Zoltán Ésik

Pascal Weil
email: author.pascal.weil@labri.fr.

Algebraic characterization of logically defined tree languages *

We give an algebraic characterization of the tree languages that are defined by logical formulas using certain Lindström quantifiers. An important instance of our result concerns first-order definable tree languages. Our characterization relies on the usage of preclones, an algebraic structure introduced by the authors in a previous paper, and of the block product operation on preclones. Our results generalize analogous results on finite word languages, but it must be noted that, as they stand, they do not yield an algorithm to decide whether a given regular tree language is first-order definable.

Classification: ACM: F.4.3, F.4.1. MSC: 03B70, 68Q70, 68Q45 One of Bret Tilson's lasting contributions is the introduction (with John Rhodes) of the notions of block product and two-sided semidirect product, and their use in the structure theory of finite monoids. This tool was initially introduced to derive iterated decompositions of morphisms and to refine the wreath product-based Krohn-Rhodes decomposition of finite monoids [START_REF] Rhodes | The kernel of monoid morphisms[END_REF]. It quickly found applications in formal language theory (see [START_REF] Rhodes | Decomposition techniques for finite semigroups using categories[END_REF][START_REF] Rhodes | Decomposition techniques for finite semigroups using categories, II[END_REF][START_REF] Weil | Closure of varieties under products with counter[END_REF][START_REF] Almeida | Representation theory of finite semigroups, semigroup radicals and formal language theory[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] among others). One of the more fruitful applications of this work has been in the investigation of the logical aspects of automata theory (on finite words). For 1 instance, the expressive power of first-order formulas with a certain quantifier depth, can be captured by monoids which divide an iterated block product of semilattices of the same length, see Straubing's book [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF].

Automata are particularly well suited to discuss the behavior of terminating sequential systems (languages of finite words), and this field of research has benefited from the start from the well-established connection between automata and monoid theory. There is however also much interest in automata-theoretic descriptions of languages of other structures than finite words, corresponding to other natural ideas of implementation and other natural models of computation (infinite, branching, concurrent, timed, etc). This paper is a contribution to the investigation of an important problem of this sort: can we decide whether a regular tree language is first-order definable? Here trees are finite, ranked and ordered. The latter properties signify that the nodes of the trees are labeled with symbols of a given arity (the rank of the node), and the children of a node of rank r form a totally ordered set of cardinality r. A tree language is said to be regular if it is accepted by a classical (deterministic) bottom-up tree automaton.

The notion of automata recognizability for (finite) word languages is easily translated to an algebraic notion of recognizability, expressed in terms of monoids: the set of all words on a given alphabet A is a monoid (the free monoid A * over that alphabet), and one shows that a language is recognized by a finite state automaton if and only if it is the inverse image of a set, under a morphism from A * into a finite monoid. Moreover, if a language is recognizable, then there is a least finite monoid recognizing it, called its syntactic monoid. This point of view opens vast possibilities for the classification and the discussion of the properties of recognizable languages, which can be characterized in terms of the algebraic properties of their syntactic monoid, see Eilenberg's variety theory [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF][START_REF] Pin | English translation: Varieties of formal languages[END_REF][START_REF] Almeida | On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics[END_REF]. As the syntactic monoid of the language accepted by a given automaton is computable, this can lead to interesting decision algorithms.

It is well-known (Büchi, 1960), that a language is recognizable if and only if it is definable in monadic second-order logic. It was also shown that a language is definable by a first-order formula if and only if its syntactic monoid is aperiodic. This statement is actually the combination of two classical theorems due to Schützenberger and to McNaughton and Papert. It can also be proved directly (as in [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]), using the Krohn-Rhodes decomposition theorem, which implies that a monoid is aperiodic if and only if it belongs to the least pseudovariety closed under block product and containing U 1 = {1, 0}. As the syntactic monoid of a regular language is computable and as aperiodicity is decidable, it is also decidable whether a regular language is FO-definable.

Considering logically defined sets of trees (or other discrete combinatorial structures) is just as natural as for words. But the literature on these questions shows that classification and decision results are much harder to reach, in part because we lack the versatile and powerful algebraic tool provided in the word case by finite monoid theory. The weakness of our understanding of automata theory for tree languages is highlighted by the fact that the decidability of firstorder definability is still an open problem.

For most discrete structures, there is no obvious algebraic structure that can be used in lieu of monoids, or at least no algebraic structure that gives rise to the same wealth of structure theorems and variety characterizations, see [START_REF] Weil | Algebraic recognizability of languages[END_REF]. In the tree case (for finite, ranked and ordered trees), several propositions can be found in the literature, see the work of Steinby, Salehi, Heuter, Podelski, Wilke, Ésik, etc [START_REF] Steinby | A theory of tree language varieties, in: Tree automata and languages[END_REF][START_REF] Steinby | General varieties of tree languages[END_REF][START_REF] Salehi | Varieties of tree languages definable by syntactic monoids[END_REF][START_REF] Salehi | Tree algebras and varieties of tree languages[END_REF][START_REF] Heuter | First-order properties of trees, star-free expressions, and aperiodicity[END_REF][START_REF] Podelski | A monoid approach to tree automata[END_REF][START_REF] Th | An algebraic characterization of frontier testable tree languages, Theoret[END_REF][START_REF] Ésik | A variety theorem for trees and theories[END_REF]. Until recently none was very convincing in terms of its capacity to characterize significant classes of languages, but there are recent encouraging results expressed in terms of minimal tree automata, that is, in terms of Σ-algebras by Benedikt and Ségoufin [START_REF] Benedikt | Regular tree languages definable in FO and in FO mod[END_REF], Bojańczyk and Walukiewicz [START_REF] Bojańczyk | Characterizing EF and EX tree logics[END_REF], Ésik [START_REF] Ésik | Characterizing CTL-like logics on finite trees[END_REF] and Ésik and Iván [START_REF] Ésik | Some varieties of finite tree automata related to restricted temporal logics[END_REF][START_REF] Ésik | Products of tree automata with an application to temporal logic[END_REF] 1 . In a previous paper [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF], the authors introduce a new algebraic framework -the so-called preclones -to classify and discuss the properties of recognizable tree languages. It turns out that the setting of preclones makes it natural to discuss not only the recognizable sets of trees, but also recognizable sets of trees with variables. Variables can be seen as unlabeled leaves of the tree, and the rank of a tree is the number of such unlabeled leaves. Alternately, one can regard these leaves as labeled by particular letters {v 1 , v 2 , . . .}, in such a way that in a rank k tree, the variable leaves are labeled v 1 , . . . , v k from left to right.

We verified in [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF] that the notion of recognizability induced by the algebraic structure of preclones coincides with the usual notion of recognizable tree languages, that the syntactic preclone of a recognizable tree language is completely determined by the minimal deterministic bottom-up automaton of the language (all very reassuring facts), and that these notions are robust enough to allow for an Eilenberg-like development in terms of varieties of languages and pseudovarieties of preclones.

In this paper, we use this algebraic framework to derive an algebraic characterization of first-order definable tree languages, and more generally, of the classes of tree languages determined by certain families of Lindström quantifiers. This characterization requires the introduction of a block product operation on preclones, a complex algebraic operation which generalizes Tilson's block product of monoids. Our main result implies that the first-order definable tree languages are exactly those languages whose syntactic preclone sits in the least pseudovariety of preclones closed under block product and containing T ∃ , a very simple preclone whose properties were discussed in [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF] and which can be viewed as an analogue of the monoid U 1 . This result was announced without proof in the authors' communication at FST-TCS [START_REF] Ésik | On logically defined recognizable tree languages[END_REF].

As it is, our result does not yield an algorithm to decide whether a given recognizable tree language is first-order definable. This question is briefly discussed in the conclusion of the paper, but whatever the case may be, such a decidability result remains one of the main goals in this field. Our result however suggests the feasibility of an algebra-based solution.

The plan of this paper is as follows. Section 1 summarizes the essential properties of preclones that are necessary for this study. Section 2 introduces the logical apparatus we will use, including the Lindström quantifiers and the closure properties of the associated operators on classes of languages. Finally, in Section 3, we introduce the block product operation on preclones, and we prove our main results. The paper closes on a conclusion where we discuss certain questions raised by these results.

Notation Let n ≥ 0. We denote by [n] the set {1, . . . , n} if n > 0, the empty set if n = 0.

The algebraic framework

Throughout the paper, we will be discussing sets of finite ranked trees, that is, trees in which the set of children of each inner node is linearly ordered; Σ designates a ranked alphabet, that is, Σ = (Σ n) n≥0 where the Σ n are pairwise disjoint sets and n Σ n is finite. An element of Σ n is said to have rank n.

This section summarizes the main facts relative to the algebraic framework, which we will use to establish our main theorem. Most of these results are taken from the authors' earlier paper [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF] and are stated here without proof.

Preclones

A preclone is a many-sorted algebra S = ((S n) n≥0 , •, 1). The elements of S n are said to have rank n, the element 1 belongs to S 1 , and the composition operation • associates with each f ∈ S n and n-tuple g = (g 1 , . . . , g n) (with

g i ∈ S mi , 1 ≤ i ≤ n), an element f • g ∈ S m
where m = i m i . Moreover, 1 and • satisfy the axioms given below.

For convenience, a tuple g as above is written g = g 1 ⊕ • • •⊕ g n , we say that g has total rank m, written rank(g) = m, and we let S n,m be the set of n-tuples of total rank m. Note that S 1,m = S m for all m. We also write n for the ⊕-sum of n copies of 1, so that n ∈ S n,n . The axioms defining preclones are the following:

1 • f = f = f • n for each f ∈ S n , n ≥ 0, and (f • g) • h = f • (g 1 • h1 ⊕ • • • ⊕ g n • hn) where f ∈ S n , g = n i=1 g i with each g i ∈ S mi , h = m j=1 h j with each h j ∈ S pj , m = i m i , h1 equal to the ⊕-sum of the m 1 first h j 's, h2 equal to the ⊕-sum of the m 2 next h j 's, etc.
It is interesting to remark that S 1 is naturally equipped with a monoid structure.

Sub-preclones of preclones are defined in the natural way. A morphism of preclones, ϕ: S → T , is a rank preserving map, which also preserves the unit element 1 and the composition operation. Similarly, a congruence is an equivalence relation, that relates only elements of equal rank, and which is stable under the composition operation. The quotient of a preclone by a congruence is naturally endowed with a preclone structure, and the projection map is an onto morphism.

The least sub-preclone of a preclone S, containing a given subset A is called the sub-preclone of S generated by A. If this preclone is S itself, we say that S is generated by A. A preclone is finitely generated if it admits a finite set of generators.

A preclone S is said to be finitary if each S n is finite. Observe that as soon as some S k , k ≥ 2 is non-empty, then infinitely many S k are non-empty, and hence S is not finite.

Examples of preclones

The following examples will be essential for our study.

Trees and free preclones Let Σ be a ranked alphabet. The free preclone generated by Σ, written ΣM , can be described as follows (see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 2.2]). Let (v k) k≥1 be a sequence of variable names: we let ΣM n be the set of finite trees, whose inner nodes are labeled by elements of Σ (where a rank k letter labels a node with k children), whose leaves are labeled by elements of Σ 0 ∪ {v 1 , . . . , v n }, and whose frontier (the left to right sequence of leaf labels) contains exactly one occurrence of v 1 , . . . , v n , in that order (that is, belongs to

Σ * 0 v 1 Σ * 0 • • • v n Σ * 0)
. The elements of ΣM n are called trees of rank n or n-ary trees over Σ.

If t is such a tree, we let NV(t) be the set of nodes of t with a label in Σ (NV stands for non-variable labeled). In the logical discussion to follow (Section 2), we will give the nodes in NV(t) a particular rôle.

f v 1 . . . v n f n g 1 m 1 g n m n f n g m Figure 1: f ∈ ΣM n , g = g 1 ⊕ • • • ⊕ g n ∈ ΣM n,m and two views of f • g ΣM is a preclone for the following operations: if f ∈ ΣM n and g i ∈ ΣM mi (1 ≤ i ≤ n), then the composite tree f • (g 1 ⊕ • • • ⊕ g n) is
obtained by replacing the v i -labeled leaf of f by the root of g i , and by renumbering the variable labeled leaves of the resulting tree with consecutively indexed v j 's, see Figure 1. The unit element 1 is the graph in ΣM 1 consisting of a single node labeled v 1 .

Each element of Σ can be identified with an element of ΣM : the letter σ ∈ Σ n is identified with the tree with n + 1 nodes, consisting of the root, labeled σ, and the n children of the root, labeled v 1 , . . . , v n in this order.

The elements of rank 0, ΣM 0 , are the ordinary Σ-labeled trees.

Example 1.1 As discussed in the introduction, our results can be seen as generalizations to trees of known results on recognizable word languages. This meta-statement can be made precise in the following fashion: if A is a finite (unranked) alphabet, we can view A as a ranked alphabet, all of whose elements have rank 1. Then the elements of AM 1 can be seen as the words of the form wv 1 , where w ∈ A * . In particular, the monoid AM 1 is isomorphic to, and will be identified with the free monoid A * . The sets AM n (n = 1) are empty. ⊓ ⊔ Preclone of transformations, preclone of an automaton If Q is a set, let T n (Q) be the set of n-ary transformations of Q, that is, the set of mappings

Q n → Q. Let also T(Q) = (T n (Q)) n≥0 . Composition of mappings endows T(Q) with a preclone structure in the following sense: if f ∈ T n (Q), g i ∈ T mi (Q) (1 ≤ i ≤ n) and m = i m i , then f • (g 1 ⊕ • • • ⊕ g n) maps (q 1 , . . . , q m) to
f g 1 (q 1 , . . . , q m1), g 2 (q m1+1 , . . . , q m1+m2), . . . , g n (q m-mn+1 , . . . , q m) .

If Σ is a ranked alphabet and Q is a Σ-algebra, each element σ ∈ Σ n determines naturally an n-ary transformation of Q. The sub-preclone of T(Q) generated by Σ is called the preclone associated with Q.

Example 1.2 Let A be an unranked alphabet, viewed as a ranked alphabet as in Example 1.1. An A-algebra Q is simply a set, equipped with an action of A, that is, a deterministic complete automaton. Each letter a ∈ A then defines a mapping Q → Q. Thus the preclone associated with Q has elements of rank 1 only, which form the usual transition monoid of the automaton, see [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF][START_REF] Pin | English translation: Varieties of formal languages[END_REF]. ⊓ ⊔ We note that Σ-algebras are natural objects in our context: a deterministic complete bottom-up tree automaton accepting trees in ΣM 0 (see [START_REF] Comon | Tree Automata Techniques and Applications[END_REF]), with state set Q, can be described as a finite Σ-algebra Q, equipped with a set F ⊆ Q of final states.

The preclones T ∃ and T p Let B be the Boolean semiring B = {true, false}, and let T ∃ be the subset of T(B) whose rank n elements are the n-ary or function and the n-ary constant true, written respectively or n and true n (by convention, or 0 is the nullary constant false 0). Then T ∃ is a preclone, which is generated by the binary or 2 function and the nullary constants true 0 and false 0 . The set B equipped with these 3 generators can be viewed as a finite tree automaton, and T ∃ is the preclone associated with this automaton.

It is interesting to note that the rank 1 elements of T ∃ form a 2-element monoid, isomorphic to the multiplicative monoid {0, 1}, and known as U 1 in the literature on monoid theory, e.g. [START_REF] Pin | English translation: Varieties of formal languages[END_REF].

Similarly, if p ≥ 2 is an integer and B p = {0, 1, . . . , p-1}, let T p be the subset of T(B p) whose rank n elements (n ≥ 0) are the mappings f n,r : (r 1 , . . . , r n) → r 1 + • • • + r n + r mod p for 0 ≤ r < p. Again, T p is a finitely generated preclone, generated by the nullary constant 0, the unary increment function f 1,1 and the binary sum f 2,0 . Moreover, T p can be seen as the preclone associated with a p-element automaton, and its rank 1 elements form a monoid isomorphic to the cyclic group of order p.

