
observe the complex geological combination pattern.
The total reflectance in this case will be a weighted sum
of the pure constituent reflectances. The weights (abun-
dance fractions) associated to each pure constituent are
surface proportions inside the pixel.

• Intimate mixture: each pixel is made of one single ter-
rain type which is a mixture at less than the typical

mean-path scale (typically the order of 1 mm scale).
The total reflectance in this case will be a nonlinear
function of pure constituent reflectances.

In this paper, we restrict our analysis with hypothesis of a
geographical mixtures and hence linear mixing models, i.e.
F reduces to a matrix.

2.1. Observation Model

Under geographic mixture model and acceptable assumptions
concerning atmospheric contributions [16], the radiance fac-
tor at location (x, y) and at wavelenght λ is:

L(x, y, λ) =(
ρa(λ) + Φ(λ)

P∑
p=1

αp(x, y) ρp(λ)

)
cos [θ(x, y)] (3)

where Φ(λ) is the spectral atmospheric transmission, θ(x, y)
the angle between the solar direction and the surface normal
(solar incidence angle), P the number of endmembers in the
region of coordinates (x, y), ρp(λ) the spectrum of the p-
th endmember, αp(x, y) its weight in the mixture and ρa(λ)
the radiation that does not arrive directly from the area under
view. This mixture model can also be written as:

L(x, y, λ) =

P∑
p=1

α′

p(x, y) · ρ′p(λ) + E(x, y, λ) (4)

where ⎧⎪⎨
⎪⎩

α′

p(x, y) = αp(x, y) cos [θ(x, y)] ,

ρ′p(λ) = Φ(λ) ρp(λ),

E(x, y, λ) = ρa(λ) cos [θ(x, y)] .

(5)

As it can be seen in equation (5), the true endmember spectra
are affected by the atmospheric attenuation and the abundance
fractions are corrupted by the solar angle effect. Clearly, the
spectra obtained are ideally the spectra of the endmembers
with atmospheric contribution. On the contrary, it is attempted
to correct the solar angle effect to give a map of the con-
stituent proportions in the observed area. In fact, since the
abundance fraction is proportional to the quantity of each con-
stituent in the geographical mixture, it can be deduced from
the mixture model (4) and equation (5) that the abundance
fractions are not altered by the geometrical effect since:

cp(x, y) =
α′

p(x, y)∑P

j=1
α′

j(x, y)
,

=
αp(x, y)∑P

j=1
αj(x, y)

. (6)
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2.2. Data Size

Practically, the data sets consist of 174 channels collected in
the infrared region: noisy, hot and dead spectels have been
excluded. The spatial size of the data sets varies from 323 ≤
Nx ≤ 751 and Ny ∈ {64, 128}, for a total pixel number:
41344 ≤ Nx · Ny ≤ 56832. Each data set (i.e. hyperspec-
tral image) is then a data cube of size Nx ×Ny ×Nf which
contains between 7, 193, 856 and 9, 888, 768 according to the
image size.

3. DECOMPOSITION MODELS BASED ON ICA

Let us now consider a hyperpectral data cube with Nf im-
ages of Nz = (Nx ×Ny) pixels obtained from Nf frequency
bands. For simplicity, assume raw vectorized images I(n, λk),
with 1 � n = (i − 1)Ny + j � Nz (where i and j are the
initial row and column image indices) is the spatial index and
k, k = 1, . . . , Nf , is the spectral index for wavelength λk.
Consequently, two representations of the hyperspectral data
can be considered: spectral and spatial mixture models.

3.1. Spectral Mixture Model:

Each pixel of spatial index n gives an observed spectrum of
Nf frequency samples, which is represented by the linear ap-
proximation:

In(λk) ≈

Nc∑

p=1

a(n,p)ψp(λk), ∀n = 1, ..., Nz, (7)

where ψp(λk), for p = 1, . . . , Nc, are the constituent re-
flectance spectra, and the number Nc is chosen according to
the desired accuracy of the approximation. Denoting the vec-
torized image (of dimension Nx ×Ny) I(λk), the (Nz ×Nc)
mixing matrix A and Ψ(λk) = [ψ1(λk), . . . , ψNc

(λk)]T , this
spectral mixture model is then expressed as:

