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Hankel hyperdeterminants, rectangular Jack polynomials and even powers of the Vandermonde

We investigate the link between rectangular Jack polynomials and Hankel hyperdeterminants. As an application we give an expression of the even power of the Vandermonde in term of Jack polynomials.

Introduction

Few after he introduced the modern notation for determinants [START_REF] Cayley | On the theory of determinants[END_REF], Cayley proposed several extensions to higher dimensional arrays under the same name hyperdeterminant [START_REF] Cayley | Mémoire sur les hyperdéterminants[END_REF][START_REF] Cayley | On the theory of permutants[END_REF]. The notion considered here is apparently the simplest one, defined for a kth order tensor M = (M i 1 •••i k ) 1≤i 1 ,...,i k ≤n on an n-dimensional space by

Det M = 1 n! σ=(σ 1 ,••• ,σ k )∈S k n sign(σ)M σ ,
2 Hankel and Toeplitz Hyperdeterminants of symmetric functions

Symmetric functions

Symmetric functions over an alphabet X are functions which are invariant under permutation of the variables. The C-space of the symmetric functions over X is an algebra which will be denoted by Sym(X).

Let us consider the complete symmetric functions whose generating series is σ t (X) :=

i S i (X)t i = x∈X 1 1 -xt ,
the elementary symmetric functions

λ t (X) := i Λ i (X)t i = x∈X (1 + xt) = σ -1 (X) -1 ,
and power sum symmetric functions

ψ t (X) := i Ψ i (X) t i i = log(σ t (X)).
When there is no algebraic relation between the letters of X, Sym(X) is a free (associative, commutative) algebra over complete, elementary or power sum symmetric functions

Sym = C[S 1 , S 2 , • • • ] = C[Λ 1 , Λ 2 , • • • ] = C[Ψ 1 , Ψ 2 , • • • ].
As a consequence, the algebra Sym(X) (X being infinite or not) is spanned by the set of the decreasing products of the generators

S λ = S λn . . . S λ 1 , Λ λ = Λ λn . . . Λ λ 1 , Ψ λ = Ψ λn . . . Ψ λ 1 , where λ = (λ 1 ≥ λ 2 ≥ • • • ≥ λ n ) is a (decreasing) partition.
The algebra Sym(X) admits also non multiplicative basis. For example, the monomial functions defined by

m λ (X) = x λ 1 i 1 • • • x λn in ,
where the sum is over all the distinct monomials x λ 1 i 1 • • • x λn in with x i 1 , . . . , x in ∈ X, and the Schur functions defined via the Jacobi-Trudi formula S λ (X) = det(S λ i -i+j (X)).

(1)

Note that the Schur basis admits other alternative definitions. For example, it is the only basis such that 1. It is orthogonal for the scalar product defined on power sums by

Ψ λ , Ψ µ = δ λ,µ z λ (2) 
where δ µ,ν is the Kronecker symbol (equal to 1 if µ = ν and 0 otherwise) and

z λ = i i m i (λ) m i (λ)! if m i (λ)
denotes the multiplicity of i as a part of λ.

2. The coefficient of the dominant term in the expansion in the monomial basis is 1,

S λ = m λ + µ<λ u λµ m µ .
When X = {x 1 , . . . , x n } is finite, a Schur function has another determinantal expression

S λ (X) = det(x λ j +n-j i ) ∆(X)
,

where ∆(X) = i<j (x ix j ) denotes the Vandermonde determinant.

Definitions and General properties

A Hankel hyperdeterminant is an hyperdeterminant of a tensor whose entries depend only of the sum of the indices

M i 1 ,...,i 2k = f (i 1 + • • • + i 2k ).
One of the authors investigated such polynomials in relation with the Selberg integral [START_REF] Luque | Hankel hyperdeterminants and Selberg integrals[END_REF][START_REF] Luque | Hyperdeterminantal calculations of Selberg's and Aomoto's integrals[END_REF]. Without lost of generality, we will consider the polynomials

H k n (X) = Det Λ i 1 +•••+i 2k (X) 0≤i 1 ,...,i 2k ≤n-1 , (3) 
where Λ m (X) is the mth elementary function on the alphabet X.