Preclone-generator pairs If S is a preclone and A is a set of generators of S, we say that (S, A) is a preclone-generator pair, or pg-pair. A pg-pair (S, A) is said to be finitary if S is finitary and A is finite. The notions of sub-pg-pair and morphisms of pg-pairs are defined naturally: (S, A) is a sub-pg-pair of (T, B) is A ⊆ B (so that S is by construction a sub-preclone of T); and a morphism of pg-pairs ϕ: (S, A) → (T, B) is a preclone morphism from S to T such that ϕ(A) ⊆ B.

Syntactic preclones

Let S be a preclone and let L ⊆ S k . We say that L is recognizable if there exists a morphism ϕ: S → T into a finitary preclone and a subset P ⊆ T k such that L = ϕ -1 (P). Then we say that L is recognized by T , and by the morphism ϕ. If (S, A) and (T, B) are pg-pairs and ϕ is a morphism between these pg-pairs, we say that L is recognized by (T, B).

Let f ∈ S n . A context of f in L is a pair (u, v) where u is an element of S and v is an n-tuple of elements of S, such that f can be inserted under u and above v to produce an element of L, see Figure 2. We would like this condition to read u • f • v ∈ L, but it has to be a little more technical, to specify where precisely f is attached under u.

Formally, for each k ≥ 0, n > 0, let I k,n be the set of n-ary contexts in S k , that is, the set of tuples of the form (u, k 1 , v, k 2), where k 1 , k 2 ≥ 0 and

k 1 + k 2 ≤ k, u ∈ S k1+1+k2 and v ∈ S n,ℓ with ℓ = k -(k 1 + k 2), see Figure 2. If L ⊆ S k , f ∈ S n , we say that a context (u, k 1 , v, k 2) ∈ I k,n is an L-context of f if u • (k 1 ⊕ f • v ⊕ k 2) ∈ L.
We also let the set of 0-ary contexts in S k be the set I k,0 of tuples (u, k 1 , 0, k 2) where k 1 , k 2 ≥ 0 and u ∈ S k1+1+k2 (the symbol 0 is introduced here to preserve the uniformity of notation). We say that such a context is an

L-context of f ∈ S 0 if u • (k 1 ⊕ f ⊕ k 2) = u • (k 1 ⊕ f • 0 ⊕ k 2) ∈ L.
Next we say that elements of f, g are L-equivalent, written f ∼ L g if f and g have the same L-contexts. The relation ∼ L is a congruence, called the syntactic congruence of L, the quotient preclone S/ ∼ L is called the syntactic preclone of L, and the projection morphism is the syntactic morphism. Finally, if A is a set of generators of S, the syntactic pg-pair of L is the pair (T, B) where T = S/ ∼ L and B is the image of A in the syntactic morphism. We note the following result, proved in [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Proposition 3.2].

u k 1 k 2 v n k -(k 1 + k 2) u k 1 k 2 f v Figure 2: an n-ary context in ΣM k ; is it an L-context of f (f ∈ Σ n)?
Proposition 1.3 Let S be a preclone, k ≥ 0 and L ⊆ S k . Then the following statements hold.

• A morphism of preclones recognizes L if and only if it it can be factored through the syntactic morphism of L.

• If T is a sub-preclone or a quotient of T ′ , and if T recognizes L, then so does T ′ .

• L is recognizable if and only if its syntactic preclone is finitary.

• The analogous statements hold for pg-pairs.

We will be primarily concerned with the case where S is a finitely generated free preclone, S = ΣM with Σ a ranked alphabet. The subsets of each ΣM k are called tree languages. In that case, the notion of recognizable tree languages defined above coincides with the classical notion of recognizability, and in particular, the syntactic preclone of a recognizable tree language L ⊆ ΣM 0 coincides with the preclone of the minimal automaton of L, see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 3.2]. It is interesting to note that the syntactic Σ-algebra of L [START_REF] Steinby | General varieties of tree languages[END_REF] is exactly the rank 0 part of the syntactic preclone of L, and that the syntactic tree monoid [START_REF] Podelski | A monoid approach to tree automata[END_REF] of L is the monoid of rank 1 elements of its syntactic preclone. In particular, if L ⊆ ΣM 0 , then the syntactic preclone of L is finitary if and only if its rank 0 part is finite.

We now consider two important examples. In each, the alphabet is a ranked Boolean alphabet ∆, that is, a ranked alphabet such that whenever ∆ n = ∅, then ∆ n = {1 n , 0 n }, see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 3.3] for more details.

Example 1.4 For k ≥ 0, let K k (∃) be the set of trees in ∆M k containing at least one node labeled 1 n (for some n). Then K k (∃) is recognizable and its syntactic preclone is T ∃ defined in Section 1.2, see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 3.3]. More generally, let ϕ: ΣM → T ∃ be a morphism, with Σ an arbitrary ranked alphabet. Let

Σ (0) = n {σ ∈ Σ n | ϕ(σ) = or n }
and let Σ (1) be the complement of Σ (0) in Σ. Then the subsets of ΣM k recognized by ϕ are ∅, ΣM k , ϕ -1 (or k) = Σ (0) M k and ϕ -1 (true k), the set of trees in ΣM k with at least one occurrence of a letter in Σ (1) . Similarly, if p, r are integers with 0 ≤ r < p and if K k (∃ r p) consists of the trees in ∆M k such that the number of nodes labeled 1 n (for some n) is congruent to r modulo p, then K k (∃ r p) is recognizable and its syntactic preclone is T p . If ϕ: ΣM → T p is a morphism, then the subsets of ΣM k recognized by ϕ are the finite unions of the ϕ -1 (f n,r) (0 ≤ r < p). For each such r, let

Σ (r) = n {σ ∈ Σ n | ϕ(σ) = f n,r }.
For each t ∈ ΣM k , let w r (t) be the number of nodes in NV(t) labeled by a letter in Σ (r) , and let w(t) = r r w r (t). Then ϕ -1 (f n,r) is the set of all t ∈ ΣM k such that w(t) = r (mod p).

⊓ ⊔

Varieties of tree languages and pseudovarieties

A pseudovariety of preclones is a class of finitary preclones which is closed under taking finite direct products, sub-preclones, quotients, finitary unions of ω-chains and finitary inverse limits of ω-diagrams, see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 4]. Here, we say that a union T = n≥0 T (n) is finitary if T is finitary. Finitary inverse limits of an ω-diagram of the form ϕ (n) : T (n+1) → T (n) are defined similarly. The definition of a pseudovariety of pg-pairs is similar: it is a class of finitary pg-pairs which is closed under taking finite direct products, sub-preclones, quotients, and finitary inverse limits of ω-diagrams (there is no need to consider unions of ω-diagrams, see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 4.4]).

We note the following proposition [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Corollary 4.22].

Proposition 1.5 Let V be a pseudovariety of preclones and let S be a finitary preclone such that, for all s = t ∈ S, there exists a morphism ϕ from S into a preclone in V with ϕ(s) = ϕ(t). Then S ∈ V.

An analogous statement for pseudovarieties of pg-pairs also holds.

Proposition 1.6 Let V be a pseudovariety of pg-pairs and let (S, A) be a finitary pg-pair such that, for all s = t ∈ S, there exists a morphism ϕ from (S, A) into a pg-pair in V with ϕ(s) = ϕ(t). Then (S, A) ∈ V.

Proof. This statement is proved in the same fashion as Proposition 1.5 (see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]), using also [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Proposition 4.23].

⊓ ⊔

If K is a class of finitary preclones (resp. pg-pairs), there exists a least pseudovariety containing K, which is said to be generated by K and is denoted by K , see [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Section 4.2]. We record in particular the following results, which follow from [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Propositions 3.3 and 4.16,Corollary 4.8].

Proposition 1.7 Let K be a class of finitary preclones (resp. pg-pairs) and let V be the pseudovariety generated by K. The syntactic preclone (resp. pg-pair) of a recognizable tree language belongs to V if and only if it is a quotient of a sub-preclone (resp. sub-pg-pair) of a direct product of elements of K. Proposition 1.8 A pseudovariety of preclones (resp. pg-pairs) is entirely determined by the syntactic preclones (resp. pg-pairs) it contains.

Note that pseudovarieties of preclones can be seen as particular examples of pseudovarieties of pg-pairs, in the sense of Proposition 1.9 below2 . If K is a class of pg-pairs, we let precl(K) be the class of preclones S such that (S, A) ∈ K for some set A. Conversely, if L is a class of preclones, we let pgp(L) be the class of finitary pg-pairs (S, A) such that S ∈ L. Let us say that a class K of pg-pairs is full if membership of a pg-pair (S, A) in K depends only on S; that is, K = pgp(precl(K)). Proposition 1.9 A pseudovariety V of pg-pairs is full if and only if there exists a pseudovariety W of preclones such that V = pgp(W) and in that case, W is the pseudovariety generated by precl(V).

Moreover, if K is a full class of pg-pairs and V is the pseudovariety generated by K, then V is full as well and precl(K) and precl(V) generate the same pseudovariety of preclones.

Proof. Let W be a pseudovariety of preclones and let V = pgp(W). The class V is full by definition. Let us first verify that it is closed under taking sub-pgpairs, quotients, finite direct products and finitary inverse limits of ω-diagrams. Suppose for instance that (S, A) is a sub-pg-pair of (T, B) with T ∈ W. Then S is a sub-preclone of T , so S ∈ W and (S, A) ∈ V. The verification is equally routine for quotients and finite direct products. As for inverse limits of ωdiagrams, it was shown [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF]Proposition 4.23] that if (S, A) = lim n (S (n) , A (n)), then S = lim n S (n) . Thus, if the (S (n) , A (n)) are in V, then the S (n) are in W and hence S ∈ W and (S, A) ∈ V. Now let us show that if L is a class of finitely generated finitary preclones, then pgp(L) ⊆ pgp(L) . Let (U, C) be a finitary pg-pair with U ∈ L : we want to show that (U, C) ∈ pgp(L) . Combining technical results from [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF] (namely Propositions 4.5 and 4.16), we may assume that there exist preclones S (1) ,. . . , S (n) in L such that U = ϕ(T ′) for some morphism ϕ: T ′ → U where T ′ is a sub-preclone of i S (i) . Since L consists of finitely generated preclones, let A (i) be a finite set of generators of S (i) . Let B be a finite subset of T ′ such that ϕ(B) = C and for each i, let B (i) be the projection of B onto the i-th component. Finally, let T be the sub-preclone of T ′ generated by B. Then (U, C) = ϕ(T, B) and (T, B) is a sub-pg-pair of i (S (i) , A (i) ∪ B (i)). This establishes that (U, C) ∈ pgp(L) .

Let now K be a full class of finitary pg-pairs and let W = precl(K) . We verify that K = pgp(W), which implies that K is full. Indeed, since K is full, we have K = pgp(precl(K)) and hence K = pgp(precl(K)) ⊆ pgp(W) . The first part of the proof establishes that pgp(W) is a pseudovariety, so K ⊆ pgp(W). Moreover, the discussion in the previous paragraph, applied to L = precl(K), shows that pgp(W) ⊆ K . The expected equality follows.

Applying this result to K = V, a full pseudovariety of pg-pairs, and to W = precl(V) , shows that V = pgp(W), as announced. Finally, if V = pgp(W ′) for some other pseudovariety of preclones W ′ , then W and W ′ have the same finitely generated elements, and hence must be equal by Proposition 1.8. This concludes the proof of the proposition.

⊓ ⊔

Before we discuss varieties of tree languages, let us define quotients of tree languages. Let L ⊆ ΣM k , let k 1 , k 2 be integers with

k 1 + k 2 ≤ k and let u ∈ ΣM k1+1+k2 . The left quotient of L by (u, k 1 , k 2) is the subset of ΣM k-k1-k2 (u, k 1 , k 2) -1 L = {f ∈ ΣM k-k1-k2 | u • (k 1 ⊕ f ⊕ k 2) ∈ L}. If v ∈ ΣM n,k , then the right quotient of L by v is Lv -1 = {f ∈ ΣM n | f • v ∈ L}. Remark 1.10 With the above notation, (u, k 1 , v, k 2) is an L-context of an element f if and only if f ∈ (u, k 1 , k 2) -1 L v -1 = (u, k 1 , k 2) -1 L(k 1 ⊕ v ⊕ k 2) -1 . Moreover, if (u, k 1 , v, k 2) and (u ′ , k 1 , v ′ , k 2) are contexts such that u ∼ L u ′ and v ∼ L v ′ , then (u, k 1 , k 2) -1 L v -1 = (u ′ , k 1 , k 2) -1 L v ′ -1 . ⊓ ⊔
We say that a morphism ϕ: ΣM → Σ ′ M is a literal morphism if ϕ(Σ) ⊆ Σ ′ . A variety of tree languages (resp. a literal variety of tree languages) is a collection V = (V Σ,k) Σ,k , where Σ runs over all ranked alphabets, k runs over non-negative integers, such that each V Σ,k is a Boolean algebra of recognizable languages in ΣM k , and V is closed under quotients and under inverse morphisms (resp. inverse literal morphisms) between free preclones. In particular, every variety of tree languages is a literal variety.

If V is a pseudovariety of preclones (resp. pg-pairs), we let var(V) = (V Σ,k) be such that V Σ,k is the class of languages in ΣM k with syntactic preclone (resp. pg-pair) in V. If V is a variety (resp. literal variety) of tree languages, let psv(V) be the class of finitary preclones (resp. finitary pg-pairs) which only accept languages in V. The following result was proved in [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF].

Theorem 1.11 The mappings var and psv are mutually inverse lattice isomorphisms between the lattice of pseudovarieties of preclones (resp. pg-pairs) and the lattice of varieties (resp. literal varieties) of tree languages.

We note the following corollary of Theorem 1.11, which will be used in the sequel.

Corollary 1.12 Let V be a literal variety and let V be the corresponding pseudovariety of pg-pairs. Then V is full if and only if V is a variety.

Example 1.13 Let T ∃ be the pseudovariety of preclones generated by T ∃ , and let V be the corresponding tree language variety. Then a language

L ⊆ ΣM k is in V Σ,k if and only if L is a Boolean combination of languages of the form Σ ′ M k , Σ ′ ⊆ Σ,

Logically defined tree languages

Let Σ be a ranked alphabet. We will define tree languages by means of logical formulas. We consider the atomic formulas of the following form P σ (x), x < y, Succ i (x, y), root(x), max i,j (x), left j (x) and right j (x), where σ ∈ Σ, i, j are positive integers, i is less than or equal to the maximal rank of a letter in Σ, and x, y are first-order variables. If k ≥ 0, subsets of ΣM k will be defined by formulas of rank k, composed using atomic formulas with j ∈ [k], the Boolean constants false and true, the Boolean connectives and a family of generalized quantifiers called Lindström quantifiers, defined in Section 2.1 below. As usual, each quantifier binds a first-order variable (within the scope of the quantifier), and variables that are not bound are called free. A formula without free variables is called a sentence. We denote by Lind the logic defined in this fashion.

When a Lind-formula is interpreted on a tree t ∈ ΣM k , first-order variables are interpreted as nodes in NV(t) -and we assume t = 1, so that NV(t) is nonempty. Then P σ (x) holds if x is labeled σ (σ ∈ Σ), x < y holds if y is a proper descendant of x, and Succ i (x, y) holds if y is the i-th successor of x. Moreover, root(x) holds if x is the root of t and max i,j (x) holds if the i-th successor of x is labeled by v j , the j-th variable. Finally, left j (x) (resp. right j (x)) holds if the index of the highest (resp. least) numbered variable labeling a leaf to the left (resp. right) of the frontier of the subtree rooted at x is j, see Figure 3. The interpretation of Lindström quantifiers is described in Section 2.1.

Recall that formally, an interpretation is a mapping λ from the set of free variables of a formula ϕ (or from a set containing the free variables of ϕ) to the set NV(t) of Σ-labeled nodes of a tree t. If t satisfies ϕ with this interpretation, we say that (t, λ) satisfies ϕ and we write (t, λ) |= ϕ. If ϕ is a sentence, we simply write t |= ϕ.

x

v 1 v h v j v k Figure 3: left h (x) ∧ right j (x)
Remark 2.1 In Lind-formulas, first-order variables are never interpreted as one of the v i -labeled leaves. In fact, as far as logical constructs go, these particular leaves are not considered as proper nodes of the tree, but rather as place markers -which explains the fact that they are labeled by their position in the left-to-right order, and may be relabeled appropriately when trees are composed.

