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Abstract. In this work, we deal with blind source separation of a class of
nonlinear mixtures. The proposed method can be regarded as an adapta-
tion of the solutions developed in [1, 2] to the considered mixing system.
Also, we provide a local stability analysis of the employed learning rule,
which permits us to establish necessary conditions for an appropriate
convergence. The validity of our approach is supported by simulations.

1 Introduction

The problem of blind source separation (BSS) concerns the retrieval of an un-
known set of source signals by using only samples that are mixtures of these
original signals. A great number of methods has been proposed for the case
wherein the mixture process is of linear nature. The cornerstone of the majority
of these techniques is the independent component analysis (ICA) [3]. In contrast
to the linear case, the recovery of the independence, which is the very essence of
ICA, does not guarantee, as a rule, the separation of the sources when the mix-
ture model is nonlinear. In view of this limitation, a more reasonable approach
is to consider constrained mixing systems as, for example, post-nonlinear (PNL)
mixtures [4] and linear-quadratic mixtures [2].

In this work, we investigate the problem of BSS in a particular class of nonlin-
ear systems which is related to a chemical sensing application. More specifically,
the contributions of this paper are the adaptation of the ideas presented in [1,
2] to the considered mixing system, as well as a study on some necessary condi-
tions for a proper operation of the obtained separating method. Concerning the
organization of the document, we begin, in Section 2, with a brief description
of the application that has motivated us. After that, in Section 3, we expose
the separation method and also a stability analysis of the learning rule. In Sec-
tion 4, simulations are carried out in order to verify the viability of the proposal.
Finally, in Section 5, we state our conclusions and remarks.

2 Motivation and Problem Statement

The classical methods for chemical sensing applications are generally based on
the use of an unique high-selective sensor. As a rule, these techniques demand
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sophisticated laboratory analysis, which makes them expensive and time con-
suming. An attractive alternative to these methods relies on the use of an array
of less-selective sensors combined with a post-processing stage whose purpose is
exactly to extract the relevant information from the acquired data.

In [5, 6], post-processing stages based on BSS methods were considered in
the problem of estimating the concentrations of several ions in a solution. In this
sort of application, a device called ion-sensitive field-effect transistor (ISFET) [5]
may be employed as sensor. In short, the ISFET is built on a MOSFET by
replacing the metallic gate with a membrane sensitive to the ion of interest, thus
permitting the conversion of chemical information into electrical one.

The Nikolsky-Eisenman (NE) model [5] provides a very simple and yet ade-
quate description of the ISFET operation. According to this model, the response
of the i -th ISFET sensor is given by:

xi = ci1 + ci2 log
(

si +
∑

j,j 6=i

aijs
zi
zj

j

)

, (1)

where si and sj are the concentration of the ion of interest and of the concen-
tration of the j -th interfering ion, respectively, and where zi and zj denote the
valence of the ions i and j, respectively. The selective coefficients aij model the
interference process; ci1 and ci2 are constants that depends on some physical
parameters. Note that when the ions have the same valence, then the model (1)
can be seen as a particular case of the class of PNL systems, as described in [6].

In the present work, we envisage the situation in which zi 6= zj . According
to the NE model, one obtains a tough nonlinear mixing model in this case. For
the sake of simplicity, we assume, in this paper, that the coefficients ci1 and ci2

are known (even if their estimations are not so simple). Considering a mixture
of two ions, such simplification leads to the following nonlinear mixing system
that will be considered in this work

x1 = s1 + a12s
k
2

x2 = s2 + a21s
1

k

1

, (2)

where k = z1/z2 and is known. We consider that k takes only positive integer
values. Indeed, in many actual applications, typical target ions are H3O

+, NH+
4 ,

Ca2+, K+, etc. Consequently, many cases correspond to k ∈ N and, in this paper,
we will focus on this case. Also, the sources are supposed positives, since they
represent concentrations. Finally, it is assumed that si are mutually independent,
which is equivalent to assume that there is no interaction between the ions.