Let us consider a shifted version of Hankel hyperdeterminants

H k v (X) = Det Λ i 1 +•••+i 2k +v i 1 (X) 0≤i 1 ,...,i 2k ≤n-1 . (4) 
where v = (v 0 , . . . , v n-1 ) ∈ Z n . Note that (3) implies M 0,...,0 = Λ 0 (X) = 1 by convention. But if M 0,...,0 = 0, 1, this property can be recovered using a suitable normalization and, if M 0...0 = 0, by using the shifted version (4) of the Hankel hyperdeterminant. As in [START_REF] Matsumoto | Two parameters circular ensembles and Jacobi-Trudi type formulas for Jack functions of rectangular shape[END_REF], one defines Toëplitz hyperdeterminant by giving directly the shifting version

T k v (X) = Det Λ i 1 +•••+i k -(i k+1 +•••+i 2k )+v i 1 (X) 0≤i 1 ,...,i 2k ≤n-1 . (5) 
Toëplitz hyperdeterminants are related to Hankel hyperdeterminants by the following formulae.

Proposition 2.1 1. H k v (X) = (-1) kn(n-1) 2 T k v+(k(n-1)) n (X) 2. T k v (X) = (-1) kn(n-1) 2 H k v+(k(1-n)) n (X).
Proof The equalities (1) and ( 2) are equivalent and are direct consequences of the definitions (4) and ( 5),

T k v (X) = Det Λ i 1 +•••+i k +(n-1-i k+1 +•••+(n-1-i 2k -k(n-1)) (X) = (-1) kn(n-1) 2 H v+(k(1-n)) n (X).
.

2.3

The substitution x n → Λ n (Y)

Let X = {x 1 , . . . , x n } be a finite alphabet and Y be another (potentially infinite) alphabet. For simplicity we will denote by Y the substitution

Y x p = Λ p (Y),
for each x ∈ X and each p ∈ Z.

The main tool of this paper is the following proposition.

Proposition 2.2 For any integer k ∈ N -{0}, one has

1 n! Y ∆(X) 2k = H k n (Y)
where ∆(X) = i<j (x ix j ).

Proof It suffices to develop the power of the Vandermonde determinant

∆(X) 2k = det x j-1 i 2k = σ 1 ,••• ,σ 2k ∈Sn sign(σ 1 • • • σ 2k ) i x σ 1 (i)+•••+σ 2k (i)-2k i .
Hence, applying the substitution, one obtains

1 n! Y ∆(X) 2k = 1 n! σ 1 ,••• ,σ 2k ∈Sn sign(σ 1 • • • σ 2k ) i Λ σ 1 (i)+•••+σ 2k (i)-2k (Y) = H k n (Y).
More generally, the Jacobi-Trudi formula (1) implies the following result.

Proposition 2.3 One has 1 n! Y S λ (X)∆(X) 2k = H k reversen(λ) (Y),
where

reverse n (v) = (v n , . . . , v 1 ) if v = (v 1 , . . . , v p ) is a composition with p ≤ n and v p+i = 0 for 1 ≤ i ≤ n -p.
Proof It suffices to remark that

S λ (X)∆(X) 2k = det(x λ n-j+1 +j-1 i ) det x j-1 i 2k-1 ,
and apply the same computation than in the proof of Proposition 2.2.

Example 2.4 If k = 1 then using the second Jacobi-Trudi formula

S λ = det(Λ λ ′ n-i -i+j ) (6) 
where λ ′ denotes the conjugate partition of λ, Proposition 2.3 implies

1 n! Y S λ (X)∆(X) 2 = (-1) n(n-1) 2 S (λ+(n-1) n ) ′ (Y).