I(λk) ≈ A · Ψ(λk). (8)

Practically, this spectral model intends to approximate the
spectrum of each pixel as a sum of Nc component spectra
of the area corresponding to this pixel coordinates. If ICA is
used for the estimation, then the Nc basis spectra ψp, p =
1, . . . , Nc, should be statistically independent. Moreover, the
p-th column of the matrix A is the unfolded image associ-
ated to the basis spectrum ψp. According to this model, we
have Nx ·Ny ≈ 50, 000 sensors and a small number of sam-
ples Nf = 174, for estimating the large matrix A which has
Nz ×Nc ≈ 250, 000 parameters (taking Nc = 5).

3.2. Spatial Mixture Model:

This model assumes that for each wavelength λk, the mea-
sured image Iλk

(n) is a weighted sum of Nc basis images,

denoted IIp(n), p = 1, . . . , Nc:

Iλk
(n) ≈

Nc∑

p=1

b(λk,p)IIp(n), ∀k = 1, ..., Nf . (9)

In vector notations, denoting the Nf × Nc matrix B and
II(n) = [II1(n), . . . , IINc

(n)]T , one can write:

I(n) ≈ B · II(n). (10)

Practically, this spatial model intends to approximate the whole
image at each frequency as a sum of Nc basis images. If
ICA is used for the estimation, then the Nc basis images IIp,
p = 1, . . . , Nc, should be statistically independent. More-
over, the k-th column of the matrix B is the spectrum asso-
ciated to the basis image IIk. According to this model, we
have Nf = 174 sensors, and a very large number of sam-
ples Nz ≈ 50, 000 for estimating the matrix B which has
Nf ×Nc < 900 parameters (taking Nc = 5).

Comment on the notations: For limiting notation complex-
ity, in the two models, the hyperspectral dataset is always de-
noted I, but, in the spatial model, one considers the dataset
like a Nf × Nz matrix while it is a Nz × Nf matrix in the
spectral model. The two matrices contain exactly the same
entries, but are in fact transposed from a model to the other
one.

3.3. Reference Data and Classification

Since no ground truth is possible on Mars, we need some ref-
erence informations about the three main endmembers: dust,
CO2 and H2O ices. Two kinds of reference data are available
(Fig. 1): reference classification masks obtained from super-
vised classification study [14], and reference spectra. Refer-
ence spectra of CO2 ice and H2O ice are simulations pro-
duced by a radiative transfer model in typical physical condi-
tions of the Permanent South Polar Cap of Mars [17]. These
two reference spectra are atmosphere free simulations. The
dust reference spectrum is derived from an OMEGA’s obser-
vation. Consequently, this reference spectrum contains the at-
mospheric transmission. The wavanglet classification method
produces classification masks (Fig. 1, (d) to (f)) which are
neither unique nor complete, i.e. pixels can be in more than
one class and not all the pixels are classified.

4. ICA RESULTS ON HYPERSPECTRAL IMAGES

In the framework of hyperspectral data, following the mixture
model (4), one considers the data can be viewed as a linear
mixtures of sources. ICA provides such a model where the
sources are mutually independent. In this Section, we con-
sider the spatial mixture model (9) and we use the well known
ICA algorithm, JADE, based on the joint approximate diago-
nalization of cumulant matrices [18].
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Fig. 1. Reference spectra (left) and classification masks
(right)

4.1. Spatial ICA

In this experiment, we use two sets of data. The first one is
the original data set (RDS, for raw data set), while the sec-
ond one is a preprocessed (done by astrophysicists) data set
(PDS), obtained from the original data set by canceling the
geometrical effect, atmospheric attenuation and a few known
defects of the sensors.

Choosing the number of ICs: a first step is to chose the
number, Nc, of independent component (IC), at least equal
to the number of sources present in the mixtures. If Nc is
larger, the accuracy of the approximation (9) increases, but
extra ICs can be difficult to interpret. This is done using prin-
cipal component analysis: on RDS, with 7 principal compo-
nents, 98.58% of the variance of the initial image is preserved.
In figure 2, we show the 7 ICs estimated with JADE from the
original data set.
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Fig. 2. Independent components of the RDS hyperspectral
image of south polar cap computed with JADE with 7 ICs.