When we deal with traditional trees, that is, trees in ΣM 0 , this peculiarity disappears, and we observe that in that case, our atomic formulas (P σ , <, root and the Succ i) are the atomic formulas of the usal logic on rooted ranked trees [START_REF] Thomas | Languages, automata and logic[END_REF].

⊓ ⊔ Example 2.2 Let A be an unranked alphabet, viewed as a ranked alphabet as in Example 1.1. Then AM 1 is equal to the set A * v 1 , and is isomorphic to the free monoid A * . In this situation, the boundary of the trees in AM consist of a single node, labeled v 1 , that is left 1 (x) and right 1 (x) always evaluate to false. Thus the relevant atomic formulas are P a (x) (a ∈ A), x < y, Succ 1 (x, y), root(x) and max 1,1 (x). Note that in this case, root(x) is the predicate usually denoted by min(x) (or x = min) and max 1,1 (x) is the predicate max(x) (or x = max).

That is, we have the same atomic formulas as in Büchi's classical sequential calculus [START_REF] Pin | Logic, Semigroups and Automata on Words[END_REF][START_REF] Thomas | Languages, automata and logic[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]. The condition t = 1 imposed to interpret formulas, is equivalent to the fact that logical formulas are not interpreted on the empty word.

⊓ ⊔

Next to the atomic formulas defined above, we also use the following shorthand notation. Let k > 0 and let left 0 (x) be the formula of rank k left 0 (x) = j∈[k] ¬left j (x). Then left 0 (x) holds if no leaf situated to the left of the frontier of the subtree rooted at x, is labeled by a variable. We observe that for different values of k, we get different formulas left 0 (x), and our notation assumes that k is clear from the context.

Similarly, if k is clear from the context, we define right k+1 (x) to be the formula of rank k right k+1 (x) = j∈[k] ¬right j (x). Its meaning is that no leaf situated to the right of the frontier of the subtree rooted at x, is labeled by a variable.

Lindström quantifiers

Before we give formal definitions, we discuss an important example.

Example 2.3 Let us consider the first order formula ∃x • ϕ(x), where ϕ is a formula with free variables in a set

Y ∪ {x} (x ∈ Y). Let λ: Y → NV(t). Recall that (t, λ) |= ∃x•ϕ if there exists a node v in NV(t) such that (t, [λ; x → v]) |= ϕ. For convenience, let λ v denote the interpretation [λ; x → v].
We can express the satisfaction of ∃x • ϕ in the following, more generalizable fashion: we label each node v ∈ NV(t) with 1 if (t, λ v) |= ϕ, with 0 otherwise (the variable labeled nodes are left unchanged). If tλ denotes the resulting Boolean-labeled tree, then (t, λ) |= ∃x • ϕ if and only if tλ belongs to the set of trees with at least one 1 label.

To be formally accurate, the nodes of tλ must be labeled by a ranked alphabet, that is, we need to have, for each rank n, a letter 1 n and a letter 0 n . The definition of Lindström quantifiers below generalizes this example.

⊓ ⊔

Let ∆ be a ranked alphabet containing letters of rank n for each n such that Σ n = ∅ and let ϕ δ δ∈∆ be a family of rank k formulas on Σ-trees. We say that this family is deterministic with respect to a first-order variable x if for each tree t ∈ ΣM k , for each integer n, and for each interpretation λ of the free variables in the ϕ δ mapping x to a rank n node of t, then (t, λ) satisfies exactly one of the ϕ δ , δ ∈ ∆ n . Whenever needed, we will also assume that x is not bound in any of the ϕ δ .

Example 2.4 If ∆ = Σ, a very simple example of such a family is given by letting ϕ δ (x) = P δ (x) for each δ ∈ ∆.

⊓ ⊔ Example 2.5 Another natural example is given over a ranked Boolean alphabet ∆, that is, an alphabet such that whenever ∆ n = ∅, then ∆ n = {1 n , 0 n }. If for each such n, ϕ 0n is logically equivalent to ¬ϕ 1n , then ϕ δ δ∈∆ is deterministic with respect to any first order variable x.

In later examples, when dealing with ranked Boolean alphabets, we will write ϕ n instead of ϕ 1n and we will assume that ϕ 0n = ¬ϕ n . Then a deterministic family will simply be written ϕ n n .

⊓ ⊔

With this notion, we define (simple) Lindström quantifiers, a definition adapted from [START_REF] Lindström | First order predicate logic with generalized quantifiers[END_REF][START_REF] Ebbinghaus | Finite Model Theory[END_REF] to the case of finite trees. Let K ⊆ ∆M k be a language of rank k trees and let ϕ δ δ∈∆ be a family of rank k formulas which is deterministic with respect to x. Then the quantified formula Q K x • ϕ δ δ∈∆ , where the quantifier Q K binds the variable x, is interpreted in the following manner.

Given a tree t ∈ ΣM k and an interpretation λ of the free variables in the ϕ δ except for x, we construct a tree tλ ∈ ∆M k as follows: t and tλ have the same underlying tree structure with the same variable-labeled nodes, that is, the same set of nodes and the same relations <, Succ i , root, max i,j , left j and right j). Moreover, for each rank n node v of t (for some n), let λ v be the interpretation [λ, x → v]: then the node v in tλ is labeled by the unique element δ ∈ ∆ n such that (t, λ v) satisfies ϕ δ . The tree tλ is called the characteristic tree determined by t, λ and the formulas ϕ δ . If the ϕ δ have no free variable other than x, we write t for tλ . Finally, we say that (t, λ) satisfies

Q K x • ϕ δ δ∈∆ if tλ ∈ K. Remark 2.
K ⊆ ∆M k is a language of k-ary trees, then t satisfies Q K x • ϕ δ δ∈∆ if and only if t ∈ K. ⊓ ⊔
Example 2.8 Let A be an unranked alphabet, seen as a ranked alphabet as usual, suppose that ∆ k = ∅ for all k = 1 and let K ⊆ ∆M 1 . Then K can also be seen as a word language since ∆M 1 is isomorphic to the free monoid ∆ * 1 , and the logic Lind is analogous to the logic for word languages studied by Ésik and Larsen in [START_REF] Ésik | Regular languages definable by Lindström quantifiers[END_REF] (the latter does not include min and max among its atomic formulas).

⊓ ⊔

In the next examples, ∆ is a ranked Boolean alphabet such that ∆ n is nonempty whenever Σ n is, and ϕ n n is a family of formulas which is deterministic with respect to a first order variable x, see Example 2.5.

Example 2.9 Let K = K k (∃) denote the set of all trees in ∆M k containing at least one node labeled 1 n (for some n), see Example 1.4. Then the Lindström quantifier Q K is a generalization of the existential quantifier, as indicated in Example 2.3.

More precisely, (t, λ) satisfies Q K x • ϕ n n if and only if there exists a node v ∈ NV(t) such that (t, λ v) satisfies ϕ n , where n is the rank of v and λ v is the interpretation [λ, x → v].

Let finally A be an unranked alphabet, viewed as a ranked alphabet as in Example 1.1, and suppose that k = 1. Then (t, λ) |= Q K x • ϕ n n (where t is viewed as a tree in AM 1) if and only if (t, λ) |= ∃x • ϕ 1 (x) (where t is viewed as a non-empty word in A *).

⊓ ⊔ Example 2.10 In the same manner as in Example 2.9, if p ≥ 1, r < p and K = K(∃ r p) denotes the set of those trees in ∆M k such that the number of nodes labeled 1 n (for some n) is congruent to r modulo p (see Example 1.4), then the Lindström quantifier Q K is a generalization of a modular quantifier.

More precisely, (t, λ) satisfies Q K x • ϕ n n if and only if, for some n, the number of nodes v ∈ NV(t) such that (t, λ v) satisfies ϕ n (x) (where n is the rank of v) is congruent to r mod p.

If A is an unranked alphabet, then (t, λ) |= Q K x • ϕ n n (where t is viewed as a tree in AM 1) if and only if (t, λ) |= ∃ r p x • ϕ 1 (x) (where t is viewed as a non-empty word in A *).

⊓ ⊔ Example 2.11 Let K = K k (∃ path) be the set of all trees in ∆M k such that all the nodes along at least one path from the root to a leaf are labeled 1 n (for appropriate values of n). Then (t, λ) satisfies Q K x • ϕ n n if and only if there exists a root-to-leaf path such that, for every node v ∈ NV(t) along this path, (t, λ v) |= ϕ n (x) (where n is the rank of v).

If A is an unranked alphabet, then (t, λ) Other next modalities can be expressed likewise, e.g., requesting that at least one (resp. an even number, etc.) of the children of the root satisfies the appropriate ϕ n .

|= Q K x • ϕ n n (
⊓ ⊔

The language associated with a Lind-formula

Let ϕ be a Lind-sentence of rank k over Σ. We denote by L ϕ the set of trees in ΣM k that satisfy ϕ, and we say that L ϕ is defined by the formula ϕ.

For a class K of tree languages, we let Lind(K) denote the fragment of Lind consisting of the formulas in which all Lindström quantifiers are of the form Q K with K ∈ K. If ϕ is a Lind(K) sentence, we say that L ϕ is Lind(K)-definable, and we let Lind(K) denote the class of Lind(K)-definable tree languages.

Example 2.13 Let K ∃ be the class of all the languages of the form K k (∃) on a Boolean ranked alphabet. In view of the discussion in Example 2.9, it is reasonable to say that Lind(K ∃) is exactly the class of FO-definable tree languages. Examples 2.9 and 2.10 show that if K ∃,mod is the class of all languages of the form K k (∃) or K k (∃ r p), then Lind(K ∃,mod) is the class of (FO + MOD)definable tree languages.

⊓ ⊔

It will be useful to associate a tree language also with the Lind-formulas that contain free variables (as is done in [35, Section II-2] for word languages). Let Z be a finite set. We extend Σ to the ranked alphabet Σ Z , whose set of letters of rank m (m ≥ 0) is Σ m ×P(Z). We identify each σ ∈ Σ with the pair (σ,

∅) ∈ Σ Z . An element z ∈ Z is said to occur in t ∈ Σ Z M at node v if the label of v is of the form (σ, Z ′) and z ∈ Z ′ . If each z ∈ Z occurs exactly once in t ∈ Σ Z M k , then t is called a Z-structure of rank k over Σ.
We note that a Z-structure uniquely determines a tree t ∈ ΣM and a mapping λ: Z → NV(t). Conversely, any such pair (t, λ) determines a unique Z-structure, written str(t, λ). Now let ϕ be a rank k Lind-formula with free variables in a set Y . Let str(t, λ) be a

Z-structure with Z ⊆ Y . If µ: Y \ Z -→ N V (t), we write (str(t, λ), µ) |= ϕ if (t, [λ; µ]) |= ϕ, where [λ; µ]
is the map from Y to NV(t) determined by λ and µ. If Z = Y , we write simply str(t, λ) |= ϕ and we say that str(t, λ) satisfies ϕ. We let L ϕ be the set of Y -structures satisfying ϕ.

Example 2.14 Let σ ∈ Σ m , and let ϕ be the rank k formula ϕ = P σ (x). Let Y be a set containing x. Then L ϕ is the collection of all Y -structures of rank k over Σ such that some (necessarily unique) node has a label of the form (σ, Y ′) with x ∈ Y ′ . It is immediate to observe that any two trees of equal rank in ΣM have the same contexts in L ϕ , that is, the restriction of the syntactic congruence of L ϕ to ΣM is the universal relation. The same holds for any atomic formula ϕ.

⊓ ⊔

Properties of the operator Lind

We now explore the properties of the operator Lind on families of languages.

2.3.1

Lind is a closure operator Theorem 2.15 Lind is a closure operator on classes of languages. That is, for all language classes K and K ′ , the following holds.

(1) K ⊆ Lind(K);

(2) if K ⊆ K ′ then Lind(K) ⊆ Lind(K ′);

(3) Lind(Lind(K)) ⊆ Lind(K).

Item (1) follows immediately from Example 2.7, and Item (2) is immediate from the definition. The rest of Section 2.3.1 is devoted to the proof of Item [START_REF] Benedikt | Regular tree languages definable in FO and in FO mod[END_REF].

Let ϕ be a Lind(Lind(K))-formula of rank k over Σ. We argue by induction on the structure of ϕ to show that there is an equivalent formula φ of Lind(K), that is, a formula with the same free variables as ϕ and such that L ϕ = L φ in Σ Y M k for any finite set Y containing the free variables of ϕ. This will be sufficient to prove Theorem 2.15.

If ϕ is an atomic formula, we let φ = ϕ, since ϕ is also a Lind(K)-formula.

If ϕ = ϕ 1 ∨ ϕ 2 (resp. ϕ = ¬ϕ 1), we let φ = φ1 ∨ φ2 (resp. φ = ¬ φ1).
The equivalence of ϕ and φ is easily verified.

The last case occurs when ϕ is of the form ϕ = Q K x • ϕ δ δ∈∆ , where K ∈ Lind(K) and the ϕ δ form a family of rank k formulas of Lind(Lind(K)) over Σ that is deterministic with respect to x. In particular, K = L ψ where ψ is a rank k Lind(K)-sentence over ∆.

By induction, for each δ ∈ ∆, there exists a Lind(K)-formula φδ equivalent to ϕ δ , so that ϕ is equivalent to Q K x • φδ δ∈∆ . Thus, we may assume that the ϕ δ are Lind(K)-formulas.

Before we proceed with the end of the proof, we establish a technical fact. If χ is a formula and p, q are variables, we denote by χ[q/p] the formula obtained from χ by substituting the variable q for all free occurrences of p. (Bound occurrences of q in χ are renamed as usual.)

Let χ be a rank k formula over ∆. We then define χ to be the rank k formula over Σ obtained from χ by replacing each subformula of the form P δ (z), where z is any first-order variable, by the formula ϕ δ [z/x]. Since the quantifiers in χ also occur in χ, and the quantifiers in χ occur either in χ or in the ϕ δ , it is clear that χ is a Lind(K)-formula if and only if χ is one. In the sequel, we assume that neither x nor any free variable of one of the ϕ δ , is free in χ, and that no free variable has bound occurrences in the formulas under consideration. Let us then assume that Y (the finite set containing the free variables of ϕ and not containing x) also contains the free variables of χ.

Fact 2.16 With the notation above, let t ∈ ΣM k , let λ: Y → NV(t) be a function, and let tλ ∈ ∆M k be the characteristic tree determined by t, λ and the formulas ϕ δ . Then we have

(t, λ) |= χ ⇐⇒ (tλ , λ) |= χ.
Proof. We argue by induction on the structure of χ. Suppose first that χ = P δ (z). Then χ = ϕ δ [z/x]. Let µ be the restriction of λ to Y \ {z} and let tµ be the characteristic tree determined by t, µ and the ϕ δ

[z/x]. A node v is labeled δ in tλ if and only if (t, λ v) = (t, [λ; x → v]) |= ϕ δ . Since z does not occur in ϕ δ , this is equivalent to (t, [µ; z → v]) |= ϕ δ [z/x],
and hence to the labeling of v by δ in tµ . Thus tλ = tµ . Then we have:

(t, λ) |= χ = ϕ δ [z/x] ⇐⇒ (t, [µ; z → λ(z)]) |= ϕ δ [z/x] by definition of µ ⇐⇒ (tµ , [z → λ(z)]) = (tλ , [z → λ(z)]) |= P δ (z) ⇐⇒ (tλ , λ) |= P δ (z) = χ.
If χ is another atomic formula (namely, z 1 < z 2 , Succ i (z 1 , z 2), root(x), max i,j (z), left j (z) or right j (z) with z, z 1 , z 2 ∈ Y ∪{x}), then χ = χ. Since t and tλ have the same variable-labeled nodes and they differ only in the labeling of their nodes, and since χ does not depend on that labeling, we have in each case

(t, λ) |= χ ⇐⇒ (tλ , λ) |= χ.
We have now established our claim for atomic formulas. The induction step is immediate if χ is of the form χ = χ 1 ∨ χ 2 or χ = ¬χ 1 . We now assume that χ = Q L z • χ ω ω∈Ω where L ⊆ ΩM k , z ∈ Y ∪ {x}, and χ ω ω∈Ω is a family of rank k formulas over ∆ with free variables in Y ∪ {z}, which is deterministic with respect to z.

