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Three-dimensional stationary structure of the flow over a backward-facing step is studied experimentally. Visualizati 
Particle Image Velocimetry (PIV) measurements are investigated. It is shown that the recirculation length is periodical 
modulated in the spanwise direction with a well-defined wavelength. Visualizations also reveal the presence of longitudin 
vortices. In order to understand the origin of this instability, a generalized Rayleigh discriminant is computed from a tw
dimensional numerical simulation of the basic flow in the same geometry. This study reveals that actually three region 
two-dimensional flow are potentially unstable through the centrifugal instability. However both the experiment and the 
computation of a local Görtler number suggest that only one of these regions is unstable. It is localized in the vicinity o
reattached flow and outside the recirculation bubble.

1. Introduction

The phenomenon of flow separation is a problem of great importance for fundamental and industrial reasons. For i
often corresponds to drastic losses in aerodynamic performances of airfoils or automotive vehicles. The backward-fa
is one of the simplest geometries to study this phenomenon. As a major benchmark for two-dimensional numerical sim
the backward-facing step has been the subject of experimental (see for instance Armaly et al. [1]) and numerical inve
(Kaiktsis et al. [2], Kaiktsis et al. [3], Kim and Moin [4], Lesieur et al. [5]).

Only a few studies are devoted to the three-dimensional aspects of this flow, especially in the steady regime. Armaly
and Williams and Baker [6] focused on the extrinsic side-wall effects experimentally and numerically. More recently B
et al. [7] revealed with a linear stability analysis based on numerical simulations, that a steady three-dimensional bi
occurs at a critical Reynolds number (based on the step height and the maximum velocity of the upstream profile) of 7
computation was performed on an infinite domain in the spanwise direction which suggests this instability to be intrins

In the present article, the aim is also to give more insight about the origin of the three-dimensionality occurring in se
flows. We first describe the experimental set-up of the backward-facing step flow and the measurements. The result
divided into two main parts. The first one concerns the experiment in which observations of the three-dimensional
instability are reported. Such observations, to our knowledge, do not have been reported before. In the second pa
numerical simulations of the two-dimensional basic flow in order to understand the three-dimensional instability. Expe
and numerical results are discussed together, which lead us to our conclusion concerning the possible mechanism r
for the three-dimensional instability.

* Corresponding author.
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2. Experimental set up

150 mm
the step

in
ry

nnel and
ge

am ramp
The flow is produced by gravity in a horizontal water tunnel. The rectangular cross section of the test channel is
wide and 100 mm high. Its total length is 820 mm, which allows visualizations and measurements far downstream of
(Fig. 1). The flow velocity ranges from 0.2 to 20 cm·s−1 with a precision of 0.05 cm·s−1. The step geometry is shown
Fig. 1; it is composed of a ramp of angle 9.5◦ upstream of a backward-facing step of heighth. For this geometry, the bounda
layer does not separate except at the edge of the step. In our coordinates system (Fig. 1(a))x, y andz are respectively the
streamwise, vertical and spanwise directions. The origin O of this system is located in the plane of symmetry of the cha
in the step corner. The Reynolds number,Re = hU0/ν, is based on the step heighth and the maximum velocity of the step ed

(a)

(b)

(c)

Fig. 1. Experimental set-up for the three configurations: (a) with the 10 mm high step; (b) with the 5 mm high step; (c) with the upstre
(no step).
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Fig. 2. Description of the PIV set-up. The measurements window is 75 mm high and 92 mm wide.

profile, U0. With this definition, the Reynolds number ranges from 10 to 300 in the present study. Another definition
often used for this geometry. It is based on the size of the inlet channel and the average upstream velocity [1–3]. We
the relation between the Reynolds number in our study and the Reynolds number in [1–3] by:Re[1−3] = 4

3Re.
We study three flow configurations. In the first one, the step height ish = 10 mm (Fig. 1(a)), and the expansio

ratio: H/(H − h) = 1.11. In the second configuration, the step height ish = 5 mm (Fig. 1(b)) and the expansion rati
H/(H − h) = 1.05. The third configuration is realized to quantify the influence of the upstream ramp with no step (Fig.

The flow is visualized by means of Laser Induced Fluorescence (LIF) in different planesx = cst andz = cst. The dye
injection is performed in the upstream boundary layer through 50 holes of 0.7 mm in diameter (Fig. 1(a)). The appara
for the injection is similar to the one used by Cadot and Kumar [8]. The injection rate is simply imposed by the rotation fre
of a peristaltic pump, which allows a perfect control of the rate. A drawback of such a pump is that the dye is periodicall
due to the pinching of the flexible tubes. In order to smooth out the dye flux pulses, we insert between the pump and the
holes a 250 ml container partially filled with air: the free surface in the container removes the high-frequency pulsatio
dye injection velocity for each hole is 0.05 cm·s−1 and no influence on the flow was observed.