Jack Polynomials and Hyperdeterminants

In this section, we will consider the symmetric functions as a λ-ring endowed with the operator S i , and we will use the definition of addition and multiplication of alphabets in this context (see e.g. [START_REF] Lascoux | Symmetric function and combinatorial operators on polynomials[END_REF]). Let X and Y be two alphabets, the symmetric functions over the alphabet X + Y are generated by the complete functions S i (X+Y) defined by

σ t (X+Y) = σ t (X)σ t (Y) = i S i (X+Y)t i . If X = Y, one has σ t (2X) := σ t (X + X) = σ t (X) 2 . Similarly one defines σ t (αX) = σ t (X) α . In particular, the equality σ t (-X) = x (1 -xt) = λ -t (X) gives S i (-X) = (-1) i Λ i (X). The product of two alphabet X and Y is de- fined by σ t (XY) = S i (XY)t i = x∈X y∈Y 1 1-xyt . Note that σ 1 (XY) = K(X, Y) = λ S λ (X)S λ (Y) is the Cauchy Kernel.

Jack polynomials

One considers a one parameter generalization of the scalar product (2) defined by Ψ λ , Ψ µ α = δ λ,µ z λ α l(λ) , where l(λ) = n denotes the length of the partition

λ = (λ 1 ≥ • • • ≥ λ n ) with λ n > 0. The Jack polynomials P (α) λ
are the unique symmetric functions orthogonal for , α and such that P

(α) λ = m λ + µ<λ u (α)
λµ m µ . Note that in the case when α = 1, one recovers the definition of Schur functions, i.e. P 

λ := P (α) λ Q (α) λ = P (α) λ , P (α) λ -1 = (i,j)∈λ α(λ i -j) + λ ′ j -i + 1 α(λ i -j + 1) + λ ′ j -i . ( 7 
)
Let X = {x 1 , • • • , x n } be a finite alphabet and denote by X ∨ the alphabet of the inverse {x -1 1 , . . . , x -1 n }. Let us introduce the second scalar product by

f, g ′ n,α = 1 n! C.T.{f (X)g(X ∨ ) i =j (1 -x i x -1 j ) 1 α },
see [START_REF] Macdonald | Symetric functions and Hall polynomials[END_REF] VI. 10. The polynomials

P (α) λ and Q (α)
λ are also orthogonal for this scalar product.

For simplicity, we will consider also another normalisation defined by

R (α),n λ (Y) := P (1/α) λ ′ , Q (1/α) λ ′ ′ n, 1 α Q (α) λ (Y).
Note that the polynomial R (α),n λ is not zero only when l(λ) ≤ n and in this case the value of the coefficient P

(1/α) λ ′ , Q (1/α) λ ′ ′ n, 1
α is known to be 

P (1/α) λ ′ , Q (1/α) λ ′ ′ n, 1 α = 1 n! (i,j)∈λ ′ n + 1 α (j -1) -i + 1 n + j α -i C.T. i =j 1 -x i x -1 j α (8) see [24] VI 10.

The operator

I n,k (Y) = 1 n! C.T.{Λ n (X ∨ ) p+k(n-1) Λ l (X ∨ ) (1 + x i y j )∆(X) 2k }. (9) 
Note that,

I n,k (Y) = (-1) kn(n-1) 2 n! C.T.{Λ n (X ∨ ) p Λ l (X ∨ ) (1 + x i y j ) i =j (1 - x i x j ) k }. (10) But Λ n (X ∨ ) p Λ l (X ∨ ) = P (1/k) (p+1) l p n-l (X ∨ ), (11) and 
(1

+ x i y j ) = λ Q (1/k) λ (X)Q (k) λ ′ (Y). (12) 
Hence, from the orthogonality of

P (α) λ and Q (α)
λ , equalities [START_REF] Gunson | Proof of a Conjecture of Dyson in the Statistical Theory of Energy Levels[END_REF], ( 11) and ( 12) imply

I n,k (Y) = (-1) kn(n-1) 2 R (k),n n p l (Y). ( 13 
)
On the other hand, one has the equality

Y x m = Λ m (Y) = C.T.{x -m i (1 + xy i )}.
Remarking that ∆(X ∨ ) = (-1)

n(n-1) 2 ∆(X) Λ n (X) n-1 , and Λ n (X) m Λ l (X) = S (m n )+(1 l ) (X)
for each m ∈ Z, Equality (9) can be written as

I n,k (Y) = 1 n! Y S ((p-k(n-1)) n )+(1 l ) (X)∆(X) 2k = (-1) kn(n-1) 2 
T k p n-l (p+1) l (X). ( 14) One deduces an hyperdeterminantal expression for a Jack polynomial indexed by the partition n p l. Proposition 3.1 For any positive integers n, p, l and k, one has.