By construction χ = Q L z • χω ω∈Ω , and by induction hypothesis, for each node w ∈ NV(t) and for each ω ∈ Ω, we have

(t, [λ; z → w]) |= χω ⇐⇒ (tλ , [λ; z → w]) |= χ ω .
It follows in particular that χω ω∈Ω is deterministic with respect to z. Moreover, the characteristic tree determined by t, λ and χω ω∈Ω is the same as that determined by tλ , λ and χ ω ω∈Ω . Thus we have

(t, λ) |= χ ⇐⇒ (tλ , λ) |= χ,
which concludes the induction and the proof.

⊓ ⊔

We now return to the proof of Theorem 2.15. Recall that ϕ = Q K x • ϕ δ δ∈∆ and K = L χ ⊆ ∆M k for some rank k Lind(K)-sentence χ over ∆ (without free variables). We want to construct a formula in Lind(K) that is equivalent to ϕ and we claim that χ is such a formula.

Indeed, let t ∈ ΣM k , let λ be a mapping λ: Y → NV(t), and let tλ ∈ ∆M k be the characteristic tree determined by t, λ and the ϕ δ . By definition, (t, λ) |= ϕ if and only if tλ ∈ K, that is, tλ |= ψ, or equivalently, (tλ , λ) |= ψ. It was established in Fact 2.16 that this is equivalent to (t, λ) |= ψ, which concludes the proof. ⊓ ⊔

Closure properties of Lind(K)

The objective of this section is to prove the closure properties summarized in Theorem 2.17 below.

Theorem 2.17 Lind(K) is closed under Boolean operations and inverse literal morphisms. Moreover, Lind(K) is closed under left (resp. right) quotients if and only if any left (resp. right) quotient of a language in K belongs to Lind(K).

We now prove Theorem 2.17, by considering separately each closure property.

Boolean operations

The fact that Lind(K) is closed under the Boolean operations follows directly from the fact that Lind(K)-formulas are closed under disjunction and negation.

⊓ ⊔

Inverse literal morphisms Let h: Σ ′ → Σ be a rank-preserving mapping, and let us also denote by h the induced morphism h:

(Σ ′ M, Σ ′) → (ΣM, Σ).
Note that if t is a tree, then h(t) differs from t only in the labeling of the nodes in NV(t). Let ϕ be a rank k Lind(K)-formula over Σ with free variables in a finite set Y . We show by structural induction on ϕ that there exists a rank k Lind(K)-formula ϕ ′ over Σ ′ , with the same free variables as ϕ, and such that (t, λ) |= ϕ ′ if and only if (h(t), λ) |= ϕ for any tree t ∈ Σ ′ M k and any interpretation λ: Y → NV(t).

If ϕ = P σ (x) for some σ ∈ Σ, we let ϕ ′ = P σ ′ (x), where the disjunction runs over the letters σ ′ ∈ Σ ′ such that h(σ ′) = σ. If ϕ is another type of atomic formula, then ϕ does not depend on the labeling of the tree, and it suffices to choose ϕ ′ = ϕ.

The inductive step for the Boolean connectives is equally natural Let also ϕ be a rank k Lind(K)-formula over Σ with free variables in a finite set Y , and let U = str(u, µ) be a Z-structure of rank k 1 + 1 + k 2 for some Z ⊆ Y .

: if ϕ = ϕ 1 ∨ ϕ 2 (resp. ϕ = ¬ϕ 1), then we let ϕ ′ = ϕ ′ 1 ∨ ϕ ′ 2 (resp. ϕ ′ = ¬ϕ ′ 1). Suppose finally that ϕ is of the form Q K x • ϕ δ δ∈∆ .
(Without loss of generality, we may assume that u = 1.) Let X = Y \ Z. We prove by structural induction on ϕ that there exists a rank ℓ Lind(K)-formula ϕ ′ over Σ, with free variables in X and such that, for every tree t ∈ ΣM ℓ and every mapping λ: X → NV(t) (see Figure 4), we have

(t, λ) |= ϕ ′ ⇐⇒ (U • (k 1 ⊕ t ⊕ k 2), λ) |= ϕ.
If ϕ is a formula without free variables (X = Y = Z = ∅, U = u ∈ ΣM k1+1+k2), this shows that L ϕ ′ = (u, k 1 , k 2) -1 L ϕ , and hence that Lind(K) is closed under left quotients.

We now proceed with the proof. We first observe that NV(t) may be viewed as a subset of NV(U • (k 1 ⊕ t ⊕ k 2)): more precisely, the latter set is equal to the disjoint union of NV(t) and NV(U) = NV(u).

U k 1 k 2 t a Z-structure
variables in X are interpreted here Figure 4:

S = U • (k 1 ⊕ t ⊕ k 2)
If ϕ is equal to P σ (x), we let ϕ ′ = ϕ if x ∈ Z, and ϕ ′ = true (resp. false) if x ∈ Z and x occurs at a node of U for which the first component of the label is (resp. is not) σ. That is, if x ∈ Z and U satisfies (resp. does not satisfy) ϕ. The last case of an atomic formula occurs if ϕ is of the form Succ i (x, y). If x, y ∈ Z, we let ϕ ′ = ϕ. If x, y ∈ Z, we let ϕ ′ = true or false, depending on whether U |= ϕ. If x ∈ Z and y ∈ Z, we let ϕ ′ = false. Finally, if x ∈ Z and y ∈ Z, let w be the node of U where x occurs. If the i-th successor of w is the (k 1 + 1)-st variable leaf, we let ϕ ′ = root(y); otherwise we let ϕ ′ = false.

Let now ϕ = left j (x) (resp. right j (x), max i,j (x)) with 1 ≤ j ≤ k. If x ∈ Z, we let ϕ ′ = left j-k1 (x) if k 1 ≤ j ≤ k 1 +ℓ (resp. right j-k1 (x) if k 1 < j ≤ k 1 +ℓ+1, max i,j-k1 (x) if k 1 < j ≤ k 1 + ℓ),
As usual, if ϕ = ϕ 1 ∨ ϕ 2 (resp. ϕ = ¬ϕ 1), then we let

ϕ ′ = ϕ ′ 1 ∨ ϕ ′ 2 (resp. ϕ ′ = ¬ϕ ′ 1)
. We now consider the case where ϕ

= Q K x • ϕ δ δ∈∆ . We may assume that x ∈ Y . Let S = U • (k 1 ⊕ t ⊕ k 2), let s = u • (k 1 ⊕ t ⊕ k 2) and let λ: X → NV(t).
Let sλ be the characteristic tree determined by s, [λ; µ] and ϕ δ δ∈∆ . Then, for any v ∈ NV(s) and for any δ, we have

(s λ , [x → v]) |= P δ (x) ⇐⇒ (s, [λ; µ; x → v]) |= ϕ δ ⇐⇒ (S, [λ; x → v]) |= ϕ δ . Moreover, (s, [λ; µ]) |= ϕ ⇐⇒ (S, λ) |= ϕ ⇐⇒ sλ ∈ K.
For each δ ∈ ∆, let ϕ ′ δ be the formula associated with ϕ δ and U by the induction hypothesis. Let tλ be the characteristic tree determined by t, λ and ϕ ′ δ δ∈∆ . Then, for any node v ∈ NV(t), we have

(S, [λ; x → v]) |= ϕ δ ⇐⇒ (t, [λ; x → v]) |= ϕ ′ δ ⇐⇒ (tλ , [x → v]) |= P δ (x),
and hence sλ is of the form sλ = û • (k 1 ⊕ tλ ⊕ k 2) for some tree û which differs from u only in the labeling of the nodes in NV(u).

For each v ∈ NV(u), we let U (v) be the (Z ∪ {x})-structure obtained from U by adding x to the second component of the label of v. Then, for each δ ∈ ∆, we let ψ δ,v be the formula associated with ϕ δ and U (v) by the induction hypothesis. Then we have

(t, λ) |= ψ δ,v ⇐⇒ (U (v) • (k 1 ⊕ t ⊕ k 2), λ) |= ϕ δ ⇐⇒ (S, [λ; x → v]) |= ϕ δ ⇐⇒ (s λ , [x → v]) |= P δ (x).
Now, for each mapping α: NV(u) → ∆, let ûα be the tree obtained from u by relabeling each node v ∈ NV(u) with α(v). Let also ψ α be the conjunction of the ψ α(v),v when v runs over NV(u).

Then (t, λ) |= ψ α ⇐⇒ sλ = ûα • (k 1 ⊕ tλ ⊕ k 2). Finally, let ϕ ′′ = α ψ α ∧ Q (ûα,k1,k2) -1 K ϕ ′ δ δ ,
where the disjunction runs over all mappings α: NV(u) → ∆. Then the above discussion establishes that (t, λ) satisfies ϕ ′′ if and only if (U

• (k 1 ⊕ t ⊕ k 2), λ) satisfies ϕ. Moreover, since each (û α , k 1 , k 2) -1 K is in Lind(K)
, the formula ϕ ′′ is a Lind(Lind(K))-formula, and by Theorem 2.15, ϕ ′′ is equivalent to some Lind(K)-formula ϕ ′ , which concludes this proof. ⊓ ⊔

Right quotients

The proof concerning the closure under right quotients is similar. We assume that every right quotient of a language in K belongs to Lind(K). Let k ≥ 0 and let ϕ be a rank k Lind(K)-formula over Σ with free variables in a finite set Y . Let n ≥ 1 and Z ⊆ Y , and let

U = U 1 ⊕ • • • ⊕ U n ∈ Σ Z M n,k where each U i is a Z i -structure of rank k i , U i = str(u i , µ i), k = i k i and the Z i form a partition of Z. Let u = ⊕ i u i , µ = [µ 1 , . . . , µ n] and X = Y \Z.
We show by structural induction on ϕ that there exists a rank n Lind(K)formula ϕ ′ with free variables in X such that, for every tree t ∈ ΣM n and every mapping λ: X → NV(t) (see Figure 5), we have We first consider the case of atomic formulas. If ϕ = P σ (x), we let ϕ ′ = ϕ if x ∈ Z and ϕ ′ = true or false if x ∈ Z, depending on whether U satisfies ϕ.

(t, λ) |= ϕ ′ ⇐⇒ (t • U, λ) |= ϕ. t U variables in X are interpreted here a ⊕-sum of Z i -structures
If ϕ = root(x), we let ϕ ′ = ϕ if x ∈ Z, and false if x ∈ Z. If ϕ = max i,j (x) and x ∈ Z, we let ϕ ′ = ϕ if j = k 1 + • • • + k h-1 + 1 for some h such that U h = 1, and ϕ ′ = false otherwise. If x ∈ Z and k 1 + • • • + k h-1 ≤ j ≤ k 1 + • • • + k h , we let ϕ ′ = true or false depending on whether U h |= max i,j-(k1+•••+k h-1) (x).
Suppose now that ϕ = (x < y). If x, y ∈ Z, we let ϕ ′ = ϕ. If x, y ∈ Z, we let ϕ ′ = true or false depending on whether one of the U j satisfies ϕ. If x ∈ Z and y ∈ Z, we let ϕ ′ = false. Finally, if x ∈ Z and y ∈ Z, let 1 ≤ j ≤ n be such that y ∈ Z j (i.e. y occurs in U j). Then we let ϕ ′ = i<j left i (x) ∧ j<h right h (x).

The situation is similar if ϕ = Succ i (x, y). If x, y ∈ Z, we let ϕ ′ = ϕ. If x, y ∈ Z, we let ϕ ′ = true or false depending on whether one of the U j satisfies ϕ. If x ∈ Z and y ∈ Z, we let ϕ ′ = false. Finally, if x ∈ Z and y ∈ Z, let j be such that y ∈ Z j . If y does not occur at the root of U j , we let ϕ ′ = false. If y does occur at the root of U j , we let ϕ ′ = max i,j (x).

Finally, suppose that ϕ = left j (x) (resp. right j (x)). If x ∈ Z, let i be such that x ∈ Z i . Then we let ϕ ′ = true or false according to whether

k 1 + • • • + k i-1 ≤ j ≤ k 1 + • • • + k i and U i satisfies left j-(k1+•••+ki-1) (x) (resp. right j-(k1+•••+ki-1) (x)). If x ∈ Z, we let ϕ ′ = left h (x) if j = i≤h k i (resp. j = 1 + i≤h k i) for some h, and ϕ ′ = false if j is not of that form. If ϕ = ϕ 1 ∨ ϕ 2 (resp. ϕ = ¬ϕ 1), then we let ϕ ′ = ϕ ′ 1 ∨ ϕ ′ 2 (resp. ϕ ′ = ¬ϕ ′ 1
), and we now assume that ϕ = Q K x • ϕ δ δ∈∆ , with x ∈ Y . Let S = t • U , let s = t • u and let λ: X → NV(t). Let sλ be the characteristic tree determined by s, [λ; µ] and ϕ δ δ∈∆ . For each δ ∈ ∆, let ϕ ′ δ be the formula associated with ϕ δ and U by the induction hypothesis, and let tλ be the characteristic tree determined by t, λ and ϕ ′ δ δ∈∆ . Then the tree sλ is of the form sλ = tλ • û for some tree û which differs from u only in the labeling of the nodes in NV(u).

We continue as in the left quotient case. For each v ∈ NV(u), we let U (v) be the structure obtained from U by adding x to the second component of the label of v and for each δ ∈ ∆, we let ψ δ,v be the formula associated with ϕ δ and U (v) by the induction hypothesis. As above, we verify that if ûα is the relabeling of u determined by the mapping α: NV(u) -→ ∆, and if ψ α is the conjunction of the ψ α(v),v (over the nodes v ∈ N V (u)), then (t, λ) |= ψ α ⇐⇒ sλ = tλ • ûα .

We then let

ϕ ′′ = α ψ α ∧ Q K û-1 α ϕ ′ δ δ ,
where the disjunction runs over all mappings α: NV(u) → ∆, and we note that (t, λ) satisfies ϕ ′′ if and only if (t • U, λ) satisfies ϕ. Since each K û-1 α is in Lind(K), the formula ϕ ′′ is a Lind(Lind(K))-formula, and hence is equivalent to a Lind(K)-formula ϕ ′ , which concludes the proof. ⊓ ⊔

Logics admitting relativization

We say that a fragment L of Lind admits relativization if Properties R1 and R2 below hold.

Property R1 For all integers k 1 , k 2 ≥ 0 and k ≥ k 1 + k 2 , for each L-sentence ϕ of rank k 1 + 1 + k 2 over an alphabet Σ and for each first-order variable x without occurrence in ϕ, there exists an L-formula ϕ[> x] of rank k in the free variable x with the following property. For each tree t ∈ ΣM k and for each node v ∈ NV(t), (t, x → v) satisfies ϕ[> x] if and only if

• if s is the subtree of t with root v, then t is of the form t = r • (k 1 ⊕ s ⊕ k 2) (see Figure 6), and

• r |= ϕ. r k 1 k 2 v k -(k 1 + k 2) s r k 1 k 2 w ℓ s v i Figure 6:
The factorizations of t in Properties R1 and R2 respectively Property R2 For all ranked alphabet Σ, integer i ≥ 1 less than or equal to the maximal rank of a letter in Σ and integers k 1 , k 2 , ℓ ≥ 0, for each rank ℓ L-sentence ϕ and for each first-order variable x without occurrence in ϕ, there exists an L-formula ϕ[≥ xi] of rank k 1 + ℓ + k 2 over Σ in the free variable x with the following property. For each tree t ∈ ΣM k1+ℓ+k2 and for each node v ∈ NV(t), (t, x → v) satisfies ϕ[≥ xi] if and only if

• the rank of v is greater than or equal to i, and its i-th child, w, has rank ℓ

• if s is the subtree of t with root w, then t is of the form t = r •(k 1 ⊕ s⊕ k 2), and s |= ϕ (see Figure 6).

Proposition 2.18 Let K be a class of tree languages containing K ∃ and closed under the following operations. Let k 1 , k 2 , ℓ ≥ 0, let ∆ be a ranked alphabet and let E be a disjoint ranked alphabet such that card(

E n) = 1 if ∆ n = ∅, and card(E n) = 0 otherwise: if K ⊆ ∆M k1+1+k2 belongs to K, then K • (k 1 ⊕ EM ℓ ⊕ k 2) ∈ Lind(K); if K ⊆ ∆M ℓ belongs to K, then EM k1+1+k2 • (k 1 ⊕ K ⊕ k 2) ∈ Lind(K).
Then Lind(K) admits relativization.