We use a standard Particle Image Velocimetry (PIV) set-up (Adrian [9]). The water is seeded with spherical particle
in nominal diameter. Two Nd:Yag laser sources with 12 mJ of energy per pulse each and a duration of 4 ns provide a
pulsed light sheets. A 10 mm diameter cylindrical lens is used to expand the beam into a light sheet (Fig. 2) that is appro
0.5 mm thick. Images are recorded using a 1280× 1024 pixels CCD video camera. The physical dimensions of the PIV im
in thex–y plane is 75× 92 mm2. We use a 32× 32 pixels interrogation window with a 50% overlap leading to 1.2 mm sp
resolution.

3. Experimental results

3.1. Flow in the symmetry plane

Fig. 3 shows both the visualization and the velocity profile in the symmetry planez = 0 of the 10 mm high step atRe = 100.
Because of the high aspect ratio of the channel, the velocity profile at the step edge is not a Poiseuille flow but a flat pr
about a 10 mm thick boundary-layer. In the recirculation zone, the velocities are very small compared to the veloci
mean flow. The separation surface is then submitted to a strong shear. For higher Reynolds numbers, the flow become
3
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Fig. 3. Flow in the symmetry planez = 0 for h = 10 mm atRe = 100: visualization combined with PIV measurements.

Fig. 4. Non-dimensional recirculation length for the 10 mm high step deduced from PIV measurements: (a) our measurements (filled
the symmetry planez = 0 versus the Reynolds number; measurements in an other experiment1 (open circles), see discussion; (b) measurem
at Re = 100 versusz.

the separation surface is subjected to shear-layer instabilities above a critical Reynolds number (Rc = 313 forh = 10 mm and
Rc = 256 forh = 5 mm). The present study is concerned by the stationary regime only.

3.2. Recirculation length measurements

The recirculation length is obtained from the PIV measurements (as displayed in Fig. 3) by measuring the distance
the step corner and the point of reattachment on the bottom wall. This point is characterized by a zero longitudinal ve
the extreme vicinity of the bottom wall. Fig. 4(a) represents the recirculation length in the planez = 0 obtained with the 10 mm
high step versus the Reynolds number. It increases almost linearly in the stationary regime.

In order to characterize the topology of the separated zone, we perform several measurements of the reattachmen
the spanwise direction (corresponding to different PIV planesz = cst). The recirculation length versus the spanwise coordi
z is plotted in Fig. 4(b). These measurements made atRe = 100 indicate a strong wall effect since the recirculation length ran
from 1.5h to 7h. On both sides of the channel(z < −70 mm andz > 70 mm), we observe a side-wall effect similar to the o
described by Armaly et al. [1] and later called wall-jets by Williams and Baker [6].

1 Data from Armaly et al. [1]. The data have been rescaled using our definition of the Reynolds number.
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The striking observation concerns the centre part of the channel (−50 mm< z < 50 mm), where we can see a spanwise
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modulation of the recirculation length with a wavelength of aboutλ ∼ 30 mm.

3.3. Transversal visualizations

We perform the same kind of visualizations as those described in Section 3.1 but in transversal planes(x = cst).
A clear periodic spanwise structure of the flow is observable for both step height (Fig. 5(a) and (b)). The dye separ

five patches for the small step and into five mushroom-like patterns for the big step. These structures reveal the pr
counter-rotating longitudinal vortices. We observed this kind of spanwise structures for lower and higher Reynolds
in a range of 20 to 200. We never observed any threshold for this phenomenon in this range. Actually, these structur
appear after a very long time (typically 30 minutes) compared to the advection time of the dye passing above the separa
(1 minute). The disturbance of the velocity field induced by the longitudinal structures should then be very small com
the basic flow.

The same spanwise wavelength is found for both step heights (Fig. 5 (a) or (b)) and is about 30 mm. It correspon
spanwise wavelength observed in Fig. 4(b) for the reattachment length. We then find that the wavelength does not d
the step height. Moreover, whatever the Reynolds number and for a given step height, we observe the same wavelen

We checked the influence of the upstream ramp (with no step) on the flow using the experimental configuration des
Fig. 1(c). The picture in Fig. 5(c) displays the typical visualization we can observe. The dye remains homogenously di
at the bottom wall. Sometime, a little cusp appears (as displayed in Fig. 5(c)) and disappears after a typical time of 10
but never any spanwise periodicities are observable.