3 Separation Method

For separating sources si from mixtures (2), we propose a parametric recursive
model (see (3) below), whose parameters wij will be adjusted by a simple ICA
algorithm. Consequently, equilibrium points and their stability are depending
both on a structural condition (due to the recursive nature of (3)) and on the
learning algorithm, as explained in subsection 3.3.
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3.1 Separating Structure

In this work, we adopted the following recurrent network as separating system:

y1(m + 1) = x1 − w12y2(m)k

y2(m + 1) = x2 − w21y1(m)
1

k
, (3)

where [w12 w21]
T are the parameters to be adjusted. In order to understand

how this structure works, let s = [s1 s2]
T denote a sample of the sources. By

considering (2), one can easily check that when [w12 w21]
T = [a12 a21]

T , then s

corresponds to an equilibrium point of (3). This wise approach to counterbalance
the action of the mixing system without relying on its direct inversion was firstly
developed in [1] regarding linear BSS. Its extension to the nonlinear case was
proposed in [2], in the context of source separation of linear-quadratic mixtures.

Naturally, an ideal operation of (3) as a separating system requires that
s = [s1 s2]

T be the only equilibrium point when [w12 w21]
T = [a12 a21]

T . Unfor-
tunately, this is not the case as can be checked by setting y1(m+1) = y1(m) = y1

and y2(m + 1) = y2(m) = y2 in (3). From this, one observes that the determi-
nation of the equilibrium points of (3) leads to the following equation:

y1 = x1 − a12

(

x2 − a21y
(1/k)
1

)k

. (4)

After straightforward calculation, including a binomial expansion, (4) becomes

(1 + a12b0)y1 + a12

k−1
∑

i=1

biy
1− i

k

1 + (a12bk − x1) = 0, (5)

where bi =
(

k
i

)

xi
2(−a21)

(k−i).

By considering the transformation u = y
1

k

1 in (5), one can verify that the
solution of this expression is equivalent to the determination of the roots of a
polynomial of order k and, as a consequence, the number of equilibrium points
grows linearly as k increases. Thus, it becomes evident that the use of (3) is
appropriate only for small values of k. For instance, when k = 2 there are
just two equilibrium points: one corresponds to the sources themselves and the
other one corresponds to a mixture of these sources. In the next step of our
investigation, we shall verify the conditions to be satisfied so that the equilibrium
point associated with the sources be stable.

In view of the difficulty embedded in a global analyze of stability, we consider
the study of the local stability in the neighborhood of the equilibrium point
s = [s1 s2]

T based on the first-order approximation of the nonlinear system (3).
This linearization can be expressed by using a vectorial notation as follows:

y(m + 1) ≈ c + Jy(m), (6)

where y(m) = [y1(m) y2(m)]T , c is a constant vector and J is the Jacobian
matrix of (3) evaluated at [s1 s2]

T , which is given by:

J =

[

0 −a12ks
(k−1)
2

− 1
ka21s

( 1

k
−1)

1 0

]

. (7)
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It can be proved that a necessary and sufficient condition for local stability of
a discrete system is that the absolute values of the eigenvalues of the Jacobian
matrix evaluated at the equilibrium point of interest be smaller than one [7].
Applying this result on (7), the following condition of local stability is obtained:

|a12a21s
( 1

k
−1)

1 sk−1
2 | < 1. (8)

This is a first constraint of our strategy, given that this condition must be satis-
fied for each sample [s1 s2]

T . In order to illustrate this limitation, the stability
boundaries in the (a12, a21) plane for several cases are depicted in Figure 1.
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(a) Influence of k: sources distributed
between (0.1, 1.1) with k = 2 (solid) and
k = 3 (dash).
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(b) For k = 2: sources distributed
between (0.1, 1.1) (solid) and between
(0.2, 2.2) (dash).

Fig. 1. Stability boundaries in the (a12, a21) plane.

3.2 Learning Algorithm

We consider a learning rule founded on the cancellation of nonlinear correla-
tions, given by E{f(yi)g(yj)}, between the retrieved sources [1]. The following
nonlinear functions were chosen: f(·) = (·)3 and g(·) = (·). Therefore, at each
time n, the iteration of the separating method consists of: 1) the computation
of yi, for each sample of the mixtures, according to the dynamics (3) and 2) the
update of the parameters wij according to:

w12(n + 1) = w12(n) + µE{y3
1 ȳ2}

w21(n + 1) = w21(n) + µE{y3
2 ȳ1}

, (9)

where µ corresponds to the learning rate, [y1 y2]
T denotes the equilibrium point

of (3) and ȳi is a centering version of yi
1 2. One can check3 that (9) converges

1 More specifically, we adopt the following notation ȳr
i = yr

i − E{yr
i }.

