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Abstract

We give an algebraic characterization of the tree languages that are
defined by logical formulas using certain Lindström quantifiers. An im-
portant instance of our result concerns first-order definable tree languages.
Our characterization relies on the usage of preclones, an algebraic struc-
ture introduced by the authors in a previous paper, and of the block
product operation on preclones. Our results generalize analogous results
on finite word languages, but it must be noted that, as they stand, they
do not yield an algorithm to decide whether a given regular tree language
is first-order definable.

One of Bret Tilson’s lasting contributions is the introduction (with John
Rhodes) of the notions of block product and two-sided semidirect product, and
their use in the structure theory of finite monoids. This tool was initially intro-
duced to derive iterated decompositions of morphisms and to refine the wreath
product-based Krohn-Rhodes decomposition of finite monoids [25]. It quickly
found applications in formal language theory (see [26, 27, 35, 2, 32] among
others). One of the more fruitful applications of this work has been in the
investigation of the logical aspects of automata theory (on finite words). For
instance, the expressive power of first-order formulas with a certain quantifier
depth, can be captured by monoids which divide an iterated block product of
semilattices of the same length, see Straubing’s book [32].
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Automata are particularly well suited to discuss the behavior of terminating
sequential systems (languages of finite words), and this field of research has
benefitted from the start of the well-established connection between automata
and monoid theory. There is however also much interest in automata-theoretic
descriptions of languages of other structures than finite words, corresponding to
other natural ideas of implementation and other natural models of computation
(infinite, branching, concurrent, timed, etc). This paper is a contribution to
the investigation of an important problem of this sort: can we decide whether a
regular tree language is first-order definable? Here trees are finite, ranked and
ordered. The latter properties signify that the nodes of the trees are labeled
with symbols of a given arity (the rank of the node), and the children of a node
of rank r form a totally ordered set of cardinality r. A tree language is said to be
regular if it is accepted by a classical (deterministic) bottom-up tree automaton.

The notion of automata recognizability for (finite) word languages is eas-
ily translated to an algebraic notion of recognizability, expressed in terms of
monoids: the set of all words on a given alphabet A is a monoid (the free
monoid A∗ over that alphabet), and one shows that a language is recognized by
a finite state automaton if and only if it is the inverse image of a set, under a
morphism from A∗ into a finite monoid. Moreover, if a language is recognizable,
then there is a least finite monoid recognizing it, called its syntactic monoid.
This point of view opens vast possibilities for the classification and the discus-
sion of the properties of recognizable languages, which can be characterized in
terms of the algebraic properties of their syntactic monoid, see Eilenberg’s va-
riety theory [8, 19, 1]. As the syntactic monoid of the language accepted by a
given automaton is computable, this can lead to interesting decision algorithms.

It is well-known (Büchi, 1960), that a language is recognizable if and only if it
is definable in monadic second-order logic. It was also shown that a language is
definable by a first-order formula if and only if its syntactic monoid is aperiodic.
This statement is actually the combination of two classical theorems due to
Schützenberger and to McNaughton and Papert. It can also be proved directly
(as in [32]), using the Krohn-Rhodes decomposition theorem, which implies that
a monoid is aperiodic if and only if it belongs to the least pseudovariety closed
under block product and containing U1 = {1, 0}. As the syntactic monoid of
a regular language is computable and as aperiodicity is decidable, it is also
decidable whether a regular language is FO-definable.

Considering logically defined sets of trees (or other discrete combinatorial
structures) is just as natural as for words. But the literature on these questions
shows that classification and decision results are much harder to reach, in part
because we lack the versatile and powerful algebraic tool provided in the word
case by finite monoid theory. The weakness of our understanding of automata
theory for tree languages is highlighted by the fact that the decidability of first-
order definability is still an open problem.

For most discrete structures, there is no obvious algebraic structure that can
be used in lieu of monoids, or at least no algebraic structure that gives rise to
the same wealth of structure theorems and variety characterizations, see [36]. In
the tree case (for finite, ranked and ordered trees), several propositions can be
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found in the literature, see the work of Steinby, Salehi, Heuter, Podelski, Wilke,
Ésik, etc [30, 31, 28, 29, 16, 22, 37, 9]. Until recently none was very convincing in
terms of its capacity to characterize significant classes of languages, but there
are recent encouraging results expressed in terms of minimal tree automata,
that is, in terms of Σ-algebras by Benedikt and Ségoufin [3], Bojańczyk and
Walukiewicz [4], Ésik [10] and Ésik and Iván [11, 12]. In a previous paper [15],
the authors introduce a new algebraic framework – the so-called preclones – to
classify and discuss the properties of recognizable tree languages.