Relevance of the ICs: a second step consists in evaluating
the relevance of each component ICk in the approximation.
This is done by measuring the relative quadratic loss:

εk = −10 log10

(
P

ÎNc

− P
ÎNc|Nk

P
ÎNc

)
, (11)

obtained when replacing the Nc-order approximation ÎNc
by

with the (Nc − 1)-order, denoted ÎNc|Nk
obtained by can-

celing the ICk, and where the energies of the approximated

6 Proc. of the 2007 15th Intl. Conf. on Digital Signal Processing (DSP 2007)



images are computed as:

P
ÎNc

=
∑Nf

m=1

∑Nz

n=1

(∑Nc

p=1 b(λm,p)IIp(n)
)2

(12)

P
ÎNc|Nk

=
∑Nf

m=1

∑Nz

n=1

(∑Nc

p=1,p �=k b(λm,p)IIp(n)
)2

.(13)

These values, computed for the ICs estimated with the two
sets of data, are given in table 1.

Finally, one has to wonder if the ICs are relevant and es-
pecially if they are robust with respect to the ICA algorithm,
to similar images and to the number of ICs. In this purpose,
we did three sets of experiments:

1. we compared results obtained with the two sets of data
(RDS and PDS). We checked that a high quality recon-
struction is achieved with 4 ICs for PDS and with 7 ICs
for RDS. If more than 4 (or 7) ICs are used, one al-
ways get the same main 4 (or 7) ICs, the others have
very small contributions on the image reconstruction
and cannot be interpreted. For this reason, we chose 4
ICs for PDS and 7 ICs with RDS ;

2. in both data sets, images are resized using line sub-
sampling (one line over two is kept). Then, this pro-
vides two different but very similar images that we call
odd image and even image. We can check that ICA
(with different IC numbers) of matched odd and even
image leads to almost rigorously equal results, which
again shows the reliability of the extracted ICs ;

3. we run three algorithms: FastICA [1] with various non-
linearities in the symmetric or deflation versions and
JADE [18]. In all the experiments, one obtained very
close results (ICs and reconstruction performance) with
JADE and symmetric FastICA, while performance of
deflation FastICA was worse. JADE is preferred since
it has a low computational load and requires any para-
meter, except a stopping criterion.

4.2. ICs interpretation:

In the spatial approximation, each ICk can be viewed as an
image, while the column k of the mixing matrix is the spec-
trum related to ICk. So, IC interpretation can be done com-
paring the IC image or spectra to the reference classification
masks or reference spectra (Fig. 1). Computing correlation
with classification masks, the components IC2 and IC6 can be
easily identified (table 1) to respectively CO2 ice and H2O
ice. In addition, correlation with reference spectra seems to
confirm (partly) this interpretation. Conversely, the spectrum
associated to IC4 has typical bands of both dust, CO2 and
H2O ices. We could interpret this IC as a nonlinear intimate
mixture effect or a non independent distribution of those com-
ponents.

The other four components (IC1, IC3, IC5 and IC7) can-
not be interpreted with spectral informations. Using the pre-
processed data, we remark that the energies of these ICs are
very small (Table 1, last column), i.e. these ICs, strongly re-
duced by the preprocessing, must be related to phenomena
cancelled by the preprocessing. In fact, IC1 (Fig. 2(a)) has a
luminance gradient which is characteristic of the solar angle
effect which should be the E(x, y, λ) term in equation (5).
IC7 (Fig. 2(g)) looks like a high-pass filter mainly on the y

direction of the image. This along track direction maximizes
the instrument shift between the two near IR detectors. This
effect is independent of the spectra model and thus it is de-
tected as a separate IC and can be used to assess the quality
of the preprocessing. IC3 could be associated to the transmis-
sion in the atmosphere effect because it is similar to a map of
topography. At first glance, IC5 (Fig. 2(e)) was not recog-
nized. But at a closer look, the first line in the image has a
very low response, and corresponds to a corrupted line in the
dataset, due to a known sensor failure.

4.3. Classification

From IC2 and IC6 interpretation, we deduce classification
masks of CO2 and H2O ices with an easy criteria : if the IC
has a positive value then CO2 ice - respectively H2O ice - is
detected. The classification results compared with the refer-
ence classification is seen in table 2. False alarm and missing
indicate the differences between the classification based on
the ICs with respect to that based on wavanglet classification.
However, keep in mind that the reference images, although
pertinent, are not the ground truth and thus the false classifi-
cations in this case are not necessarily false.