2 Given that the signals are not supposed zero-mean, the centering of one the variables
in (9) is necessary, so that it converges when y1 and y2 are mutually independent.

3 Note that (9) converges when E{y3

i ȳj} = E{y3

i yj} − E{y3

i } E{yj} = 0.
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when E{y3
1y2} = E{y3

1}E{y2} and E{y3
2y1} = E{y3

2}E{y1}. Obviously, these
conditions are only necessary ones for the statistical independence between the
sources and, as a consequence, there may be particular sources for which such
strategy fails. On the other hand, this strategy provides a less complex algorithm
than those that deal directly with a measure of statistical independence.

In the last section, a stability condition concerning the separation structure
was provided. Likewise, as it will be seen in the sequel, it is possible to analyze the
stability of the learning rule (9). This study will permit us to determine whether
the separating equilibrium point, i.e., [w12 w21]

T = [a12 a21]
T , corresponds to a

stable one and, as a consequence, whether it is attainable for the learning rule.

3.3 Stability Analysis of the Learning Rule

According to the ordinary differential equation theory, it is possible, by assuming
that µ is sufficiently small, to rewrite (9) as:

dw12

dt
= E{y3

1 ȳ2}

dw21

dt
= E{y3

2 ȳ1}. (10)

A first point to be stressed is that the determination of all equilibrium points
of (10) is a rather difficult task. Even when k = 1 in (2), which corresponds to
the linear BSS problem, this calculation demands a great deal of effort [8].

Secondly, we are interested in the stability of the point [w12 w21]
T = [a12 a21]

T ,
but one must keep in mind that there are structural conditions to be assured so
that it corresponds to an equilibrium point of (10). For example, when k = 2, we
observed through simulations that this ideal adjustment of the separating system
usually guarantees the separation of the sources when the local condition (8) is
satisfied. Thus, in this situation and under the hypothesis of independent sources,
it is assured that E{y3

i ȳj} = E{s3
i s̄j} = 0.

As in Section 3.1, the local stability analysis is based on a first-order approx-
imation of (10). However, since we are dealing with a continuous dynamics in
this case, a given equilibrium point of the learning rule is locally stable when
the real parts of all eigenvalues of the Jacobian matrix are negatives [7]. After
straightforward calculations, one obtains the Jacobian matrix evaluated at the
equilibrium point [a12 a21]

T

J =

[

(

3E{y2
1 ȳ2

∂y1

∂a12

} + E{ȳ3
1

∂y2

∂a12

}
) (

3E{y2
1 ȳ2

∂y1

∂a21

} + E{ȳ3
1

∂y2

∂a21

}
)

(

3E{y2
2 ȳ1

∂y2

∂a12

} + E{ȳ3
2

∂y1

∂a12

}
) (

3E{y2
2 ȳ1

∂y2

∂a21

} + E{ȳ3
2

∂y1

∂a21

}
)

]

. (11)

Note that, assuming an ideal operation of the separating system, [y1 y2]
T could

be replaced by [s1 s2]
T , which permits us to express the stability conditions

of (9) in terms of some statistics of the sources.
The entries of the Jacobian matrix can be calculated by applying the chain

rule property on (3). For instance, it is not difficult to verify from that:

∂y1

∂a12
= −(yk

2 + a12kyk−1
2

∂y2

∂a12
). (12)
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Given that
∂y2

∂a12
= −

1

k
a21y

1

k
−1

1

∂y1

∂a12
, (13)

and substituting this expression in (12), one obtains:

∂y1

∂a12
=

−yk
2

1 − a12a21y
1

k
−1

1 yk−1
2

. (14)

By conducting similar calculations, one obtains the other derivatives:

∂y2

∂a12
=

a21y
1

k
−1

1 yk
2

k(1 − a12a21y
1

k
−1

1 yk−1
2 )

(15)

∂y1

∂a21
=

ka12y
1

k

1 yk−1
2

1 − a12a21y
1

k
−1

1 yk−1
2

(16)

∂y2

∂a21
=

−y
1

k

1

1 − a12a21y
1

k
−1

1 yk−1
2

(17)

As it would be expected, when k = 1, one obtains from the derived expressions
the same conditions developed in [8] and [9] for the stability of the Hérault-Jutten
algorithm for linear source separation.