Proof. We first consider Property R1. Let k 1 , k 2 ≥ 0, let k ≥ k 1 + k 2 and let ϕ be a Lind(K) formula over Σ, of rank k 1 + 1 + k 2 , without any occurrence of x. We show by structural induction on ϕ that there exists a rank k Lind(K)formula ϕ[> x] where x is a free variable and such that, for any tree t ∈ ΣM k , the following holds: if v ∈ NV(t) and t = r • (k 1 ⊕ s ⊕ k 2) with the tree s rooted at v, and if λ: Y → NV(r) is an interpretation (where Y is a set containing the free variables of ϕ and not containing x), then

(t, [λ; x → v]) |= ϕ[> x] ⇐⇒ (r, λ) |= ϕ. If ϕ = left j (y) with j > k 1 , we let ϕ[> x] = left j+ℓ (y), where ℓ = k -(k 1 + k 2). If ϕ = right j (y) with j > k 1 + 1, we let ϕ[> x] = right j+ℓ (y). If ϕ = max i,j (y) with j > k 1 + 1, we let ϕ[> x] = max i,j+ℓ-1 (y). And if ϕ = max i,k1+1 (y), we let ϕ[> x] = Succ i (y, x).
For all other atomic formulas, we let ϕ[> x] = ϕ. It is elementary to verify that these choices guarantee the expected equivalence. Similarly, if

ϕ = ϕ 1 ∨ ϕ 2 (resp. ϕ = ¬ϕ 1), we let ϕ[> x] = ϕ 1 [> x] ∨ ϕ 2 [> x] (resp. ϕ[> x] = ¬ϕ 1 [> x]).
Let us now assume that ϕ = Q K y • ϕ δ δ∈∆ where K ⊆ ∆M k1+1+k2 is in K, y ∈ Y ∪ {x} and the ϕ δ are deterministic with respect to y. Let E be a ranked alphabet disjoint from ∆, with a single rank n element ε n for each n such that ∆ n = ∅; and let

∆ ′ = ∆ ∪ E. Let L = K • (k 1 ⊕ EM ℓ ⊕ k 2); then L ∈ Lind(K) by assumption. For each δ ∈ ∆, we let ψ δ = ¬(y ≥ x) ∧ ϕ δ [> x];
and we let ψ ε = (y ≥ x) for each ε ∈ E. 3 We note that the ψ δ have their free variables in Y ∪ {x, y}. Using the induction hypothesis, one verifies that ψ δ δ∈∆ ′ is deterministic with respect to y, and we let ψ = Q L y • ψ δ δ∈∆ ′ . Then ψ is a Lind(Lind(K))-formula, and by Theorem 2.15, there exists an equivalent Lind(K)-formula ψ ′ .

By the induction hypothesis, for every w in NV(r) and δ ∈ ∆, (t, [λ;

x → v, y → w]) |= ψ δ if and only if (r, [λ, y → w]) |= ϕ δ . Also, (t, [λ; x → v, y → w]) |= (y > x)
for all w ∈ NV(s). Thus, the characteristic tree determined by t, [λ; x → v] and the ψ δ is of the form r • (k 1 ⊕ ŝ ⊕ k 2), where r is the characteristic tree determined by r, λ and the ϕ δ , and where each w ∈ NV(ŝ) is labeled in E. Thus, letting ϕ[> x] = ψ ′ , we have the desired equivalence.

Let us now consider Property R2. Let i ≥ 1, k 1 , k 2 , ℓ ≥ 0, let k = k 1 + ℓ + k 2 and let ϕ be a rank ℓ Lind(K)-formula over Σ without any occurrence of x. We show by structural induction on ϕ that there exists a rank k Lind(K)-formula ϕ[≥ xi] where x is a free variable and such that, for any tree t ∈ ΣM k , the following holds: if v ∈ NV(t), then

(t, [λ; x → v]) |= ϕ[≥ xi] ⇐⇒    v has rank at least i, t factors as t = r • (k 1 ⊕ s ⊕ k 2) (s, λ) |= ϕ,
where s is the subtree of t rooted at the i-th successor of v and λ: Y → NV(s).

If ϕ = left j (y) (resp. right j (y), max h,j (y)), we let ϕ[≥ xi] = left k1+j (y) (resp. right k1+j (y), max h,k1+j (y)). If ϕ = root(y), we let ϕ[≥ xi] = Succ i (x, y). For all other atomic formulas, we let ϕ[≥ xi] = ϕ. If ϕ = ϕ 1 ∨ ϕ 2 (resp. ϕ = ¬ϕ 1), we take ϕ[≥ xi] = ϕ 1 [≥ xi] ∨ ϕ 2 [≥ xi] (resp. ϕ[≥ xi] = ¬ϕ 1 [≥ xi]).
Again, it is elementary to verify that these choices guarantee the expected equivalence.

Let us now assume that ϕ = Q K y • ϕ δ δ∈∆ where K ⊆ ∆M ℓ is in K, y ∈ Y ∪ {x} and the ϕ δ are deterministic with respect to y. Let E and ∆ ′ be as in the first part of the proof, and let L = EM k1+1+k2 • (k 1 ⊕ K ⊕ k 2); then L ∈ Lind(K) by assumption.

For each n ≥ 0 such that Σ n = ∅, let χ n be the formula Succ i (x, z) ∧ (z ≤ y) (independent of n), and let

χ = Q K k (∃) z • χ n .
By assumption, χ is a Lind(K)formula. Moreover, (t, [x → v; y → w]) satisfies χ if and only if v has rank at least i and w is a descendant of the i-th child of v.

For each ε ∈ E, let ψ ε = ¬χ, and for each δ ∈ ∆, let

ψ δ = ϕ δ [≥ xi] ∧ χ.
By induction, the ψ δ (δ ∈ ∆ ′) are Lind(K)-formulas with free variables in Y ∪ {x, y}. Using the induction hypothesis again, one verifies that ψ δ δ∈∆ ′ is deterministic with respect to y, and we let ψ = Q L y • ψ δ δ∈∆ ′ . Then ψ is a Lind(Lind(K))-formula, and by Theorem 2.15, there exists an equivalent Lind(K)-formula ψ ′ .

It follows as above that (t, [λ; x → v]) |= ψ ′ if and only if the rank of v is at least i and t factors as t = r • (k 1 ⊕ s ⊕ k 2) with (s, λ) |= ϕ, where s is the subtree of t with root v.

⊓ ⊔

This can be applied to the classes K ∃ and K ∃,mod discussed in Example 2.13.

Corollary 2.19

The logics Lind(K ∃) and Lind(K ∃,mod) admit relativization.

Proof. Let ∆ be a ranked Boolean alphabet, let E be a disjoint ranked alphabet as in the statement of Proposition 2.18, and let ∆ ′ = ∆ ∪ E. Denote by ε n the element of rank n in E, if it exists. Let k 1 , k 2 , ℓ ≥ 0, and

k = k 1 + ℓ + k 2 . Let K = K k1+1+k2 (∃) and L = K • (k 1 ⊕ EM ℓ ⊕ k 2). Define, for each m ≥ 0 such that Σ m = ∅ ϕ m = P 1m (x), ϕ = Q K k (∃) x • ϕ n n , χ m = (x ≤ y) ∧ ¬P εm (y), χ = Q K k (∃) y • χ n n , ω m = ¬(x ≤ y) ∧ P εm (y), ω = Q K k (∃) y • ω n n , ψ m = left k1 (x) ∧ right k1+ℓ+1 (x) ∧ ¬χ ∧ ¬ω and ψ = Q K k (∃) x • ψ n n .
Then a tree t ∈ ∆ ′ M k satisfies ϕ if and only if a letter of the form 1 n occurs at least once in t; (t, [x → v]) satisfies χ (resp. ω) if some descendant (resp. non-descendant) of v has its label in ∆ (resp. in E); and t satisfies ψ if and only if t can be factored as t = r • (k 1 ⊕ s ⊕ k 2) with all the nodes in NV(s) labeled in E and all the nodes in NV(r) labeled in ∆. It is immediate that L is defined by the Lind(K ∃)-formula ϕ ∧ ψ. The proof that Lind(K ∃,mod) admits relativization is similar. ⊓ ⊔

Now let K = K ℓ (∃) and L = EM k1+1+k2 • (k 1 ⊕ K ⊕ k 2). Define, for each m ≥ 0 such that Σ m = ∅ χ m = ¬(x < y) ∧ ¬P εm (y), χ = Q K k (∃) y • χ n n , ω m = (x < y) ∧ P εm (y), ω = Q K k (∃) y • ω n n , ψ m = left k1 (x) ∧ right k1+ℓ+1 (x) ∧ ¬χ ∧ ¬ω and ψ = Q K k (∃) x • ψ n n . Then if t ∈ ∆ ′ M k , we have (t, [x → v]) |= ω (resp. χ) if
3 Algebraic characterization of logically defined tree languages

The block product of preclones

In this section, we introduce our main algebraic tool, the block product of preclones and of pg-pairs. This is a generalization of an operation on monoids that was introduced by Rhodes and Tilson [START_REF] Rhodes | The kernel of monoid morphisms[END_REF], as a two-sided generalization of the more classical wreath product.

Let us first (attempt to) briefly summarize the spirit of the block product of monoids, which was introduced [START_REF] Rhodes | The kernel of monoid morphisms[END_REF] in relation with the description of bimachines (Eilenberg [11]). Let T be a finite monoid and let τ : A * → T be a morphism. The associated bimachine T represents the simultaneous operations of left-to-right and right-to-left processing of a string in A * by τ : if

a 1 • • • a n ∈ A * , the i-th component of this processing is the triple (τ (a 1 • • • a i-1), a i , τ (a i+1 • • • a n)) ∈ T × A × T ,
and the output of T is the product of these components, namely the following string in (T × A × T) * :

(1, a 1 , τ (a 2 • • • a n))(τ (a 1), a 2 , τ (a 3 • • • a n)) • • • (τ (a 1 • • • a n-1), a n , 1).
The idea of the block product is to capture the (cascade) product of this bimachine with an ordinary automaton, that is, to use the output of the bimachine as input for another automaton S operating on alphabet T × A × T . This translates to a monoid morphism σ: (T × A × T) * → S into a finite monoid S (the transition monoid of S) -which is entirely determined by the images of the triples (t, a, t ′) ∈ T × A × T . For each a ∈ A, let us denote by f a the map f a (t, t ′) = σ(t, a, t ′). Then the composed machine output, on input

a 1 • • • a n is f a1 (1, τ (a 2 • • • a n))f a2 (τ (a 1), τ (a 3 • • • a n)) • • • f an (τ (a 1 • • • a n-1), 1).
Note that f a (t, t ′) is the σ-image (the S-value) of the effect of letter a in bimachine T , when a is in a left-right context whose T -values are t and t ′ . The map f a itself records the effect of letter a in all possible contexts.

The general definition of the block product of monoids is an abstraction of these ideas: S ⊓ ⊔ T is the set of pairs (f, t) ∈ S T ×T × T and the product (f

1 , t 1) • • • (f n , t n) is equal to (g, t 1 • • • t n), with g(t, t ′) = f 1 (1, t 2 • • • t n)f 2 (t 1 , t 3 • • • t n) • • • f n-1 (t 1 • • • t n-2 , t n)f n (t 1 • • • t n-1 , 1).
This operation on monoids proved to be useful to decompose morphisms [START_REF] Rhodes | The kernel of monoid morphisms[END_REF][START_REF] Rhodes | Decomposition techniques for finite semigroups using categories[END_REF][START_REF] Rhodes | Decomposition techniques for finite semigroups using categories, II[END_REF] and to explain the connection between first-order logic and aperiodic monoids (see [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]). We now extend these ideas to preclones. The resulting definition is more complex as our contexts are not just left-right pairs (see the definition of contexts in Section 1.3) and we need to take into account the rank of elements. In particular, this leads to the definition of a sequence of block products S ⊓ ⊔ k T (k ≥ 0).

Formally, let S and T be preclones. We define preclones S ⊓ ⊔ k T for each k ≥ 0. Recall (Section 1.3) that, for each k, n ≥ 0, I k,n denotes the set of n-ary contexts in T k . The set of rank n elements of S ⊓ ⊔ k T is defined to be

(S ⊓ ⊔ k T) n = S I k,n n × T n , n ≥ 0.
The identity 1 is the pair (F 1 , 1), where

F 1 (C) = 1, for all C ∈ I k,1 . As for the composition operation, let (F, f) ∈ (S ⊓ ⊔ k T) n , and let (G i , g i) ∈ (S ⊓ ⊔ k T) mi for each i ∈ [n]. Let g = g 1 ⊕ • • • ⊕ g n ∈ T n,m , where m = n i=1 m i . Then we let (F, f) • ((G 1 , g 1) ⊕ • • • ⊕ (G n , g n)) = (Q, f • g), an element of (S ⊓ ⊔ k T) m = S I k,m m
× T m , where Q: I k,m → S m is described as follows.

For each (u,

k 1 , v, k 2) ∈ I k,m , we have v = v 1 ⊕ • • • ⊕v m ∈ T m,ℓ , where ℓ = k -(k 1 + k 2). Let v1 be the ⊕-sum of the first m 1 v j 's, v1 = v 1 ⊕ • • • ⊕ v m1 , let v2 be the ⊕-sum of the next m 2 v j 's, etc, until vn = v m-mn+1 ⊕ • • • ⊕ v m is the ⊕-sum of the last m n v j 's, see Figure 7. In particular, v = n i=1 vi . For each i ∈ [n]
, let ℓ i be the total rank of vi , so that vi ∈ T mi,ℓi and i ℓ i = ℓ.

For each i ∈ [n], we observe that g i • vi ∈ T ℓi , and we let

c i = u • k 1 ⊕ f • (g 1 • v1 ⊕ • • • ⊕ g i-1 • vi-1 ⊕ 1 ⊕ g i+1 • vi+1 ⊕ • • • ⊕ g n • vn) ⊕ k 2 .
We note that u•(k

1 ⊕f •g •v ⊕k 2) = c i •(p 1 ⊕g i • vi ⊕p 2), where p 1 = k 1 + j<i ℓ j and p 2 = j>i ℓ j + k 2 . Then c i is an element of T with rank p 1 + 1 + p 2 = k 1 + k 2 + ℓ -ℓ i + 1 = k -ℓ i + 1.
(Of course, the integers p 1 and p 2 depend on i even though our notation does not show it.)