An interesting result is that the classification of the origi-
nal dataset is slighly better than the classification of the pre-

RDS data PDS data
k Identification Figure εk [dB] εk [dB]

1 Solar angle effect 2 (a) 32.6 1.3
2 CO2 ice 2 (b) 16.3 10.7
3 Atmospheric effect 2 (c) 12.2 0.88
4 Intimate mixture 2 (d) 6.8 6.6
5 Corrupted line 2 (e) 6.2 -
6 H2O ice 2 (f) 7.1 5.9
7 Channel shift 2 (g) 2.0 0.1

Table 1. Independent Components estimated with JADE.
First column indicates the number of the IC. IC interpreta-
tion (see text for details) is given in column two. The third
column refers to the Fig. number (from 2(a) to 2(g)). The
fourth and fifth column are the loss in dB (εk) obtained if
ICk is not used in the approximation, for raw or preprocessed
data, respectively.
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Fig. 3. IC2 is a mixture of CO2 ice and dust

processed dataset. This is in accordance to the SNR gained in
table 1, since the atmospheric removal seems to take energy
in the CO2 and H2O ice components.

4.4. Dependence of Spatial IC

Clearly, looking at the reference spectra and reference images,
it appears that the fundamental assumption of independence is
not at all satisfied neither in spectral nor in spatial dimensions.
The spatial independence can be tested by looking at the co-
variance between the reference classification masks (Fig. 1).

Rs{Idust, ICO2
, IH2O} =

⎛
⎝

1 −0.61 −0.24

−0.61 1 −0.25

−0.24 −0.25 1

⎞
⎠ .

When using spatial ICA, components of CO2 and H2O

ices are retrieved but dust does not appear as a separate com-
ponent as seen on Fig. 2. The negative correlation seen in
(14) is not surprising when looking at Fig. 1 (d, e and f).
Spatially, dust and CO2 ice are strongly complementary, and

Correct Missing False alarm

Original Data
CO2 97.1 % 1.1 % 1.8 %
H2O 91.3 % 8.7 % 1.0 %

Preprocessed Data
CO2 95.9 % 2.0 % 2.1 %
H2O 90.0 % 8.1 % 1.9 %

Table 2. Classification of CO2 and H2O ices compared with
the reference classification

even more than the reference masks indicate. As a result, dust

is not retrieved when using spatial ICA as a separate IC, but
is frequently recovered as the negative of CO2 ice.

Coming back to IC2, which corresponds to CO2 ice (Fig.
4(a)), and look at its related spectrum (i.e. the column 2 of B)
on Fig. 3). In fact, as clearly shown in Fig. 3(b), this column,
although correlated to CO2 spectrum, takes both positive and
negative values: when the mixing coefficients take a positive
value, for example at 2.98 μm, the dominating element for
this wavelength is CO2 ice as seen on Fig. 3(d); on the con-
trary, when the mixing coefficients take a negative value as
at 1.98 μm the dominating element is dust as seen of figure
3(d). Finally, since the column 2 of B takes both positive and
negative values, it cannot be interpreted as a spectrum.

4.5. Discussion

At first glance, spatial ICA provides ICs which can be inter-
preted as artifacts or endmembers. Concerning artifact ICs,
the results are very interesting, and suggest that the data pre-
processing could be avoided and done using ICA results. In
fact, the classification performance seems1 even a little bit
better on original data than on preprocessed data. Conversely,
only two endmembers (CO2 and H2O ices) are associated
to IC2 and IC6: the third one, dust, mainly appears as the
negative on CO2, which results in a very poor classification
of dust. Moreover, the decomposition done by spatial ICA
leads to a matrix B whose columns are not positive, and con-
sequently cannot be considered as spectra. Finally, the IC sta-
tistical independence, the hypothesis on which ICA is based,
is not satisfied. Especially, in the endmember classification, it
appears that dust and CO2 ice are strongly correlated. Thus,
the reliability of ICA is not sure, and the relevance of the ex-
tracted ICs is poor. Consequently, other methods, based on
priors satisfied by the data, must be investigated.