R (k),n n p l = T k p n-l (p+1) l .
The constant term appearing in ( 8) is a special case of the the Dyson Conjecture [START_REF] Dyson | Statistical theory of energy levels of complex system I[END_REF]. The conjecture of Dyson has been proved the same year independently by Gunson [START_REF] Gunson | Proof of a Conjecture of Dyson in the Statistical Theory of Energy Levels[END_REF] and Wilson [START_REF] Wilson | Proof of a Conjecture by Dyson[END_REF] ( in 1970 I. J. Good [START_REF] Good | Short proof of a conjecture by Dyson[END_REF] have shown an elegant elementary proof involving Lagrange interpolation), C.T.

i =j 1 -x i x -1 j a i = a 1 + • • • + a n a 1 , . . . , a n ,
for a 1 , . . . , a n ∈ N. Hence, one has

Q (k) n p l (Y) = n! kn k, • • • , k -1 κ(n, p, l; k)T k p n-l (p+1) l (Y)
where

κ(n, p, l; k) = n i=1 p j=1 j + k(i -1) j -1 + ki l i=1 p + 1 + k(n -i) p + k(n -i + 1
) .

In particular, when l = 0, one recovers a theorem by Matsumoto.

Corollary 3.2 (Matsumoto [START_REF] Matsumoto | Two parameters circular ensembles and Jacobi-Trudi type formulas for Jack functions of rectangular shape[END_REF])

P (k) n p (Y) = n! kn k, . . . , k -1 T k p n (Y).
Proof From equalities ( 8) and ( 7), one has

P (1/k) p n , Q (1/k) p n ′ 1/k,n = 1 n! kn k, . . . , k P (k) n p l , P (k) 
n p l k .

Applying Proposition 3.1, one finds the result. Setting p = k(n -1), one obtains the expression of an Hankel hyperdeterminant as a Jack polynomials. 

ω α P (α) λ (Y) = Q ( 1 α ) λ ′ (Y)
and

ω α Λ n (Y) = g n ( 1 α ) (Y) := Λ n (-αY).
Applying ω k on Proposition 3.1, one obtains the expression of a Jack polynomial with parameter α = 1 k for an almost rectangular shape λ = (p + 1) l p n-l as a shifted Toeplitz hyperdeterminant whose entries are

M i 1 ...i 2k = g i 1 +•••+i k -i k+1 -•••-i 2k +λ n-i 1 +1 1 k . Proposition 3.4 One has P ( 1 k ) (p+1) l p n-l (Y) = n! kn k, . . . , k -1 κ(n, p, l; k)T (k) p n-l (p+1) l (-kY).
Proof It suffices to apply Proposition 3.1 with the alphabet -αY to find

Q (k) n p l (-kY) = n! kn k, . . . , k -1 κ(n, p, l; k)T (k) p n-l (p+1) l (-kY).
The result follows from

Q (k) n p l (-kY) = ω k Q (k) n p l (Y) = P ( 1 k ) (p+1) l p n-l (Y).
4 Skew Jack polynomials and Hankel hyperdeterminants

Skew Jack polynomials

Let us define as in [START_REF] Macdonald | Symetric functions and Hall polynomials[END_REF] VI 10, the skew Q functions by

Q (α) λ/µ , P (α) ν := Q (α) λ , P (α) µ P (α) ν .
Straightforwardly, one has

Q (α) λ/µ = ν Q (α) λ , P (α) ν P (α) µ Q (α) ν . (15) 
Classically, the skew Jack polynomials appear when one expands a Jack polynomial on a sum of alphabet.

Proposition 4.1 Let X and Y be two alphabets, one has

Q (α) λ (X + Y) = µ Q (α) µ (X)Q (α) λ/µ (Y),
or equivalently

P (α) λ (X + Y) = µ P (α) µ (X)P (α)
λ/µ (Y).

Proof See [START_REF] Macdonald | Symetric functions and Hall polynomials[END_REF] VI.7 for a short proof of this identity.