It turns out that the setting of preclones makes it natural to discuss not only
the recognizable sets of trees, but also recognizable sets of trees with variables.
Variables can be seen as unlabeled leaves of the tree, and the rank of a tree is
the number of such unlabeled leaves. Alternately, one can regard these leaves
as labeled by particular letters {v1, v2, . . .}, in such a way that in a rank k tree,
the variable leaves are labeled v1, . . . , vk from left to right.

We verified in [15] that the notion of recognizability induced by the alge-
braic structure of preclones coincides with the usual notion of recognizable tree
languages, that the syntactic preclone of a recognizable tree language is com-
pletely determined by the minimal deterministic bottom-up automaton of the
language (all very reassuring facts), and that these notions are robust enough
to allow for an Eilenberg-like development in terms of varieties of languages and
pseudovarieties of preclones.

In this paper, we use this algebraic framework to derive an algebraic char-
acterization of first-order definable tree languages, and more generally, of the
classes of tree languages determined by certain families of Lindström quantifiers.
This characterization requires the introduction of a block product operation on
preclones, a complex algebraic operation which generalizes Tilson’s block prod-
uct of monoids. Our main result implies that the first-order definable tree
languages are exactly those languages whose syntactic preclone sits in the least
pseudovariety of preclones closed under block product and containing T∃, a very
simple preclone whose properties were discussed in [15] and which can be viewed
as an analogue of the monoid U1. This result was announced without proof in
the authors’ communication at FST-TCS [14].

As it is, our result does not yield an algorithm to decide whether a given rec-
ognizable tree language is first-order definable. This question is briefly discussed
in the conclusion of the paper, but whatever the case may be, such a decidability
result remains one of the main goals in this field. Our result however suggests
the feasibility of an algebra-based solution.

The plan of this paper is as follows. Section 1 summarizes the essential
properties of preclones that are necessary for this study. Section 2 introduces
the logical apparatus we will use, including the Lindström quantifiers and the
closure properties of the associated operators on classes of languages. Finally, in
Section 3, we introduce the block product operation on preclones, and we prove
our main results. The paper closes on a conclusion where we discuss certain
questions raised by these results.
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Notation Let n ≥ 0. We denote by [n] the set {1, . . . , n} if n > 0, the empty
set if n = 0.

1 The algebraic framework

Throughout the paper, we will be discussing sets of finite ranked trees, that
is, trees in which the set of children of each inner node is linearly ordered; Σ
designates a ranked alphabet, that is, Σ = (Σn)n≥0 where the Σn are pairwise
disjoint sets and

⋃
n Σn is finite. An element of Σn is said to have rank n.

This section summarizes the main facts relative to the algebraic framework,
which we will use to establish our main theorem. Most of these results are taken
from the authors’ earlier paper [15] and are stated here without proof.

1.1 Preclones

A preclone is a many-sorted algebra S = ((Sn)n≥0, •,1). The elements of Sn
are said to have rank n, the element 1 belongs to S1, and the composition
operation • associates with each f ∈ Sn and n-tuple g = (g1, . . . , gn) (with
gi ∈ Smi

, 1 ≤ i ≤ n), an element f • g ∈ Sm where m =
∑
imi. Moreover, 1

and • satisfy the axioms given below.
For convenience, a tuple g as above is written g = g1⊕· · ·⊕gn, we say that g

has total rank m, written rank(g) = m, and we let Sn,m be the set of n-tuples of
total rank m. Note that S1,m = Sm for all m. We also write n for the ⊕-sum of
n copies of 1, so that n ∈ Sn,n. The axioms defining preclones are the following:

1 · f = f = f · n for each f ∈ Sn, n ≥ 0,

and (f · g) · h = f · (g1 · h̄1 ⊕ · · · ⊕ gn · h̄n)

where f ∈ Sn, g =
⊕n

i=1 gi with each gi ∈ Smi
, h =

⊕m
j=1 hj with each hj ∈ Spj

,

m =
∑

imi, h̄1 equal to the ⊕-sum of the m1 first hj ’s, h̄2 equal to the ⊕-sum
of the m2 next hj ’s, etc.

It is interesting to remark that S1 is naturally equipped with a monoid
structure.