5. BEYOND ICA

The main constraint in data decomposition of hyperspectral
mixture is the positivity of both the mixing coefficients and
the source signals. Unfortunately, this constraint alone does
not lead to a unique solution unless under some particular
conditions [19, 20]. Thus, in general cases, additional as-
sumptions are required to select a particular solution among
the admissible ones. The estimation can then be performed
using either a constrained least square [21, 22, 23, 24] or a
penalized least square [25, 26, 27] estimation. Unlike the
constrained least squares methods, the penalized approaches
lead to an unconstrained optimization problem and ensures
the uniqueness of the solution for a fixed set of the regulariza-
tion parameters. However, one can address the problem with
regularization in the more general Bayesian framework.

1there is no ground truth, but only a reference classification: “better per-
formance” only means “better correlation” with the reference classification.
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5.1. Bayesian Positive Source Separation

In fact, in a Bayesian source separation approach, one can ide-
ally incorporate any prior knowledge as long as the prior can
be stated in probabilistic terms. The approach is founded on
the likelihood p (x|A, s) and prior distributions of the source
signals and mixing coefficients. Applying Bayes’ theorem
leads to:

p(A, s|x) ∝ p(x|A, s) × p(A) × p(s). (14)

From this posterior law, both the mixing matrix A and sources
s can be estimated using various Bayesian estimators. A com-
plete discussion on Bayesian approach to source separation
can be found in [28, 29, 30]. However, its application to the
case of positive sources and mixing has only received a few
attention [31, 32, 33]. In this purpose, a recent contribution
consists of the method termed by Bayesian positive source
separation (BPSS) [34, 35], which allows to jointly estimate
source signals, mixing coefficients and regularization para-
meters in an unsupervised framework.

5.2. Separation with positivity constraint

Here, due to strong spatial correlation between endmembers
(CO2 and dust), we propose to consider a spectral decompo-
sition:

In(λk) =

Nc∑
p=1

a(p,n)ψp(λk) + En(λk) ∀n = 1, ..., Nz,

(15)
where En(λk) is a noise term which models errors due to the
simplified model (4), the restricted number of components,
Nc and measurement noise, the Bayesian model is then sum-
marized as:

(
En(λk)|σ2

n

)
∼ N (En(λk); 0, σ2

n), (16)

(ψp(λk)|αp, βp) ∼ G(ψp(λk);αp, βp), (17)(
a(p,n)|γp, δp

)
∼ G(a(p,n); γp, δp), (18)

where N (z; 0, σ2) denotes a Gaussian distribution of the ran-
dom variable z with zero mean and variance σ2 and G(z;α, β)
stands for a Gamma distribution of the random variable z with
parameters (α, β). The Gamma law takes into account explic-
itly the positivity constraint since the probability distribution
is zero for negative values: (17) and (18) insure then the pos-
itivity of spectra and mixing matrix entries. In addition, its
two parameters give a flexibility to adapt its shape to that of
spectral source signals. According to this probabilistic model
and Bayes’ theorem, with the hypothesis of statistical inde-
pendence of the source signals and the mixing coefficients,

the joint a posteriori distribution becomes:

p (Ψ,A|I,θ) ∝

Nf∏
k=1

Nz∏
n=1

N

(
In(λk);

Nc∑
p=1

a(n,p) ψp(λk), σ2
n

)

×
Nc∏
p=1

Nf∏
k=1

G((ψp(λk);αp, βp)×
Nz∏
n=1

Nc∏
p=1

G(a(p,n); γp, δp).

(19)

The estimation of the source signals and of the mixing
coefficients is performed using marginal posterior mean es-
timator and Markov Chain Monte Carlo (MCMC) methods.
These stochastic methods are extensively documented in the
statistical literature (see the books [36, 37] and the references
therein). All the stochastic simulation steps including the ex-
pressions of the conditional posterior distributions and their
simulation techniques are detailed in [35], where this method
is termed Bayesian Positive Source Separation (BPSS).