Fig. 5. Visualization of the flow in the planex = 25h at Re = 100, the flow is coming in the direction of observation: (a) with the 10 mm h
step; (b) with the 5 mm high step; (c) with the upstream ramp (no step). On the first two pictures we can see the step edge upstream
5



In the next part of the article, we propose a possible mechanism for the origin of the three-dimensional structure of the flow.

ounter-
of this

which a

channel
o solve

ion is a
ose an

ber. The
smallest

ocedure
thod for

ficient)

re of the
vature is

id used for
Our strategy is to characterize the stability of a two-dimensional flow obtained by direct numerical simulation.

4. Numerical simulation

When there are curved streamlines in two-dimensional flow, three-dimensional instability may occur in the form of c
rotating vortices in the direction of the flow: it is called centrifugal instability. The necessary condition for the existence
instability is given by the inviscid Rayleigh criterion which consists in considering the sign of a functionΦ called the Rayleigh
discriminant and computed from the two-dimensional basic flow.

4.1. Numerical simulation

So, our aim is not to reproduce the three-dimensional instability but to obtain the two-dimensional basic flow on
centrifugal stability criterion will be applied in the following subsections.

The numerical domain is defined in Fig. 6(a). It represents exactly the longitudinal section of the hydrodynamic
with the step of heighth = 10 mm. In particular, a special care is done to have a long enough downstream section t
completely the recirculation region and to prevent numerical effect due to the outflow condition.

The boundary conditions are no slip wall conditions on the upper and lower part of the domain. The inflow condit
flat velocity profile with theU0 velocity so that the boundary layer grows before reaching the edge of the step. We imp
outflow condition at the exit of the domain.

We use a structured mesh with a very fine grid so that it can be used for a rather wide range of Reynolds num
mesh is refined in the boundary layer regions, in the separation region, and in the recirculation bubble (Fig. 6(b)). The
resolution in the vertical direction is 0.25 mm. The total grid size is 43 000 cells.

As the Reynolds numbers are moderate, we perform direct numerical simulation DNS of the flow. The numerical pr
is based on a control volume, finite difference method. The equations are solved using the SIMPLE (Semi Implicit Me
Pressure Linked Equation) algorithm with an iterative line-by-line matrix solver.

4.2. Rayleigh discriminant computation

The application of the Rayleigh criterion (Rayleigh [10], Drazin and Reid [11]) gives a necessary (but not suf
condition of instability, and we will discuss the stabilizing effect of the viscosity in the following section.

The centrifugal instabilities can appear in a basic flow where the highest velocities are close to the centre of curvatu
streamlines. This situation corresponds to an algebraic radius of curvature opposite to the vorticity (the radius of cur

(a)

(b)

Fig. 6. (a) Numerical domain used for the computations representing the exact geometry of the experimental set-up; (b) numerical gr
the computations (43 000 cells). The grid is refined in the boundary layer regions and in the separation region.
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Fig. 7. Contour plot of the Rayleigh discriminant (black lines) superimposed with the streamlines obtained from the numerical simulat
lines) atRe = 100. Three potentially unstable regions appear: each minimum is displayed with a cross and the contour plot around co
to its half-minimum value.

positive if the flow is locally counter-clockwise and negative if not). The following functionΦ(called the Rayleigh discriminan
is computed numerically from the results of the 2D numerical simulation, its expression is as follows:

Φ(x,y) = 2U�

R
, (1)

whereU(x,y) is the modulus of the velocity,ω(x,y) is the vorticity andR(x,y) is the local algebraic radius of curvatur
We computed this generalized Rayleigh discriminant, corresponding to a local criterion for a potential centrifugal in
(Mutabazi et al. [12,13], Sipp and Jacquin [14]). The local radius of curvature is computed following Sipp and Jacquin

R(x,y) = U
3

uay − vax
, (2)

where(u, v) are the components of the velocity field and (ax, ay ) the components of the convective acceleration (u · ∇)u.
The application of the Rayleigh criterion consists in considering the sign ofΦ: when it is negative, the flow at the point(x, y)

is potentially unstable. The results of the computation are plotted in Fig. 7. We can distinguish three regions correspo
three locations of high curvatures in the flow: the region in the front of the ramp I, the region in the recirculation zone
finally the region just above the reattachment location III. The intensity of potential instability for each region is meas
the local minima ofΦ. It is −0.0056 in region III,−0.0027 in II and−0.0401 in region I. The region of potential instabili
is limited by the contourΦ = 0. However this contour is not well-defined because of the numerical noise. We then cho
estimate the spatial extension of each region as the contour plot at half the minimum. The hierarchy is different; th
extension corresponds to region III, the intermediate to region I, the smallest to region II.