An other important normalisation is given by

J (α) λ = c λ (α)P (α) λ = c ′ λ (α)Q (α) λ , where c λ (α) = (i,j)∈λ (α(λ i -j) + λ ′ j -i + 1), and c ′ λ (α) = (i,j)∈λ (α(λ i -j + 1) + λ ′ j -i),
if λ ′ denotes the conjugate partition of λ.

If one defines skew J function by

J (α) λ/µ := ν J (α) λ , J (α) µ J (α) ν α J (α) ν , J (α) ν α J (α) ν then J (α) λ/µ is again proportional to P (α) λ/µ and Q (α)
λ/µ :

J (α) λ/µ = c λ (α)c ′ µ (α)P (α) λ/µ = c ′ λ (α)c µ (α)Q (α) λ/µ . ( 16 
)

The operator Y and the skew Jack symmetric functions

Let X, Y and Z be three alphabets such that ♯X = n < ∞ and ♯Z = m < ∞.

Consider the polynomial

I n,k (Y, Z) = 1 n! Y i x -m i i,j (x i + z j )∆ 2k (X).
Remarking that

Y x p-m i (x + z i ) = m i=0 Λ p+i-m (Y)Λ m-i (Z) = Λ p (Y + Z) = Y+Z x p ,
one obtains

I n,k (Y, Z) = H k n (Y + Z) = (-1) kn(n-1) 2 n! nk k,...,k P (k) n k(n-1) (Y + Z). (17) 
Hence, the image of Q

( 1 k ) λ (X ∨ )∆(X) 2k by Y is a Jack polynomial. Corollary 4.2 One has, Y Q ( 1 k ) λ (X ∨ )∆(X) 2k = (-1) kn(n-1) 2 nk k, . . . , k (b (k) 
n k(n-1) ) -1 Q (k) n k(n-1) /λ ′ (Y),
where b

(k) n k(n-1) = (2(n-1))!(nk)!((n-1)k)! kn!(n-1)!((2n-1)k-1)! .
Proof The equality follows from i

x -m i i,j

(x i + z j ) = i,j (1 + z j x i ) = λ Q (k) λ ′ (Z)Q ( 1 k ) λ (X ∨ ).
Indeed, one has

I n,k (Y, Z) = 1 n! λ b (k) λ ′ P (k) λ ′ (Z) Y Q ( 1 k ) λ (X ∨ )∆(X) 2k .
And in the other hand, by ( 17) one obtains

I n,k (Y, Z) = (-1) kn(n-1) 2 n! nk k, . . . , k λ P (k) λ (Z)P (k) n k(n-1) /λ (Y).
Identifying the coefficient of

P (k) λ ′ (Z) in the two expressions, one finds, Y Q ( 1 k ) λ (X ∨ )∆(X) 2k = (-1) kn(n-1) 2 nk k, . . . , k (b (k) λ ) -1 P (k) 
n k(n-1) /λ ′ (Y),
where the value of b

(k) λ := P (k) λ Q (k) λ
is given by equality [START_REF] Gelfand | Discriminants, Resultants and Multidimensional Determinants[END_REF]. But, from 16, P

λ/µ = b (α) λ b (α) µ Q (α) λ/µ . Hence, Y Q ( 1 k ) λ (X ∨ )∆(X) 2k = (-1) kn(n-1) 2 nk k, . . . , k (α) 
n k(n-1) ) -1 Q (k) n k(n-1) /λ ′ (Y). (b (k) 
The value of b

n k(n-1) is obtained from Equality (7) after simplification.

5 Even powers of the Vandermonde determinant

Expansion of the even power of the Vandermonde on the Schur basis

The expansion of even power of the Vandermonde polynomial on the Schur functions is an open problem related the fractional quantum Hall effect as described by Laughlin's wave function [START_REF] Laughlin | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[END_REF]. In particular is of considerable interest to determine for what partitions the coefficients of the Schur functions in the expansion of the square of Vandermonde vanishe [START_REF] Di Francesco | Laughlin's wave functions, Coulomb gases and expansions of the discriminant[END_REF][START_REF] Wybourne | The Vandermonde determinant revisited, SSPCM[END_REF][START_REF] Wybourne | Admissible partitions and the square of the Vandermonde determinant[END_REF][START_REF] Scrharf | Powers of the Vandermonde determinant and the quantum Hall effect[END_REF][START_REF] King | The square of the Vandermonde determinant and its q-generalization[END_REF]. The aim of this subsection is to give an hyperdeterminantal expression for the coefficient of S λ (X) in ∆(X) 2k . Let us denote by A 0 the alphabet verifying Λ n (A 0 ) = 0 for each n = 0 (and by convention Λ 0 (A 0 ) = 1). The second orthogonality of Jack polynomials can be written as