5.3. Hyperspectral data analysis by BPSS

A practical constraint of the Mars hyperspectral data is the
high resolution of the instrument which provides a data cube
of large size. Then, the computation load of the BPSS ap-
proach becomes very important and even the computation be-
comes almost impossible with a standard computer (need of
a huge memory space, high computation time). For example,
with a standard PC (3 GHz and 3 GO or RAM), it can be seen
that for a data cube where the image size is 128× 128 pixels,
the computation time for 104 iterations is about 4 days and 14
hours. In that respect, a reduction of the dimension is neces-
sary before applying the BPSS approach to the hyperspectral
data provided by the OMEGA instrument.

In this purpose, we suggest to process a smaller data set
which is representative of the whole hyperspectral images,
i.e. a selection of pixels corresponding to areas where all the
chemicals existing in the whole image are present. Therefore,
their pure spectra can be estimated by BPSS with a reduced
computation load. Our proposal is to exploit the spatial inde-
pendent component analysis results (Section 4) for selecting a
few number of pixels in independent areas of the spatial coor-
dinates, i.e. areas classified as H2O ice, CO2 ice or dust. We
define the relevant pixels associated to each source as those
where the contribution of this source is important. At each
pixel n, the contribution is measured as the SNR loss, i.e. the
variation of the spatial SNR when one particular source is re-
moved from the mixture. For each chemical, we define the
most relevant pixels as the first 15% with the highest spatial
SNR loss and then we select randomly a fixed number (50 in
the sequel for each independent component image) of pixels
among this set.
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Fig. 4. Illustration of the pixel selection step.

5.4. Experimental Results

The proposed approach is applied to the RDS hyperspectral
images presented in section 2. Fig. 4 illustrates the spatial
SNR loss and the selected pixels from the fourth independent
component image and the selected pixels after processing of
all the independent components. The results of the separation
using BPSS with the mixture spectra provided by the selected
pixels are post-processed to correct scale and ordering am-
biguities and deduce abundance fractions. The identification
of the spectra is straightforward from the correlation with the
reference spectra as seen from equation (20) where the matrix
entries rij of the matrix R are the correlation coefficients be-
tween the reference spectra ψi ∈ {ψH2O, ψCO2

, ψdust} and
the estimated pure spectra ψ̂j ∈ {ψ̂1, ψ̂2, ψ̂3].

R =

⎛
⎝

0.91 0.79 0.87
0.72 0.65 0.99
0.89 0.96 0.55

⎞
⎠ (20)

One can note that the correlation coefficient is very high
(0.99) for the dust endmember and lower for CO2 ice and
H2O ice. After scaling and permutation of the identified spec-
tra, the reference spectra are plotted together on Fig. 5. It can
be noted the similarity between the estimated spectra and the
references ones. The similarity is lower for the both CO2

ice and H2O ice in the spectral region near 2 μm because
of the presence of a deep atmospherical band. On the con-
trary, the dust source is in relative better agreement with the
reference spectra (see equation (5)) because both contain the
atmospherical transmission.

The results show that spatial as well as spectral compo-
nents extracted using positivity constraints are relevant, while
the ICs extracted by ICA are spurious, as suspected since the
independence assumption was wrong !

6. CONCLUSION

In this paper, we explained that ICA is a method which must
be applied carefully for providing relevant results.

First, a physical modeling of the observation model is re-
quired for assuming the nature - linear instantaneous or con-

1 2 3 4
0

0.32

0.64

0.96

Wavelength (μm)

Reference
Estimated

H2O ice

0

0.3

0.6

0.9

H2O ice

1 2 3 4
0

0.26

0.52

0.78

Wavelength (μm)

Reference
Estimated

CO2 ice

0

0.3

0.6

0.9

CO2 ice

1 2 3 4
0

0.17

0.34

0.51

Wavelength (μm)

Reference
Estimated

dust

0.1

0.4
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1
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Fig. 5. Estimated and reference spectra (left) and abundance
fractions (right) for the three endmembers

volutive, or nonlinear - of the mixing system and for choosing
a suited separating system. Then, the determination of the IC
number is often a useful step for reducing the computational
load. After running an ICA algorithm, interpretation of ICs
is usually not so simple. It requires priors, interactive dis-
cussions and complementary experiments with experts of the
application domain.