4 Experimental Results

Aiming to assess the performance of the proposed solution, experiments were
conducted for the cases k = 2 and k = 3. In both situations, the efficacy of the
obtained solutions was quantified according to the following index:

SNRi = 10 log

(

E{s2
i }

E{(si − yi)
2
}

)

. (18)

From this, a global index can be defined as SNR = 0.5(SNR1 + SNR2).

k = 2. In a first scenario, we consider the separation of two sources uniformly
distributed between [0.1, 1.1]. The mixing parameters are given by a12 = 0.5 and
a21 = 0.5; a set of 3000 samples of the mixtures was considered and the number of
iterations regarding the learning algorithm (9) was defined to 3500 with µ = 0.05.
The initial conditions of the dynamics (3) were chosen as [y1(1) y2(1)]T = [0 0]T .
The results of this first case are expressed in the first row of Table 1. In Figure 2,
the joint distributions of the mixtures and of the retrieved signals are depicted
for a typical case (SNR = 35dB). Note that the outputs of the separating
system are almost uniformly distributed, which indicates that the separation
task was fulfilled. Also, we performed experiments by considering on each sensor
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Table 1. Average SNR results over 100 experiments and standard deviation (STD).

SNR1 SNR2 SNR STD(SNR)

k = 2 (Scenario 1) 37.18 33.05 35.12 8.90

k = 2 (Scenario 2) 17.98 15.35 16.67 1.72

k = 2 (Scenario 3) 36.49 31.84 34.17 4.92

k = 3 (Scenario 1) 22.46 21.04 21.75 5.02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.2
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0.6

0.8
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(a) Mixed signals.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2
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0.6

0.8

1

1.2

y
1

y 2

(b) Retrieved signals.

Fig. 2. First scenario - k = 2.

an additive white Gaussian noise with a signal-to-noise ratio of 17dB. The results
for this second scenario are depicted in the second row of Table 1.

A third scenario was composed by a uniformly distributed source between
[0.3, 1.3] and a sinusoidal source varying in the range [0.2, 1.2]. In this case, the
mixing parameters are given by a12 = 0.6 and a21 = 0.6 and the constants
related to the separating system were adjusted as in the first experiment. Again,
the separation method was able to separate the original sources, as can be seen
in the third row of Table 1.

k = 3. The problem becomes more tricky when k = 3. Firstly, we observed
through simulations that, even for a separating point [w12 w21]

T = [a12 a21]
T

that satisfies the equilibrium condition (8), the structure (3) does not guarantee
source separation, since there can be another stable equilibrium solution that has
no relation with the sources. In this particular case, we observed, after performing
some simulations, that the adopted network may be attracted by a stable limit
cycle and, also, that it is possible to overcome this problem by changing the
initial conditions of (3) when a periodic equilibrium solution occurs.

A second problem in this case is related to the convergence of the learning
rule. Some simulations suggested the existence of spurious minima in this case.
These two problems result in a performance degradation of the method when
compared to the case k = 2, as can be seen in the last row of Table 1. In this
case, we considered a scenario with two sources uniformly distributed between
[0.3, 1.3] and mixing parameters given by a12 = 0.5 and a21 = 0.5. The initial
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conditions of (3) were defined as [0.5 0.5]T . Also, we considered 3000 samples of
the mixtures and 10000 iterations of the learning algorithm with µ = 0.01.

5 Conclusions

The aim of this work was to design a source separation strategy for a class of
nonlinear systems that is related to a chemical sensing application. Our approach
was based on the ideas presented in [1, 2] in such a way that it may be viewed
as an extension of these works to the particular model considered herein. Con-
cerning the proposed technique, we investigated the stability of the separation
structure as well as the stability of the learning algorithm. This study permit-
ted us to obtain necessary conditions for a proper operation of the separation
method. Finally, the viability of our approach was attested by simulations.

A first perspective of this work concerns its application in a real problem of
chemical sensing. Also, there are several questions that deserve a detailed study
as, for example, the design of algorithms that minimizes a better measure of
independence between the retrieved sources (e.g. mutual information), including
an investigation of the separability of the considered model. Another envisaged
extension is to provide a source separation method for the most general case
of the Nikolsky-Eisenman model, which is given by (1): 1) by considering the
logarithmic terms; and 2) by considering the cases k ∈ Q. Actually, preliminary
simulations show that our proposal works for simple cases in k ∈ Q, such as
k = 1/3 and k = 2/3. However, there are tricky points in the theoretical analysis
conducted in this paper that are not appropriate to this new situation.
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