Sub-preclones of preclones are defined in the natural way. A morphism of
preclones, ϕ:S → T , is a rank preserving map, which also preserves the unit
element 1 and the composition operation. Similarly, a congruence is an equiv-
alence relation, that relates only elements of equal rank, and which is stable
under the composition operation. The quotient of a preclone by a congruence
is naturally endowed with a preclone structure, and the projection map is an
onto morphism.

The least sub-preclone of a preclone S, containing a given subset A is called
the sub-preclone of S generated by A. If this preclone is S itself, we say that
S is generated by A. A preclone is finitely generated if it admits a finite set of
generators.
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A preclone S is said to be finitary if each Sn is finite. Observe that as soon
as some Sk, k ≥ 2 is non-empty, then infinitely many Sk are non-empty, and
hence S is not finite.

1.2 Examples of preclones

The following examples will be essential for our study.

Trees and free preclones Let Σ be a ranked alphabet. The free preclone
generated by Σ, written ΣM , can be described as follows (see [15, Section 2.2]).
Let (vk)k≥1 be a sequence of variable names: we let ΣMk be the set of finite trees,
whose inner nodes are labeled by elements of Σ (where a rank n letter labels a
node with n children), whose leaves are labeled by elements of Σ0∪{v1, . . . , vk},
and whose frontier (the left to right sequence of leaf labels) contains exactly one
occurrence of v1, . . . , vk, in that order (that is, belongs to Σ∗

0v1Σ
∗
0 · · · vkΣ

∗
0).

The elements of ΣMk are called trees of rank k or k-ary trees over Σ.
If t is such a tree, we let NV(t) be the set of nodes of t with a label in Σ (NV

stands for non-variable labeled). In the logical discussion to follow (Section 2),
we will give the nodes in NV(t) a particular rôle.

f

v1 . . . vn

f

n

g1

m1

gn

mn

f

n

g

m

Figure 1: f ∈ ΣMn, g = g1 ⊕ · · · ⊕ gn ∈ ΣMn,m and two views of f · g

ΣM is a preclone for the following operations: if f ∈ ΣMn and gi ∈ ΣMmi

(1 ≤ i ≤ n), then the composite tree f · (g1 ⊕ · · · ⊕ gn) is obtained by replacing
the vi-labeled leaf of f by the root of gi, and by renumbering the variable labeled
leaves of the resulting tree with consecutively indexed vj ’s, see Figure 1. The
unit element 1 is the graph in ΣM1 consisting of a single node labeled v1.

Each element of Σ can be identified with an element of ΣM : the letter σ ∈ Σk
is identified with the tree with k + 1 nodes, consisting of the root, labeled σ,
and the k children of the root, labeled v1, . . . , vk in this order.

The elements of rank 0, ΣM0, are the ordinary Σ-labeled trees.

Example 1.1 As discussed in the introduction, our results can be seen as gen-
eralizations to trees of known results on recognizable word languages. This
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meta-statement can be made precise in the following fashion: if A is a finite
(unranked) alphabet, we can view A as a ranked alphabet, all of whose ele-
ments have rank 1. Then the elements of AM1 can be seen as the words of the
form wv1, where w ∈ A∗. In particular, the monoid AM1 is isomorphic to, and
will be identified with the free monoid A∗. The sets AMk (k 6= 1) are empty. ⊓⊔

Preclone of transformations, preclone of an automaton If Q is a set,
let Tn(Q) be the set of n-ary transformations of Q, that is, the set of mappings
Qn → Q. Let also T(Q) = (Tn(Q))n≥0. Composition of mappings endows T(Q)
with a preclone structure in the following sense: if f ∈ Tn(Q), gi ∈ Tmi

(Q)
(1 ≤ i ≤ n) and m =

∑
imi, then f · (g1 ⊕ · · · ⊕ gn) maps (q1, . . . , qm) to

f
(
g1(q1, . . . , qm1

), g2(qm1+1, . . . , qm1+m2
), . . . , gn(qm−mn+1, . . . , qm)

)
.

If Σ is a ranked alphabet and Q is a Σ-algebra, each element σ ∈ Σn de-
termines naturally an n-ary transformation of Q. The sub-preclone of T(Q)
generated by Σ is called the preclone associated with Q.

Example 1.2 Let A be an unranked alphabet, viewed as a ranked alphabet as
in Example 1.1. An A-algebra Q is simply a set, equipped with an action of A,
that is, a deterministic complete automaton. Each letter a ∈ A then defines a
mapping Q → Q. Thus the preclone associated with Q has elements of rank 1
only, which form the usual transition monoid of the automaton, see [8, 19]. ⊓⊔

We note that Σ-algebras are natural objects in our context: a deterministic
complete bottom-up tree automaton accepting trees in ΣM0 (see [6]), with state
set Q, can be described as a finite Σ-algebra Q, equipped with a set F ⊆ Q of
final states.