In particular, C i = (c i , p 1 , vi , p 2) is a context in I k,mi , see Figure 7. We are finally ready to define Q:

Q(u, k 1 , v, k 2) = F (u, k 1 , g • v, k 2) • (G 1 (C 1) ⊕ • • • ⊕ G n (C n)). u k 1 k 2 v m ℓ u k 1 k 2 • • • v1 m 1 ℓ 1 vn m n ℓ n u k 1 k 2 f g 1 v1 • • • g n-1
vn-1 vn Proof. Let us first verify the axioms concerning the identity element. Let (G, g)

∈ (S ⊓ ⊔ k T) m and let (Q, g) = (F 1 , 1) • (G, g). Let (u, k 1 , v, k 2) ∈ I k,m .
With reference to the notation in the definition above, we have n = 1 and

C 1 = (u, k 1 , v, k 2). It follows that Q = G, so (F 1 , 1) • (G, g) = (G, g). Let now (F, f) ∈ (S⊓ ⊔ k T) n and let (Q, f) = (F, f)•((F 1 , 1)⊕• • •⊕(F 1 , 1)). Let (u, k 1 , v, k 2) ∈ I k,n . Then Q(u, k 1 , v, k 2) = F (u, k 1 , v, k 2)•(F 1 (C 1)⊕• • •⊕F 1 (C n)) for some C 1 , . . . , C n , and hence Q(u, k 1 , v, k 2) = F (u, k 1 , v, k 2) • (1 ⊕ • • • ⊕ 1) = F (u, k 1 , v, k 2). Thus (F, f) • ((F 1 , 1) ⊕ • • • ⊕ (F 1 , 1)) = (F, f). Next let (F, f) ∈ (S ⊓ ⊔ k T) n ; for i ∈ [n] let (G i , g i) ∈ (S ⊓ ⊔ k T) mi and let m = i∈[n] m i ; for j ∈ [m], let (H j , h j) ∈ (S ⊓ ⊔ k T) pj and let p = j∈[m] p j . Let g = ⊕ i∈[n] g i and let h = ⊕ j∈[m] h j .
We also denote by h1 the ⊕-sum of the first m 1 h j 's, h2 the ⊕-sum of the next m 2 h j 's, etc, to hn the ⊕-sum of the last m n h j 's, so that h

= ⊕ i∈[n] hi . The rank of hi is m1+•••+mi j=m1+•••+mi-1+1 p j . We need to consider p-ary contexts in T k : let (u, k 1 , v, k 2) ∈ I k,p be such a context. Then v = v 1 ⊕ • • • ⊕ v p ∈ T p,ℓ with ℓ = k -k 1 -k 2 . Let v1 denote the ⊕-sum of the first p 1 v i 's, v2 the ⊕-sum of the next p 2 v i 's, etc to vm the ⊕-sum of the last p m v i 's. For i ∈ [n],
we also denote by vi the ⊕-sum of the vj where h j is part of the summation defining hi . That is, v1

= v1 ⊕ • • • ⊕ vm1 ,. . . , vn = vm-mn+1 ⊕ • • • ⊕ vm .
We first consider the product

(F, f) • (G 1 , g 1) ⊕ • • • ⊕ (G n , g n) • (H 1 , h 1) ⊕ • • • ⊕ (H m , h m) = (Q, f • g) • (H 1 , h 1) ⊕ • • • ⊕ (H m , h m) = (R, f • g • h). Then we have R(u, k 1 , v, k 2) = Q(u, k 1 , h • v, k 2) • (H 1 (B 1) ⊕ • • •⊕ H m (B m)), with B j = (b j , p ′ 1 , vj , p ′ 2) where b j (j ∈ [m]) is u • (k 1 ⊕ f • g • (h 1 • v1 ⊕ • • • ⊕ h j-1 • vj-1 ⊕ 1 ⊕ h j+1 • vj+1 ⊕ • • • ⊕ h m • vm) ⊕ k 2), p ′ 1 = k 1 + j-1 s=1 rank(v s) and p ′ 2 = k 2 + m s=j+1 rank(v s), so that u • (k 1 ⊕ f • g • h • v ⊕ k 2) = b j • (p ′ 1 ⊕ h j • vj ⊕ p ′ 2). u k 1 k 2 f g h1⊕•••⊕hm-1 v1⊕•••⊕vm-1 vm u k 1 k 2 f g1⊕•••⊕gn-1 h1⊕•••⊕ hn-1 v1⊕•••⊕ vn-1 hn vn u k 1 k 2 f g1⊕•••⊕gn-1 h1⊕•••⊕ hn-1 v1⊕•••⊕ vn-1 vn Figure 8: The contexts B m , C n and D n Moreover, Q(u, k 1 , h • v, k 2) = F (u, k 1 , g • h • v, k 2) • (G 1 (C 1) ⊕ • • • ⊕ G n (C n)), where C i (i ∈ [n]) is the context (c i , r 1 , hi • vi , r 2) with c i equal to u• k 1 ⊕f •(g 1 • h1 • v1 ⊕• • •⊕g i-1 • hi-1 • vi-1 ⊕1⊕g i+1 • hi+1 • vi+1 ⊕• • •⊕g n • hn • vn)⊕k 2 , r 1 = k 1 + i-1 s=1 rank(vs), r 2 = k 2 + n s=i+1 rank(vs), so that u • (k 1 ⊕ f • g • h • v ⊕ k 2) = c i • (r 1 ⊕ g i • hi • vi ⊕ r 2). See Figure 8. Thus R(u, k 1 , v, k 2) = F (u, k 1 , g • h • v, k 2) • n i=1 G i (C i) • m j=1 H j (B j) .
We compare this result with the product

(F, f) • (G 1 , g 1) ⊕ • • • ⊕ (G n , g n) • (H 1 , h 1) ⊕ • • • ⊕ (H m , h m) = (F, f) • (Q ′ 1 , g 1 • h1) ⊕ • • • ⊕ (Q ′ n , g n • hn) = (R ′ , f • g • h). Then we have R ′ (u, k 1 , v, k 2) = F (u, k 1 , g • h • v, k 2) • (Q ′ 1 (D 1) ⊕ • • • ⊕ Q ′ n (D n)), where D i (i ∈ [n]) is the context (c i , r 1 , vi , r 2)
, where c i , r 1 , r 2 are defined above.

Next we compute Q ′ 1 (D 1): we have

Q ′ 1 (D 1) = Q ′ 1 (c 1 , r 1 , v1 , r 2) = G(c 1 , r 1 , h1 • v1 , r 2) • (H 1 (E 1) ⊕ • • • ⊕ H m1 (E m1))
where

E j (j ∈ [m 1]) is the context (e j , r ′ 1,j , vj , r ′ 2,j), e j = u • (k 1 ⊕ f • (g 1 • (h 1 • v1 ⊕ • • • ⊕ h j-1 • vj-1 ⊕ 1 ⊕h j+1 • vj+1 ⊕ • • • ⊕ h m1 • vm1) ⊕ g 2 • h2 • v2 ⊕ • • • ⊕ g n • hn • vn) ⊕ k 2)
and r ′ 1,j and r ′ 2,j are appropriate integers so that

c 1 • (r 1 ⊕ g 1 • h1 • v1 ⊕ r 2) = e j • (r 1,j ⊕ h j • vj ⊕ r 2,j), see Figure 8.
We observe now that e j = b j and

E j = B j for j ∈ [m 1]. So we have Q ′ 1 (D 1) = G 1 (C 1) • m1 j=1 H j (B j).
Similarly, for each i ∈ [n], we have

Q ′ i (D i) = G i (C i) • mi j=1 H m1+•••+mi-1+j (B m1+•••+mi-1+j),
and we have verified that R = R ′ .

⊓ ⊔

We also define block products of pg-pairs. If (S, A) and (T, B) are pg-pairs and k ≥ 0, we define (S, A) ⊓ ⊔ k (T, B) to be the sub-pg-pair of S ⊓ ⊔ k T generated by those pairs (F, g) such that for some n ≥ 0, g ∈ B n and

F (c) ∈ A n for each c ∈ I k,n .
Let (S, A) and (T, B) be pg-pairs and let α: AM → S and β: BM → T be the natural morphisms, so that α(a) = a and

β(b) = b for all a ∈ A and b ∈ B. Let (U, Σ) = (S, A) ⊓ ⊔ k (T, B), and let ϕ: ΣM → U ⊆ S ⊓ ⊔ k T be the natural morphism. By definition, each σ ∈ Σ n (n ≥ 0) is a pair σ = (F σ , b σ) with b σ ∈ B n and F σ ∈ A I k,n
n . Let π: ΣM → BM be the morphism induced by the second component projection from Σ to B, and let τ = β • π: ΣM → T , see Figure 9. We now describe a way of computing ϕ(t) for a tree t ∈ ΣM n , say

ϕ(t) = (Q t , τ (t)). ΣM BM U T π β τ ϕ
Let D = (u, k 1 , v, k 2) ∈ I k,n .
We define the tree tD by relabeling the nodes of t in NV(t) with elements of A as follows. Let x be a node of t of rank m ≥ 0, let g be the subtree of t whose root is x, and let h 1 , . . . , h m be the subtrees whose roots are the children of x, see Figure 10.

Let h = h 1 ⊕ • • • ⊕ h m , let σ ∈ Σ m be the label of x in t and let r 2 ≥ 0 be such that g = σ • h ∈ ΣM r2 and h ∈ ΣM m,r2 . f r 1 r 3 x r 2 g σ h 1 • • • h m u k 1 k 2 τ (f) r 1 r 3 v1 p 1 v3 p 3 τ (h)
Let us write t = f • (r 1 ⊕ g ⊕ r 3
), where r 1 and r 3 are integers such that the node x is now labeled by a variable in f (that is, left r1 (x) and right n-r3+1 (x) in t, and n = r 1 + r 2 + r 3). Let v1 be the ⊕-sum of the first r 1 v j 's, v2 the ⊕-sum of the next r 2 v j 's and v3 the ⊕-sum of the last r 3 v j 's. Then we have v1 ∈ T r1,p1 , v2 ∈ T r2,p2 and v3 ∈ T r3,p3 for some p 1 , p 2 , p 3 ≥ 0 (and 10. We finally label the node x in tD by F σ (C).

k = k 1 + p 1 + p 2 + p 3 + k 2). Let then c = u • (k 1 ⊕ τ (f) • (v 1 ⊕ 1 ⊕ v3) ⊕ k 2), so that C = (c, k 1 + p 1 , τ (h) • v2 , p 3 + k 2) ∈ I k,m , see Figure
The resulting tree tD is an element of AM n . We now show the following fact.

Fact 3.2 With the notation above, ϕ(t) = (Q t , τ (t)) where Q t (D) = α(tD) for each context D ∈ I k,n .
Proof. The proof is by structural induction on t. If t = 1, then tD = 1 for each D, and ϕ(t) = (F 1 , 1), so the announced result holds.

If t consists of a single node, then t = σ ∈ Σ 0 and ϕ(t

) = (F σ , b σ). Now let D = (u, k 1 , 0, k 2) ∈ I k,0
. With the notation above, we have g = σ = t, h = 0, f = 1, and p i = r j = 0. In particular, c = u. It follows that C = D and tD = F σ (D). Moreover, since F σ (D) ∈ A, we have α(tD) = F σ (D). This concludes the verification of the equality for one-node trees.

Let us now assume that t ∈ ΣM n (n ≥ 0) has more than one node, let σ ∈ Σ m be the label of the root of t, and let s (1) , . . . , s (m) be the subtrees of t attached to the children of the root. Let also s = s (1)

⊕ • • • ⊕ s (m) , so that t = σ • s. Let D = (u, k 1 , w, k 2) ∈ I k,n . By induction, we have Q t (D) = F σ (u, k 1 , τ (s) • w, k 2) • α(s (1) C1) ⊕ • • • ⊕ α(s (m) Cm) , where w = w1 ⊕ • • • ⊕ wn , C i = (c i , q 1 , wi , q 2), c i = u • (k 1 ⊕ τ (σ • (s (1) ⊕ • • • ⊕ s (i-1) ⊕ 1 ⊕ s (i+1) ⊕ • • • ⊕ s (m))) ⊕ k 2)
and q 1 and q 2 are appropriate integers (which depend on i) such that

u • (k 1 ⊕ τ (t) • w ⊕ k 2) = c i • (q 1 ⊕ τ (s (i)) • wi ⊕ q 2).
We compare this value with α(tD). If a is the label of the root of tD and if d 1 , . . . , d m are the subtrees of tD attached to the children of the root, then α(tD) = α(a) • i α(d i). We first discuss the value of a. With reference to the notation in the definition of the labels of tD above, since t = σ • s, the integers p 1 , p 3 , r 1 , r 3 are all equal to 0 and v1 = v3 = 0. In particular,

a = F σ (u, k 1 , τ (s)• w, k 2). Thus α(a) = α(F σ (u, k 1 , τ (s) • w, k 2)) = F σ (u, k 1 , τ (s) • w, k 2).
To conclude, we need only to verify that d i = s(i) Ci for each i ∈ [m], that is, each node x of t in NV(s (i)), has the same label in d i and in s(i) Ci . But it is easy to see that the label of x in both tD and s(i) Ci is of the form F ρ (C) where ρ ∈ Σ is the label of x in s (i) and C is appropriate. ⊓ ⊔

Closed pseudovarieties

We say that a pseudovariety V of preclones is closed if every block product S⊓ ⊔ k T with S, T ∈ V and k ≥ 0 belongs to V. Closed pseudovarieties of pg-pairs are defined similarly. Since the intersection of a family of closed pseudovarieties is closed, there exists a least closed pseudovariety containing any given class K of finitary preclones (resp. finitary pg-pairs).

We now give a technical result on closed pseudovarieties, that will be used in the proof of our main result. We consider the situation where S, T, T ′ are preclones and T is a sub-preclone of T ′ . Then the elements of S ⊓ ⊔ k T ′ whose second component belongs to T , form a sub-preclone of S ⊓ ⊔ k T ′ which we denote by S ⊓ ⊔ T ′ k T .

Proposition 3.3 Let V be a closed pseudovariety of preclones. Let S, T ∈ V and let T ′ be a finitary preclone such that T is a sub-preclone of T ′ . For each k ≥ 0, the product S ⊓ ⊔ T ′ k T belongs to V.

Before we prove Proposition 3.3, we verify a technical lemma. In this lemma, we use the notation in the proposition. In particular, we need to consider contexts in both T k and T ′ k . We denote by I k,n (resp.

I ′ k,n) the set of n-ary contexts in T k (resp. T ′ k).
C : S ⊓ ⊔ T ′ k T → S ⊓ ⊔ n T such that, if (F, f) ∈ (S ⊓ ⊔ T ′ k T) n , then α C (F, f) is of the form α C (F, f) = (F C , f) with F C (1, 0, n, 0) = F (C). Proof. Let C = (u, k 1 , v, k 2) ∈ I ′ k,n and let (F, f) ∈ (S⊓ ⊔ T ′ k T) m , m ≥ 0.
We first define a mapping F C : I n,m → S m . Let D = (r, p 1 , s, p 2) ∈ I n,m . By definition, p 1 + p 2 ≤ n, and we let v1 be the ⊕-sum of the first p 1 v i 's, v2 be the ⊕-sum of the last p 2 v i 's, and v be the ⊕-sum of the middle np 1p 2 v i 's. In particular, there exist integers q 1 , q, q 2 such that v1 ∈ T p1,q1 , v ∈ T n-p1-p2,q , v2 ∈ T p2,q2 and k 1 + p 1 + q 1 + q + q 2 + p 2 + k 2 = k, see Figure 11. We let

F C (D) = F u • (k 1 ⊕ r • (v 1 ⊕ 1 ⊕ v2) ⊕ k 2), k 1 + q 1 , s • v, q 2 + k 2 .
The verification that F C (1, 0, n, 0) = F (C) is straightforward, and we need to show that α C : (F, f) → (F C , f) defines a morphism of preclones.

Let (F, f)

∈ (S ⊓ ⊔ T ′ k T) m and let (G i , g i) ∈ (S ⊓ ⊔ T ′ k T) hi (i ∈ [m]
). For convenience, we let g be the ⊕-sum of the g i , so g ∈ T m,h with h

= i h i . Let (Q, f • g) = (F, f) • i (G i , g i), so that α C ((F, f) • i (G i , g i)) = (Q C , f • g). Moreover, let (R, f • g) = (F C , f) • i (G C i , g i).
We need to verify that Q C = R. Let D = (r, p 1 , s, p 2) ∈ I h,n . For each i ∈ [m], let si be the appropriate ⊕-sum of s j 's such that g

• s = g 1 • s1 ⊕ • • • ⊕ g m • sm . Then R(D) = F C (r, p 1 , g • s, p 2) • i G C i (D i), where D i = (r i , ℓ 1 , si , ℓ 2), r i is r • (p 1 ⊕ f • (g 1 • s1 ⊕ • • • ⊕ g i-1 • si-1 ⊕ 1 ⊕ g i+1 • si+1 ⊕ • • • ⊕ g m • sm) ⊕ p 2),
and

ℓ 1 , ℓ 2 are such that r • (p 1 ⊕ f • g • s ⊕ p 2) = r i • (ℓ 1 ⊕ g i • si ⊕ ℓ 2). Thus R(D) is the composition of F u • (k 1 ⊕ r • (v 1 ⊕ 1 ⊕ v2) ⊕ k 2), k 1 + p 1 , g • s • v, p 2 + k 2 with m i=1 G i u • (k 1 ⊕ r i • (v i 1 ⊕ 1 ⊕ vi 2) ⊕ k 2), k 1 + ℓ 1 , g • s • vi , ℓ 2 + k 2 , u k 1 k 2 r p 1 p 2 v1 q 1 v2 q 2 m s v q
v = vi 1 ⊕ vi ⊕ vi 2 is the appropriate grouping. Observe that u • (k 1 ⊕ r i • (v i 1 ⊕ 1 ⊕ vi 2) ⊕ k 2) is equal to u •(k 1 ⊕ p 1 ⊕ f •(g 1 • s1 ⊕ • • •⊕ g i-1 • si-1 ⊕ 1⊕ g i+1 • si+1 ⊕ • • •⊕ g m • sm)⊕ p 2 ⊕ k 2). Now, Q C (D) = Q(u • (k 1 ⊕ r • (v 1 ⊕ 1 ⊕ v2) ⊕ k 2), k 1 + p 1 , s • v, p 2 + k 2)
. By definition of the block product, this is equal to the composition of

F u • (k 1 ⊕ r • (v 1 ⊕ 1 ⊕ v2) ⊕ k 2), k 1 + p 1 , g • s • v, p 2 + k 2 with m i=1 G i (r ′ i , z 1 , si • v′ i , z 2),
where v = i v′ i is the appropriate grouping,

r ′ i = u • (k 1 ⊕ r • (v 1 ⊕ f • (g 1 • s1 • v1 ⊕ • • • ⊕ g i-1 • si-1 • vi-1 ⊕ 1 ⊕g i+1 • si+1 • vi+1 ⊕ • • • ⊕ g m • sm • vm) ⊕ v2) ⊕ k 2)
where v = v1 ⊕ • • • ⊕ vm and z 1 and z 2 are appropriate integers.