4.3. Görtler number

The Rayleigh criterion gives a necessary condition for the centrifugal instability but it does not take into acco
stabilizing viscosity effect. The Görtler number [15] actually compares the curvature effects with the viscosity effects:

G = Re

(
δ

R

)1/2
= Uδ3/2

νR1/2
, (3)

whereRe is the Reynolds number based onδ (characteristic size of the unstable zone, which is the boundary layer thic
in the classical Görtler problem) andν is the kinematic viscosity of the fluid. When the Görtler number is high enough (a
a threshold that has to be defined by the stability analysis) the curvature effect dominates the viscosity effects and t
unstable.

With the numerical simulation we measure the local values ofU andR at the three maximum locations of potential instabil
exhibited in Fig. 7. We define the characteristic size of each unstable zoneδ as the width of the contour of the half-minimu
value of the Rayleigh discriminant.

We perform several numerical simulations with the same grid fromRe = 50 toRe = 500 (the resolution of the Navier–Stok
equations is maintained in the steady case). We first show in Fig. 8(a) the evolution of the recirculation length, which i
as the Reynolds number increases. In Fig. 8(b) we plot the local Görtler number defined in Eq. (3) of the three reg
observe that the largest Görtler number is not found in region I where the modulus of the Rayleigh discriminant is the
but in region III. Moreover, in region I, the Görtler number saturates around 75 while it still increases in region III up to
region II, the Görtler number remains, in comparison, very small and never exceeds 15.
7
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Fig. 8. Results of the 2D steady numerical simulation: (a) non-dimensional recirculation length (filled circles) versus the Reynolds
measurements in an other experiment,2 see discussion; (b) Görtler number for each potentially unstable region versus the Reynolds
(crosses for region I, filled circles for region II and empty circles for region III).

5. Discussion

We first discuss the possibility of a centrifugal instability as the origin of the observed three-dimensional flow. Th
compare our results to previous experimental and numerical results.

In order to understand the origin of the three-dimensionality in the experiment, we compute the Rayleigh discrim
the two-dimensional basic flow. We find the basic flow to be potentially unstable in three regions (Fig. 7). However,
into account the stabilization due to the viscosity, we compute a Görtler number for each regions (Fig. 8(b)). A releva
that we do not observe any instability in our experiment due to the ramp alone (see Fig. 5(c)), we can then deduce tha
is stabilized by the viscosity. Consequently, the value of the Görtler number in region I is below the threshold of sta
implies that region II should be stable since the Görtler number is always smaller in region II than in region I. On th
hand, the Görtler number of region III is always larger than the Görtler number of region I: it is then plausible that re
could be unstable through centrifugal instability.

In their recent numerical simulation, Barkley et al. [7] performs a linear stability analysis and show that a three-dime
instability occurs in region II and not in region III. However, they do not give more indication about the mechanism
instability they observe. At the moment, we do not understand this contradiction and the discussion about the three-dim
instability origin is still open.

We now turn to other previous works [1–3,6]. Actually, our experiment is the first one to show a spanwise per
of the flow. Previous works [1,6] report side-wall effects but not any intrinsic three-dimensional instability. Hence, it
consistent that the experimental velocity field of [1,6] in the symmetry plane of the step is similar to the result of th
dimensional simulation. In our case, the experimental flow is three-dimensional, and we do not retrieve the main char
of the numerical flow (forRe = 100); the recirculation length is about 4.5h in the experiment whereas it is 7h in the simulation.
We should also mention that neither the recirculation length in our experiment (Fig. 4(a)) nor in our numerical sim
(Fig. 8(a)) is consistent with the data in reference [1]. This discrepancy could lie in the big difference in the expansio
In our experiment it is close to 1 (which corresponds to a near semi-infinite medium, the only characteristic length is
height) whereas it is often close to 2 [1–3,5] (for this configuration the flow is strongly confined since the inlet channe
is equal to the step height). Furthermore, it is also possible that the expansion ratio modifies the two-dimensional b
affects the value of the generalized Rayleigh discriminant and then the potential for centrifugal instability. Moreover, ou
proving the existence of three-dimensional structures are consistent with the observations of Albensoeder et al. [16] in
of cavities since the same physical mechanism and results were obtained.

2 Data from Armaly et al. [1]. The data have been rescaled using our definition of the Reynolds number.
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6. Conclusion

the flow
rigin of
ide the
possible

eilh for

J. Fluid.

ckward-

d-facing

308–323.
bulence,

(1997)

ch. 473

J. Fluid.

2) 1199.
bilities

ure and

5, 1954.
, Phys.
We report the existence of a three-dimensional stationary structure with a periodicity in the spanwise direction in
over a backward-facing step. With the support of direct two dimensional numerical simulation, we show that the o
the instability is consistent with a centrifugal instability which appears in the vicinity of the reattached flow and outs
recirculation bubble. However, since such instability has not been seen in experiment with a lower expansion ratio, it is
that its existence is conditioned by the expansion ratio.
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