f, g ′ n,α = 1 n! A 0 f (X)g(X ∨ ) i =j (1 -x -1 i x j ) 1 α .
In the case when α = 1, it coincides with the first scalar product. In particular, S λ (X), S µ (X) ′ n,1 = δ λµ . Hence, the coefficient of S λ (X) in the expansion of ∆(X) 2k is

S λ (X), ∆(X) 2k ′ n,1 = 1 n! A 0 S λ (X)∆(X ∨ ) 2k i =j (1 -x -1 i x j ).
One has S λ (X), ∆(X) 2k ′ n,1 = (-1)

n(n-1) 2 1 n! A 0 S λ (X)Λ n (X) (2k+1)(1-n) ∆(X) 2(k+1)
= (-1) 2(k+1) .

n(n-1) 2 1 n! A 0 S λ+((2k+1)(1-n)) n (X)∆(X)
By Proposition 2.3, one obtains an hyperdeterminantal expression for the coefficients of the Schur functions in the expansion of the even power of the Vandermonde determinant.

Corollary 5.1 The coefficient of S λ (X) in the expansion of ∆(X) 2k is the hyperdeterminant

S λ (X), ∆(X) 2k ′ n,1 = (-1) n(n-1) 2 H k+1 reversen(λ)-((2k+1)(n-1)) n (A 0 ).
It should be interesting to study the link between the notion of admissible partitions introduced by Di Francesco and al [START_REF] Di Francesco | Laughlin's wave functions, Coulomb gases and expansions of the discriminant[END_REF] and such an hyperdeterminantal expression.

Jack polynomials over the alphabet -X

In this paragraph, we work with Laurent polynomials in

X = {x 1 , • • • , x n }.
The space of symmetric Laurent polynomials is spanned by the family indexed by decreasing vectors ( Sλ (X)) (λ 1 ≥•••≥λn)∈Z n and defined by Sλ (X) = det(x

λ j +n-j i ) ∆(X)
.

Indeed, each symmetric Laurent polynomial f can be written as

f (X) = Λ n (X) -m g(X)
where g(X) is a symmetric polynomial in X. As, g(x) is a linear combination of Schur functions, it follows that f (X) is a linear combination of Sλ 's. Let X = {-x 1 , . . . , -x n } be the alphabet of the inverse of the letters of X. We consider the operation -X (i.e. the substitution sending each x p for x ∈ X and p ∈ Z to the complete symmetric function S n (X)).

Consider the alternant

a λ (X) := σ ǫ(σ)x σλ = det(x λ j i ) = Sλ-δ (X)∆(X),
where δ = (n -1, n -2, . . . , 1, 0). From this definition, one obtains that the operator 1 n! -X sends the product of 2k alternants a λ , a µ , . . . , a ρ is an hyperdeterminant

1 n! -X a λ (X)a µ (X) • • • a ρ (X) = Det(S λ i 1 +µ i 2 +•••+ρ i 2ki (X)) 1≤i 1 ,...,i 2k ≤n . (18) 
Consider the linear operator Ω + defined by

Ω + Sλ (X) := S λ (X) := det(S λ i +i-j (X)). (19) 
In particular, the operator Ω + lets invariant the symmetric polynomials. Furthermore, it admits an expression involving -X .

Lemma 5.2 One has

Ω + = 1 n! -X a δ (X)a -δ (X).
Proof It suffices to show that

1 n! -X a δ (X)a -δ (X) Sλ (X) = S λ (X). But a δ (X)a -δ (X) Sλ (X) = a λ+δ (X)a -δ (X),
and by [START_REF] Lascoux | Symmetric function and combinatorial operators on polynomials[END_REF], one obtains the result. .