It is now a straightforward verification that R(D) = Q C (D), which concludes the proof.

⊓ ⊔

Proof of Proposition 3.3. By Proposition 1.5, it suffices to verify that distinct elements of equal rank in S ⊓ ⊔ T ′ k T can be separated by a morphism into an element of V.

So we consider (F 1 , f 1) and (F 2 , f 2), rank n elements of S ⊓ ⊔ T ′ k T . If f 1 = f 2 , the second component projection is a morphism into T ∈ V which separates the two elements. If f 1 = f 2 , then F 1 = F 2 and we let C ∈ I ′ k,n such that F 1 (C) = F 2 (C). Then the morphism α C in Lemma 3.4 is a morphism into S ⊓ ⊔ n T ∈ V which separates the two elements.

⊓ ⊔

If (S, A) and (T ′ , B ′) are pg-pairs and (T, B) is a sub-pg-pair of (T ′ , B ′), recall that the block product (S, A)⊓ ⊔ k (T ′ , B ′) is generated by a ranked alphabet

Σ ′ such that Σ ′ m = A I ′ k,m m × B ′ m . We let (S, A) ⊓ ⊔ (T ′ ,B ′) k (T, B) be the sub-pg-pair of (S, A)⊓ ⊔ k (T ′ , B ′) generated by the subset Σ of Σ ′ such that Σ m = A I ′ k,m m × B m for each m.
Proposition 3.5 Let V be a closed pseudovariety of pg-pairs. Let (S, A) and (T, B) be pg-pairs in V and let (T ′ , B ′) be a finitary pg-pair such that (T, B) is a sub-pg-pair of (T ′ , B ′). For each k ≥ 0, the product (S, A) ⊓ ⊔

(T ′ ,B ′) k (T, B) belongs to V.
Proof. We note that the morphism α C in the proof of Lemma 3.4, maps each generator of (S, A) ⊓ ⊔ (T ′ ,B ′) k (T, B) to a generator of (S, A) ⊓ ⊔ n (T, B), so α C is also a morphism of pg-pairs between these block products.

The same scheme as in the proof of Proposition 3.3 can then be applied, using Proposition 1.6 instead of Proposition 1.5.

⊓ ⊔

We conclude with a result on full pseudovarieties (see Section 1.4).

Proposition 3.6 Let W be a pseudovariety of preclones, let V = pgp(W) and let W and V be the closure of W and V respectively. Then V and V are full and V = pgp(W).

Proof. In view of Proposition 1.9, it suffices to show that V = pgp(W). We first verify that if (S, A) ∈ V, then S ∈ W, by induction on the construction of (S, A) from elements of V by means of block products. If (S, A) ∈ V, then S ∈ W by definition and hence, S ∈ W. Now suppose that (S, A) < (S (1) , A (1)) ⊓ ⊔ k (S (2) , A (2)) and S (1) , S (2) ∈ W. By definition of the block product of pg-pairs, S < S (1) ⊓ ⊔ k S (2) and hence S ∈ W. Now we show that if (S, A) is a finitary pg-pair with S ∈ W, then (S, A) ∈ V. The proof is by induction on the construction of S from elements of W by means of block products. If S ∈ W, then (S, A) ∈ pgp(W) = V by definition. Now suppose that S = S (1) ⊓ ⊔ k S (2) and pgp(S (i)) ⊆ V. Let B (2) be the projection of A onto S (2) . Each element of A is of the form (F, b) with b ∈ B (2) . Let B (1) be the union of the ranges of the first components of elements of A. Then, if T (i) is the sub-preclone of S (i) generated by B (i) , we have (S, A) ⊆ (T (1) , A (1)) ⊓ ⊔ k (T (2) , A (2)). It follows that (S, A) ∈ V. ⊓ ⊔

Characterizing Lind(K)

Our main result is:

Theorem 3.7 Let K be a class of recognizable tree languages such that each quotient of a language in K belongs to Lind(K) and such that Lind(K) admits relativization. Then a language is in Lind(K) if and only if its syntactic pgpair belongs to the least closed pseudovariety of pg-pairs containing the syntactic pg-pairs of the languages in K.

The proof of Theorem 3.7 is based on Propositions 3.8 and 3.9 below. Applications are considered in the next section. Proposition 3.8 Let K be a class of recognizable tree languages such that Lind(K) admits relativization and let (S, A) and (T, B) be pg-pairs such that every language recognizable by (S, A) or (T, B) belongs to Lind(K). Then every language recognizable by a block product of (S, A) and (T, B) also belongs to Lind(K).

Proof. Let k ≥ 0, (U, Σ) = (S, A) ⊓ ⊔ k (T, B), and ϕ: (ΣM, Σ) → (U, Σ) be the morphism induced by the identity map of Σ. Let L be a tree language recognized by a morphism ϕ ′ : (Σ ′ M, Σ ′) → (U, Σ). Since ϕ is onto and (Σ ′ M, Σ ′) is free, there exists a morphism ψ:

(Σ ′ M, Σ ′) → (ΣM, Σ) such that ϕ ′ = ϕ • ψ. In particular, L = ϕ ′ -1 (ϕ ′ (L)) = ψ -1 (ϕ -1 (ϕ ′ (L))).
In view of Theorem 2.17, it suffices to show that every language recognized by ϕ lies in Lind(K). This in turn reduces to showing that ϕ -1 (F, g) ∈ Lind(K) for each (F, g) ∈ U .

We use the information obtained in Fact 3.2 on the computation of ϕ(t). As in that statement, we let α: AM → S and β: BM → T be the natural morphisms, we let π: ΣM → BM be the morphism induced by the second coordinate projection from Σ to B, and we let τ = β • π: ΣM → T . For each σ ∈ Σ, we let ϕ(σ) = (F σ , b σ).

Let (F, g) ∈ U n . For each t ∈ ΣM n , we have ϕ(t) = (Q t , τ (t)), where Q t ∈ S I n,k n is described in Fact 3.2. We note that τ -1 (g) is recognized by (T, B), and hence is in Lind(K). We denote by χ g a rank n Lind(K)-sentence defining τ -1 (g).

Recall (from Fact 3.2) that Q t (D) = α(tD) for all D ∈ I k,n . For each s ∈ S, the tree language K s = α -1 (s) is recognized by (S, A), and hence K s ∈ Lind(K). It now suffices to show that, for each s ∈ S n and D ∈ I k,n , there exists a rank n Lind(K)-sentence ψ s,D defining the language

{t ∈ ΣM n | tD ∈ K s }.
Indeed, since I k,n is finite, it will follow that ϕ -1 (F, g) is defined by the conjunction of χ g and the ψ s,D (D ∈ I k,n and F (D) = s). We construct the sentence ψ s,D in the form ψ s,D = Q Ks z • ψ a a∈A (where ψ a is a rank n Lind(K)-formula on Σ depending on a and D). (The formula ψ s,D is actually a Lind(Lind(K))formula but this is sufficient for our purpose in view of Theorem 2.15 (3).) Let a ∈ A m and D = (u, k 1 , v, k 2) ∈ I k,n . For each 0 ≤ i < j ≤ n + 1, let v1 = ⊕ i q=1 v q , v2 = ⊕ j-1 q=i+1 v q and v3 = ⊕ n q=j v q ; and let p 1 , p 2 , p 3 be the ranks of v1 , v2 and v3 respectively. For each such i, j, for m ≥ 0

, σ ∈ Σ m , c ∈ T k1+p1+1+p3+k2 , c 1 ⊕ • • • ⊕ c m ∈ T m,p2 , we let ψ ′ = P σ (z) ∧ left i (z) ∧ right j (z) ∧ χ c [> z] ∧ ℓ∈[m] χ c ℓ [≥ xℓ]
and we let ψ a (z) be the (finite) disjunction of the ψ ′ (z) when

F σ (u • (k 1 ⊕ c • (v 1 ⊕ 1 ⊕ v3) ⊕ k 2), k 1 + p 1 , (c 1 ⊕ • • • ⊕ c m) • v2 , p 3 + k 2) = a.
It is elementary to verify that (t, z → x) |= ψ a if and only if node x is labeled a in tD . Thus t satisfies ψ s,D if and only if tD ∈ K s , if and only if Q(t) = α(tD) ∈ α(K s) = {s}, which concludes the proof.

⊓ ⊔ Proposition 3.9 Let Y be a set of first order variables and let y ∈ Y . Let ϕ δ δ∈∆ be a family of rank k Lind-formulas over Σ, with free variables in Y ∪ {y}, deterministic with respect to y, let K ⊆ ∆M k be a tree language and let ϕ = Q K y • ϕ δ δ∈∆ . Let (S, A) be a pg-pair recognizing K, and let (T, B) be a pg-pair recognizing simultaneously the languages

L ϕ δ ⊆ Σ Y ∪{y} M k (δ ∈ ∆). Then the language L ϕ (a subset of Σ Y M k) is recognized by (S, A) ⊓ ⊔ k (T, B).
Proof. Let κ: (∆M, ∆) → (S, A) be an onto morphism recognizing K, and let τ : (Σ Y ∪{y} M, Σ Y ∪{y}) → (T, B) be an onto morphism recognizing each of the L ϕ δ (δ ∈ ∆).

We observe the following: if t ∈ Σ Y ∪{y} M k is a (Y ∪ {y})-structure and y occurs in the label of a rank n node, then there exists a unique δ ∈ ∆ n such that τ (t) ∈ τ (L ϕ δ). Indeed, the determinism of ϕ δ δ with respect to y shows that t lies in exactly one of the L ϕ δ (δ ∈ ∆ n): by hypothesis, τ -1 τ (L ϕε) = L ϕε for each ε, so τ (t) ∈ τ (L ϕε) and ε ∈ ∆ n implies ε = δ.

We consider the block product of pg-pairs (S, A) ⊓ ⊔ k (T, B).

For each σ ∈ Σ n and Z ⊆ Y (so that (σ, Z) ∈ (Σ Y) n), we let γ(σ, Z) = (F σ,Z , τ (σ, Z)), where F σ,Z is defined as follows. Let (u, k 1 , v, k 2) ∈ I k,n . If u•(k 1 ⊕τ (σ, Z ∪{y})•v⊕k 2) is the τ -image of some (Y ∪ {y})-structure, then we let F σ,Z (u, k 1 , v, k 2) = κ(δ) where δ ∈ ∆ n is uniquely determined by the property τ (u •(k 1 ⊕ (σ, Z ∪{y})•v ⊕ k 2)) ∈ τ (L ϕ δ). Otherwise, we choose F σ,Z (u, k 1 , v, k 2) arbitrarily in A n . Note that γ(σ, Z) lies in the generator set of the pg-pair (S, A) ⊓ ⊔ k (T, B). Let now t ∈ Σ Y M k and let D = (1, 0, k, 0) ∈ I k,k . Then γ(t) = (Q, τ (t))
, and Q(D) = α(tD), where α: AM → S is the natural morphism and tD is described in Fact 3.2. In particular, let x ∈ NV(t) be a rank n node, labeled by (σ, Z) in t and let t factor as t = f • (r 1 ⊕ (σ, Z) • h ⊕ r 3) where f , r 1 and r 3 are such that (σ, Z) • h is the subtree of t rooted at node x. The label of x in tD is equal to F σ,Z (τ (f), r 1 , τ (h), r 2), for the computation of which we need to consider the tree τ (f

• (r 1 ⊕ (σ, Z ∪ {y}) • h ⊕ r 3)), that is, τ (t ′), where t ′ is equal to t with the label of x changed to (σ, Z ∪ {y}). Note that t ′ is a (Y ∪ {y})-structure, so x is labeled by κ(δ) (δ ∈ ∆ n) in tD if and only if τ (t ′) ∈ L ϕ δ .
Going back to the definition of the interpretation of Lindström quantifiers, this shows that t ∈ L ϕ if and only if tD ∈ K. As a result, L ϕ = γ -1 (P) where P consists of the pairs (F, f) such that F (1, 0, k, 0) ∈ α(K), and hence L ϕ is recognized by (S, A) ⊓ ⊔ k (T, B).

⊓ ⊔

We are now ready to complete the proof of Theorem 3.7.

Proof of Theorem 3.7. Let K be the class of syntactic pg-pairs of the elements of K, let V be the pseudovariety of pg-pairs generated by K, and let V be the least closed pseudovariety containing V. We first show that if L is a tree language with syntactic pg-pair (S, A) ∈ V, then L ∈ Lind(K). In view of Proposition 1.7, (S, A) can be obtained from elements of K by a succession of operations consisting of taking either a sub-pg-pair, a quotient, a direct product or a block product. We let ♯(S, A) be the least number of such operations, and we proceed by induction on ♯(S, A).

If ♯(S, A) = 0, then (S, A) ∈ K, that is, (S, A) is the range of the syntactic morphism ϕ: (ΣM, Σ) → (S, A) of a language K ⊆ ΣM k in K. We want to show that every language recognized by (S, A) is in Lind(K). As in the first lines of the proof of Proposition 3.8, this reduces to showing that for each s ∈ S, we have ϕ -1 (s) ∈ Lind(K). Now we deduce from Remark 1.10 that

ϕ -1 (s) = (u, k 1 , k 2) -1 K v -1 \ (u, k 1 , k 2) -1 K v -1 ,
where the intersection runs over all n-ary contexts (u, k 1 , v, k 2) over ΣM k such that (u, k 1 , k 2) -1 K v -1 meets ϕ -1 (s), and the union over the n-ary contexts that do not. Moreover, by Remark 1.10 again, this union and this intersection are finite. It follows from Theorem 2.17 that ϕ -1 (s), and hence any language recognized by (S, A) lies in Lind(K).

We now suppose that ♯(S, A) > 0. If (S, A) is a sub-pg-pair or a quotient of a pg-pair (T, B) ∈ V with ♯(T, B) < ♯(S, A), Proposition 1.3 establishes that L is also recognized by (T, B), so every such language is in Lind(K) by induction hypothesis. If (S, A) is the direct product of pg-pairs (T, B) and (T ′ , B ′) with lesser ♯-values, then by a standard argument, every language recognized by (S, A) is a finite union of intersections of the form L ∩ L ′ , where L is recognized by (T, B) and L ′ by (T ′ , B ′). In particular, such a language is in Lind(K) by Theorem 2.17. If on the other hand, (S, A) divides a block product of pg-pairs with lesser ♯-values, the inductive step follows directly from Proposition 3.8.

This concludes the proof that every tree language recognized by a pg-pair in V is in Lind(K). We now turn to the converse, namely showing that any tree language defined by a Lind(K)-sentence has its syntactic pg-pair in V. This is implied by the following, more precise statement: if ϕ is a rank k Lind(K)-formula with free variables in a finite set Y , then L ϕ is recognized by a morphism α:

(Σ Y M, Σ Y) → (S, A) such that Im ∅ (α) ∈ V, where Im ∅ (α)
denotes the sub-pg-pair of (S, A) generated by α(Σ) (recall that Σ is identified with the subset Σ × {∅} of Σ Y).