Especially, it is important to check if ICs satisfy (i) the
independence assumption, (ii) physical constraints (like spec-
trum positivity in this paper). For hyperspectral images, in-
dependence of spatial endmember abundances is not satisfied
and it leads to wrong results: for instance, the spectrum re-
lated to one IC has negative values! For avoiding such ir-
relevant results, it can be much more efficient to use all the
available extra information. In this paper, one successfully
exploit the positivity of spectra and of mixture entries. How-
ever, locally i.e. at particular points (x, y, λ), the approxi-
mation quality (measured as the error between the ICA ap-
proximated data and the observed data) can be poor: one may
then suspect the linear model (4) to be no longer valid. At
these points, further investigations assuming other endmem-
bers (i.e. other IC) or a nonlinear model must be done.
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More generally, if possible, we recommend to consider
semi-blind source separation methods. These approaches, ex-
ploiting priors even very weak like temporal correlation [38,
39], non-stationarity [40, 41], positivity or sparsity [42, 43],
often leads to more efficient - sometimes simpler, too - algo-
rithms. General frameworks exploiting priors are currently
intensively explored. Methods assuming coloration and/or
non-stationarity can be used in the time domain or in the fre-
quency domain (after short term Fourier transform) and have
two main advantages: (i) they lead to very efficient algo-
rithms based on joint diagonalization of matrices, (ii) they
use second-order statistics and are able to separate Gaussian
sources. Although they have a high computational cost, two
recent approaches are very attractive,too: (i) Bayesian source
separation methods [28] for their ability to manage any prior
knowledges provided than they can be stated in probabilistic
terms, (ii) Sparse component analysis (SCA) [43] which can
be applied when sources2 are sparse, i.e. most of the samples
are close to zero, for their ability to provide solution when
there are less observations than sources.

7. REFERENCES

[1] A. Hyvärinen, J. Karhunen, and E. Oja, Independent
component analysis, Adaptive and Learning Systems for
Signal Processing, Communications, and Control. John
Wiley, New York, 2001.

[2] A. Cichocki and S.-I. Amari, Adaptive Blind Signal and
Image Processing- Learning Algorithms and Applica-
tions, John Wiley, 2002.

[3] P. Comon, “Independent component analysis, a new
concept?,” Signal Processing, vol. 36, no. 3, pp. 287–
314, 1994.

[4] D. Yellin and E. Weinstein, “Criteria for multichannel
signal separation,” IEEE Trans. on Signal Processing,
vol. 42, no. 8, pp. 2158–2168, Aug. 1994.

[5] H.L. Nguyen Thi and C. Jutten, “Blind separation of
sources : algorithms for convolutive mixtures of large
bandwidth signals,” Signal Processing, vol. 45, no. 22,
pp. 209–229, 1995.

[6] C. Simon, Ph. Loubaton, and C. Jutten, “Separation of
a class of convolutive mixtures: a contrast function ap-
proach,” Signal Processing, vol. 81, pp. 883–887, June
2001.

[7] A. Taleb and C. Jutten, “Source separation in post-
nonlinear mixtures,” IEEE Trans. on Signal Processing,
vol. 47, no. 10, pp. 2807–2820, 1999.

2or a sparsifying transform of the sources

[8] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “A geomet-
ric approach for separating post nonlinear mixtures,” in
Proc. of the XI European Signal Processing Conf. (EU-
SIPCO 2002), Toulouse, France, 2002, vol. II, pp. 11–
14.

[9] J. Eriksson and V. Koivunen, “Blind identifiability
of class of nonlinear instantaneous ICA models,” in
Proc. of the XI European Signal Proc. Conf. (EUSIPCO
2002), Toulouse, France, Sept. 2002, vol. 2, pp. 7–10.

[10] S. Achard and C. Jutten, “Identifiability of post nonlin-
ear mixtures,” IEEE Signal Processing Letters, vol. 12,
no. 5, pp. 423–426, May 2005.

[11] C. Jutten and J. Karhunen, “Advances in blind source
separation (BSS) and independent component analysis
(ICA) for nonlinear mixtures,” International Journal of
Neural Systems, vol. 14, no. 5, pp. 1–26, 2004.

[12] S. Moussaoui, H. Hauksdóttir, F. Schmidt, C. Jutten,
J. Chanussot, D. Brie, S. Douté, and J. A. Benediks-
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