The preclones T∃ and Tp Let B be the Boolean semiring B = {true, false},
and let T∃ be the subset of T(B) whose rank n elements are the n-ary or function
and the n-ary constant true, written respectively orn and truen (by convention,
or0 is the nullary constant false0). Then T∃ is a preclone, which is generated by
the binary or2 function and the nullary constants true0 and false0. The set B

equipped with these 3 generators can be viewed as a finite tree automaton, and
T∃ is the preclone associated with this automaton.

It is interesting to note that the rank 1 elements of T∃ form a 2-element
monoid, isomorphic to the multiplicative monoid {0, 1}, and known as U1 in the
literature on monoid theory, e.g. [19].

Similarly, if p ≥ 2 is an integer and Bp = {0, 1, . . . , p−1}, let Tp be the subset
of T(Bp) whose rank n elements (n ≥ 0) are the mappings fn,r: (r1, . . . , rn) 7→
r1 + · · ·+ rn + r mod p for 0 ≤ r < p. Again, Tp is a finitely generated preclone,
generated by the nullary constant 0, the unary increment function f1,1 and the
binary sum f2,0. Moreover, Tp can be seen as the preclone associated with a
p-element automaton, and its rank 1 elements form a monoid isomorphic to the
cyclic group of order p.
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Preclone-generator pairs If S is a preclone and A is a set of generators of
S, we say that (S,A) is a preclone-generator pair, or pg-pair. A pg-pair (S,A) is
said to be finitary if S is finitary and A is finite. The notions of sub-pg-pair and
morphisms of pg-pairs are defined naturally: (S,A) is a sub-pg-pair of (T,B)
is A ⊆ B (so that S is by construction a sub-preclone of T ); and a morphism
of pg-pairs ϕ: (S,A) → (T,B) is a preclone morphism from S to T such that
ϕ(A) ⊆ B.

1.3 Syntactic preclones

Let S be a preclone and let L ⊆ Sk. We say that L is recognizable if there exists
a morphism ϕ:S → T into a finitary preclone and a subset P ⊆ Tk such that
L = ϕ−1(P ). Then we say that L is recognized by T , and by the morphism ϕ.
If (S,A) and (T,B) are pg-pairs and ϕ is a morphism between these pg-pairs,
we say that L is recognized by (T,B).

For each k ≥ 0, n > 0, let Ik,n be the set of n-ary contexts in Sk, that is,
the set of tuples of the form (u, k1, v, k2), where k1, k2 ≥ 0 and k1 + k2 ≤ k,
u ∈ Sk1+1+k2 and v ∈ Sn,ℓ with ℓ = k − (k1 + k2), see Figure 2. If L ⊆

u

k1 k2

v

n

k − (k1 + k2)

u

k1 k2

f

v

Figure 2: an n-ary context in ΣMk; is it an L-context of f (f ∈ Σn)?

Sk, f ∈ Sn, we say that a context (u, k1, v, k2) ∈ Ik,n is an L-context of f if
u · (k1 ⊕ f · v ⊕ k2) ∈ L. We also let the set of 0-ary contexts in Sk be the
set Ik,0 of tuples (u, k1,0, k2) where k1, k2 ≥ 0 and u ∈ Sk1+1+k2 (the symbol 0

is introduced here to preserve the uniformity of notation). We say that such a
context is an L-context of f ∈ S0 if u · (k1 ⊕ f ⊕ k2) = u · (k1 ⊕ f · 0⊕ k2) ∈ L.

Next we say that elements of f, g are L-equivalent, written f ∼L g if f and g
have the same L-contexts. The relation ∼L is a congruence, called the syntactic
congruence of L, the quotient preclone S/ ∼L is called the syntactic preclone
of L, and the projection morphism is the syntactic morphism. Finally, if A is
a set of generators of S, the syntactic pg-pair of L is the pair (T,B) where
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T = S/∼L and B is the image of A in the syntactic morphism. We note the
following result, proved in [15, Proposition 3.2].

Proposition 1.3 Let S be a preclone, k ≥ 0 and L ⊆ Sk. Then the following
statements hold.

• A morphism of preclones recognizes L if and only if it it can be factored
through the syntactic morphism of L.