We prove this statement by structural induction on ϕ. If ϕ is an atomic formula and α is the syntactic morphism of L ϕ , then Im ∅ (α) is trivial by Example 2.14, and hence lies in V. If ϕ = ϕ 1 ∨ ϕ 2 , then by induction hypothesis, there exist morphisms α i : (Σ Y M, Σ Y) → (S i , A i) recognizing L ϕi with Im ∅ (α i) ∈ V, i = 1, 2. It is immediate that L ϕ is recognizable by the target tupling α = (α 1 , α 2): (Σ Y M, Σ Y) → ((S 1 , A 1) × (S 2 , A 2)), and that Im ∅ (α) is a sub-pg-pair of the direct product Im ∅ (α 1) × Im ∅ (α 2). Since V is a pseudovariety, it follows that Im ∅ (α) is in V. The case where ϕ is of the form ϕ = ¬ϕ 1 , is also easily treated: any morphism recognizing L ϕ1 also recognizes its complement, namely L ϕ .

Finally, suppose that ϕ is of the form ϕ = Q K y • ϕ δ δ∈∆ , where K ⊆ ∆M k is recognized by some (S, A) ∈ K. Without loss of generality, we may assume that y ∈ Y . By induction, each L ϕ δ (δ ∈ ∆) is recognized by a morphism β δ such that Im ∅ (β δ) ∈ V. Taking the target tupling of the β δ , we construct a morphism β: (Σ Y ∪{y} M, Σ Y ∪{y}) → (T ′ , B ′) recognizing each L ϕ δ and such that Im ∅ (β) ∈ V (since Im ∅ (β) is a sub-pg-pair of the direct product of the Im ∅ (β δ)). By Proposition 3.9 (and its proof), we find that L ϕ is recognized by a morphism γ: (Σ Y M, Σ Y) → (S, A) ⊓ ⊔ k (T ′ , B ′), where the composition π • γ: (Σ Y M, Σ Y) → (T ′ , B ′) agrees with β (here π is the second component projection). In particular, Im ∅ (π • γ) is contained in Im ∅ (β). Thus Im ∅ (γ) is a sub-pg-pair of (S, A) ⊓ ⊔ (T ′ ,B ′) k Im ∅ (β), and hence Im ∅ (γ) ∈ V by Proposition 3.5.

⊓ ⊔

Applications

The first result follows directly from Theorem 3.7 and Proposition 3.6.

Theorem 3.10 Let K be a class of recognizable tree languages such that each quotient of a language of K is in Lind(K) and such that Lind(K) admits relativization. Let V be the least pseudovariety of pg-pairs containing the syntactic pg-pairs of elements of K and let V be the least closed pseudovariety containing V. The following holds.

• Lind(K) is a literal variety of recognizable tree languages, associated with pseudovariety V in the Eilenberg correspondence (Theorem 1.11).

• If K is the class of languages recognized by a class L of preclones, then Lind(K) is a variety of recognizable tree languages. Moreover, if W is the pseudovariety of preclones generated by L and W is the least closed pseudovariety of preclones containing W, then W is the pseudovariety of preclones associated with Lind(K).

Conclusion

We reduced the characterization of the expressive power of certain naturally defined logics on trees, a chief example of which is given by first-order sentences, to an algebraic problem. This algebraic problem is set in a new algebraic framework, that of preclones, which the authors introduced in [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF] precisely for the purpose of discussing tree languages. It is worth stating again that the notion of algebraic recognizability resulting from this new framework coincides with the usual one: we simply gave ourselves a richer algebraic set-up to classify recognizable tree languages. Our result does not yield (yet?) a decidability result for, say, first-order definable tree languages, but we can now look for a solution of this problem based on the methods of algebra. In this process, it will probably be necessary to develop the structure theory of preclones, to get more precise results on the block product operation.

A positive aspect of our approach is its generality: it is not restricted to the characterization of logics based on the use of Lindström quantifiers, nor indeed to the characterization of logics. Our key algebraic tool is the block product: this product was introduced by Rhodes and Tilson [START_REF] Rhodes | The kernel of monoid morphisms[END_REF] for monoids, to investigate the lattice of pseudovarieties of monoids and its application to the theory of formal languages (of finite words), and we adapted its definition for preclones. The use of wreath products instead of block products (the wreath product can be seen as a one-sided restriction of the block product) can yield algebraic characterizations for other natural classes of recognizable tree languages, see [START_REF] Ésik | Some varieties of finite tree automata related to restricted temporal logics[END_REF].

Our approach also raises a number of questions. At a technical level first: it was shown in [START_REF] Rhodes | The kernel of monoid morphisms[END_REF] that for monoids, the block product can be expressed in terms of a double semidirect product, a two-sided generalization of the semidirect product. It might be convenient to have such a notion for preclones as well, and to derive analogues of the wreath product principle and the block product principle (general descriptions of the languages recognized by a wreath product or a block product). This might yield, as in the finite word case, the characterization of the recognizing power of the block product of two varieties, the characterization of logical hierarchies within FO, etc.

At a more general level, we observe that in the word language case, the decidability of first-order definability does not stem from the analogue of our main result, namely the fact that a language is FO-definable if and only if its syntactic monoid is in the least pseudovariety containing {0, 1} and closed under block product. It follows rather from the characterization of that class of monoids as the aperiodic monoids, see the theorems of McNaughton and Papert on the equivalence of FO-definability and star-freeness, and of Schützenberger on the equivalence between star-freeness and aperiodicity. This characterization makes use in an essential way of the notion of star-freeness and of the structure theory of finite monoids. The question is therefore whether we can find a useful analogue of star-freeness for tree languages. There were attempts in this direction ([START_REF] Heuter | First-order properties of trees, star-free expressions, and aperiodicity[END_REF][START_REF] Potthoff | Regular tree languages without unary symbols are starfree[END_REF][START_REF] Potthoff | First order logic on finite trees[END_REF]) that established that the more natural notions of star-freeness for trees do not coincide with FO-definability. Are we missing on an important concept? Taking the question from a different angle, can we directly develop the relevant fragment of a structure theory of finitary preclones, to prove decidability of FO-definability?

Another, more general remark is the following. We are convinced that the algebraic concept of preclones is well suited for the study and the classification of recognizable languages of finite ranked trees. However, we are conscious that beyond its qualities (the first of which is to allow results such as those proved in this paper), our algebraic framework is cumbersome, and perhaps intimidating. We argued in [START_REF] Ésik | Algebraic characterization of regular tree languages[END_REF] that several known results on the characterization of particular classes of tree languages can be expressed in a natural way in the language of preclones, -but there might be an equivalent, yet lighter algebraic set-up.

This remark is related with another question. Other algebraic frameworks have been investigated in the literature since our results were announced in 2003 [START_REF] Ésik | On logically defined recognizable tree languages[END_REF], in the (considerable) interval it took for this paper to be written and refereed. One of the more promising and elegant is the notion of forest algebras, introduced by Bojańczyk and Walukiewicz [START_REF] Bojańczyk | Forest algebras[END_REF], initially to discuss languages of unranked, unordered trees. These authors also achieved the algebraic characterization of certain logically defined tree languages. More recent papers record interesting results using forest algebras, also to discuss ranked or ordered trees (e.g. Bojańczyk, Ségoufin, Straubing, Walukiewicz [START_REF] Bojańczyk | Two-way unary temporal logic over trees[END_REF][START_REF] Bojańczyk | Tree Languages Defined in First-Order Logic with One Quantifier Alternation[END_REF][START_REF] Bojańczyk | Piecewise Testable Tree Languages[END_REF]), and it is tempting to wonder whether this algebraic approach and ours could be unified, since forest algebras may be seen as an unsorted version of preclones.

Possibly as a longer term project, one should consider the following. From the point of view of applications (in the field of verification, the investigation of distributed computation models, of game theory, etc), being able to handle languages of infinite (ranked ordered) trees is important. Discussing languages of infinite words as well as languages of finite words, was a topic of interest from the very beginnings of automata theory (Büchi), automata models were proposed quite early on, but the development of an algebraic model to handle them (namely the notion of ω-semigroups) was very slow in coming, and was matured only in the late 1980s (through work of Arnold, Perrin, Pin, Wilke, etc, see [START_REF] Perrin | Infinite words[END_REF]). Can an analogous extension be developed for our preclones? One key technical tool in dealing with recognizable languages of infinite words is Ramsey's theorem, and the authors are unfortunately not aware of a relevant analogue of this theorem for trees.

 and ϕ ′ = false otherwise. If x ∈ Z, then it does not depend on t and λ whether (U • (k 1 ⊕ t ⊕ k 2), λ) |= ϕ or not, and we let ϕ ′ = true or false accordingly.If ϕ = root(x) and x ∈ Z, we let ϕ ′ = false. If x ∈ Z, we let ϕ ′ = true or false depending on whether U |= ϕ. Now consider the case where ϕ = (x < y). If x, y ∈ Z, we let ϕ ′ = ϕ. If x ∈ Z and y ∈ Z, we let ϕ ′ = false. If x ∈ Z but y ∈ Z, we let ϕ ′ = true or false depending whether the node of U where x occurs in an ancestor of the (k 1 + 1)-st variable leaf. Finally, if x, y ∈ Z, we let ϕ ′ = true or false depending whether U |= ϕ.

Figure 5 :

 5 Figure 5: S = t • U

Figure 7 :Lemma 3 . 1

 731 Figure 7: Two views of (u, k 1 , k 2 , v) ∈ I k,m , and the context C n

Figure 9 :

 9 Figure 9: The morphisms ϕ, π and β

Figure 10 :

 10 Figure 10: The trees t and g = σ • h, and the context C

Lemma 3 . 4

 34 Let S, T , T ′ and k be as in Proposition 3.3 and let C ∈ I ′ k,n . There exists a morphism α

Figure 11 :

 11 Figure 11: F C (D) is the image by F of the context represented here

 see Example 1.4 and [18, Section 5.2.1]. ⊓ ⊔ More complex examples are discussed in [18, Section 5.2], and the main results of this article provide further examples.

6

 With the above notation, we note that (t, λ v) |= ϕ δ (x) if and only if (tλ , [x → v]) |= P δ (x). Since x is the only free variable in P δ (x), this is also equivalent to (tλ , λ v) |= P δ (x). Suppose that ∆ = Σ and ϕ δ = P δ (x) as in Example 2.4. If t ∈ ΣM k , it is easily verified that the trees t and t are equal. In particular, if

	⊓ ⊔
	Example 2.7

 where t is viewed as a tree in AM 1) if and only if (t, λ) |= ∀x • ϕ 1 (x) (where t is viewed as a non-empty word in A *). ⊓ ⊔ Example 2.12 Let K k (∀ next) be the set of all trees in ∆M k such that the children of the root are labeled 1 n (for the appropriate n). Then (t, λ) satisfies Q K x • ϕ n n if and only if, for every child v of the root, (t, λ v) |= ϕ n (x) (where n is the rank of v). If A is an unranked alphabet, then (t, λ) |= Q K x• ϕ n n (where t is viewed as a tree in AM 1) if and only if (t, λ) |= ∃x • (Succ(1, x) ∧ ϕ 1 (x)), -more formally, (t, λ) |= ∃x • ∀y • (min(y) → Succ(y, x)) ∧ ϕ 1 (x) -(where t is viewed as a non-empty word in A

*).

 By induction, there exist formulas ϕ ′ δ over Σ ′ such that, for each δ, (t, λ v) |= ϕ ′ δ if and only if (h(t), λ v) |= ϕ δ for any tree t ∈ Σ ′ M k , node v in t and mapping λ: Y → NV(t). It follows that the characteristic tree determined by t, λ and ϕ ′ δ δ∈∆ , and the characteristic tree determined by h(t), λ and ϕ δ δ∈∆ coincide. As a result, we have (t, λ) |= ϕ ′ if and only if (h(t), λ) |= ϕ. ⊓ ⊔ Left quotients We now assume that any left quotient of a language in K belongs to Lind(K). Let k 1 , k 2 , ℓ be non-negative integers and let k = k 1 +ℓ+k 2 .

 some proper descendant (resp. non proper-descendant) of v has its label in E (resp. in ∆); and t satisfies ψ if and only if t can be factored as t = r • (k 1 ⊕ s ⊕ k 2) with all the nodes in NV(r) labeled in E and all the nodes in NV(s) labeled in E. It is immediate that L is defined by the Lind(K

∃)-formula ϕ ∧ ψ.

After our results were announced in

[START_REF] Ésik | On logically defined recognizable tree languages[END_REF] and while this paper was in preparation or under refereeing, an interesting approach of tree languages in terms of so-called forest algebras was introduced by Bojańczyk and Walukiewicz. See the conclusion of this paper for a brief discussion.

The notion of pseudovarieties of pg-pairs could be generalised to the notion of varieties of stamps as is done for word languages, see[START_REF] Straubing | On logical descriptions of regular languages[END_REF][START_REF] Pin | Some results on C-varieties[END_REF].

To justify this choice of ψ δ , we need to verify that y = x is expressible: it is equivalent to∀z∧ n i=1 Succ i (x, z) ↔ Succ i (y, z)∧Succ i (z, x) ↔ Succ i (z, y)where n denotes the maximal rank of a letter in Σ. The presence of a universal quantifier is acceptable since we have assumed that K contains K ∃ .

Acknowledgements

The authors wish to thank Szabolcs Iván for his careful reading of preliminary versions of this work, which helped eliminate many mistakes.

The first author acknowledges partial support from grant MTM2007 63422 from the Ministry of Education and Science of Spain. The second author acknowledges partial support from the French ANR (projet dots) and the Indo-French project Timed discoveri. Both authors acknowledge support from the European Science Foundation program AutoMathA.

Proof. Theorem 3.7 shows that Lind(K) consists of recognizable languages and Theorem 2.17 then shows that it is a literal variety. Let X be the pseudovariety of pg-pairs associated with Lind(K) by Theorem 1.11. Then X and V contain the same syntactic pg-pairs by Theorem 3.7, and Proposition 1.8 shows that this implies X = V. This concludes the proof of the first statement.

We now suppose that K is the class of tree languages recognized by the preclones in a class L. By definition, V = pgp(L) and Proposition 1.9 shows that V is full and

Proposition 3.6 then shows that V is full and V = pgp(W). Thus Lind(K) is a variety of tree languages (Corollary 1.12) and the corresponding pseudovariety of preclones is precl(

The following statement is an important consequence of Theorem 3.10, which motivated this work.

Corollary 3.11 Lind(K ∃) (that is, the class of FO-definable tree languages) is a variety of tree languages and the corresponding variety of preclones is the least pseudovariety containing T ∃ and closed under block product.

Proof. Note that, by Example 2.13, Lind(K ∃) is the class of FO-definable tree languages. Recall that K ∃ consists of the language K k (∃) ⊆ ∆M k , where ∆ is a ranked Boolean alphabet. Now let V ∃ be the variety of tree languages corresponding to the pseudovariety T ∃ generated by T ∃ . According to Example 1.13, a language L ⊆ ΣM k is in V ∃ if and only if it is a Boolean combination of languages of the form Σ ′ M k , Σ ′ ⊆ Σ. Now the complement of Σ ′ M k in ΣM k is the language of trees that contain at least a letter outside Σ ′ : therefore this complement is the inverse image of K k (∃) in the literal morphism from ΣM to ∆M that maps Σ ′ to {0 n | n ≥ 0} and Σ \ Σ ′ to {1 n | n ≥ 0}. In view of the closure properties of Lind(K ∃) (Theorem 2.17), it follows that K ∃ ⊆ V ∃ ⊆ Lind(K ∃) and hence Lind(V ∃) = Lind(K ∃) by Theorem 2.15.

By definition, V ∃ is a variety and as such, it is closed under taking quotients. The corresponding logic Lind(V ∃) is equivalent to Lind(K ∃) (since Lind(V ∃) = Lind(K ∃)) and hence it admits relativization by Corollary 2.19. Thus we can apply Theorem 3.10 to conclude the proof.

⊓ ⊔

A similar reasoning, using both T ∃ and the preclones T p (see Section 1.2 and Examples 1.4, 2.10, 2.13 and Corollary 2.19), yields the following result.

Corollary 3.12 The class of (FO + MOD)-definable tree languages is a variety of tree languages and the corresponding variety of preclones is the least pseudovariety containing T ∃ and the T p (p ≥ 2) and closed under block product.