Proposition 5.3 Let X = {x 1 , • • • , x n } be a finite alphabet and 0 ≤ l ≤ p ∈ N. R (k),n n p+(k-1)(n-1) l (-X) = (-1) (k-1)n(n-1) 2 +np+l S (p+1) l p n-l (X)∆(X) 2(k-1) . ( 20 
)
Proof By Lemma 5.2, one has

S λ (X)∆(X) 2(k-1) = Ω + S λ (X)∆(X) (2k-1) = 1 n! -X a λ+δ (X)a δ (X) 2(k-1) (X)a -δ (X).
By Equality [START_REF] Lascoux | Symmetric function and combinatorial operators on polynomials[END_REF], one obtains T reversen(λ)-[((k-1)(n-1)) n ] (-X).

S λ (X)∆(X) 2(k-1) = Det S λ i 1 +n-i 1 +•••+n-i 2k-1 +i 2k -n (X) 1≤i 1 ,...,i 2k ≤n = Det S λ n-i 1 +i 1 +•••+i 2k-1 -i 2k (X) 0≤i 
In particular, from Proposition 3.1

R (k),n
[n p+(k-1)(n-1) l] (-X) = T S [(p+1) l p n-l ] (X)∆(X) 2(k-1) .

But, the Jack polynomial R The result follows.

Remark 5.4

1. Note that a special case of Proposition 5.3 appeared in [START_REF] Luque | Hankel hyperdeterminants and Selberg integrals[END_REF]. This kind of identities relying Jack polynomials in X and in -X can be deduced from more general ones involving Macdonald polynomials when t is specialized to a power of q. This will be investigated in a forthcoming paper.

As a special case of Proposition 5.3, the even powers of the Vandermonde determinants ∆(X) 2k are Jack polynomials on the alphabet -X. 

n (n-1)k (-X).

In the same way, using Corollary 4.2, one finds a surprising identity relying Jack polynomials in the alphabets -X and X ∨ . 

n k(n-1) ) -1 Q (k)
n k(n-1) /λ ′ (-X).

Proof The result is a straightforward consequence of Lemma 5.2 and Corollary 4.2.

( 1 )λ

 1 λ = S λ . Let (Q (α)λ ) be the dual basis of (P are equal up to a scalar factor and the coefficient of proportionality is computed explicitly in[START_REF] Macdonald | Symetric functions and Hall polynomials[END_REF] VI. 10: b (α)

Y

  and almost rectangle Jack polynomials Suppose that X = {x 1 , . . . , x n } is a finite alphabet. Let Y = {y 1 , • • • } be another (potentially infinite) alphabet and consider the integral

3. 3 1 k

 31 Jack polynomials with parameter α = Let Y = {y 1 , y 2 , • • • } be a (potentially infinite alphabet). Consider the endomorphism defined on the power sums symmetric functions Ψ p (Y) by ω α (Ψ p (Y)) := Ψ p (-αY) = (-1) p-1 αΨ p (Y) (see [24] VI 10), where Y = {-y 1 , -y 2 , • • • } . This map is known to satisfy the identities

1 = 2 Det 1 = 2 H

 1212 1 ,...,i 2k ≤n-S λ n-i 1 +1-n+i 1 +•••+i2k (X) 0≤i 1 ,...,i 2k ≤n-reverse n (λ)-[(n-1) n ] (-X) = (-1) n(n-1)(k-1)2

  k-1)(n-1)) n ]+[p n-l (p+1) l ] (-X) = (-1) n(n-1)(k-1)2

2 .

 2 Proposition 5.3 can be reformulated as The polynomials P (k) n p+(k-1)(n-1) l (-X) and P (k)(p n )+(1 l ) (X)∆(X) 2(k-1) are proportional.

Corollary 5 . 5 1 )

 551 Setting l = p = 0 in Equality (20), one obtains ∆(X) 2k = (k + 1, . . . , k + 1 P

Proposition 5 . 6 (

 56 One hasΩ + Q (1/k) λ (X ∨ )∆(X) 2(k-1) Λ n (X) n-1 =