• If T is a sub-preclone or a quotient of T ′, and if T recognizes L, then so
does T ′.

• L is recognizable if and only if its syntactic preclone is finitary.

• The analogous statements hold for pg-pairs.

We will be primarily concerned with the case where S is a finitely gener-
ated free preclone, S = ΣM with Σ a ranked alphabet. The subsets of each
ΣMk are called tree languages. In that case, the notion of recognizable tree lan-
guages defined above coincides with the classical notion of recognizability, and
in particular, the syntactic preclone of a recognizable tree language L ⊆ ΣM0

coincides with the preclone of the minimal automaton of L, see [15, Section 3.2].
It is interesting to note that the syntactic Σ-algebra of L [31] is exactly the rank
0 part of the syntactic preclone of L, and that the syntactic tree monoid [22]
of L is the monoid of rank 1 elements of its syntactic preclone. In particular, if
L ⊆ ΣM0, then the syntactic preclone of L is finitary if and only if its rank 0
part is finite.

We now consider two important examples. In each, the alphabet is a ranked
Boolean alphabet ∆, that is, a ranked alphabet such that whenever ∆n 6= ∅,
then ∆n = {1n, 0n}, see [15, Section 3.3] for more details.

Example 1.4 For k ≥ 0, let Kk(∃) be the set of trees in ∆Mk containing
at least one node labeled 1n (for some n). Then Kk(∃) is recognizable and
its syntactic preclone is T∃ defined in Section 1.2, see [15, Section 3.3]. More
generally, let ϕ: ΣM → T∃ be a morphism, with Σ an arbitrary ranked alphabet.
Let

Σ(0) =
⋃

n

{σ ∈ Σn | ϕ(σ) = orn}

and let Σ(1) be the complement of Σ(0) in Σ. Then the subsets of ΣMk recognized
by ϕ are ∅, ΣMk, ϕ

−1(ork) = Σ(0)Mk and ϕ−1(truek), the set of trees in ΣMk

with at least one occurrence of a letter in Σ(1).
Similarly, if p, r are integers with 0 ≤ r < p and if Kk(∃rp) consists of the

trees in ∆Mk such that the number of nodes labeled 1n (for some n) is congruent
to r modulo p, then Kk(∃rp) is recognizable and its syntactic preclone is Tp. If
ϕ: ΣM → Tp is a morphism, then the subsets of ΣMk recognized by ϕ are the
finite unions of the ϕ−1(fn,r) (0 ≤ r < p). For each such r, let

Σ(r) =
⋃

n

{σ ∈ Σn | ϕ(σ) = fn,r}.
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For each t ∈ ΣMk, let wr(t) be the number of nodes in NV(t) labeled by a letter
in Σ(r), and let w(t) =

∑
r r wr(t). Then ϕ−1(fn,r) is the set of all t ∈ ΣMk

such that w(t) = r (mod p). ⊓⊔

1.4 Varieties of tree languages and pseudovarieties

A pseudovariety of preclones is a class of finitary preclones which is closed
under taking finite direct products, sub-preclones, quotients, finitary unions of
ω-chains and finitary inverse limits of ω-diagrams, see [15, Section 4]. Here, we
say that a union T =

⋃
n≥0 T

(n) is finitary if T is finitary. Finitary inverse

limits of an ω-diagram of the form ϕ(n):T (n+1) → T (n) are defined similarly.
The definition of a pseudovariety of pg-pairs is similar: it is a class of fini-

tary pg-pairs which is closed under taking finite direct products, sub-preclones,
quotients, and finitary inverse limits of ω-diagrams (there is no need to consider
unions of ω-diagrams, see [15, Section 4.4]).

We note the following proposition [15, Corollary 4.22].

Proposition 1.5 Let V be a pseudovariety of preclones and let S be a finitary
preclone such that, for all s 6= t ∈ S, there exists a morphism ϕ from S into a
preclone in V with ϕ(s) 6= ϕ(t). Then S ∈ V.

An analogous statement for pseudovarieties of pg-pairs also holds.

Proposition 1.6 Let V be a pseudovariety of pg-pairs and let (S,A) be a fini-
tary pg-pair such that, for all s 6= t ∈ S, there exists a morphism ϕ from (S,A)
into a pg-pair in V with ϕ(s) 6= ϕ(t). Then (S,A) ∈ V.

Proof. This statement is proved in the same fashion as Proposition 1.5 (see
[15]), using also [15, Proposition 4.23]. ⊓⊔

If K is a class of finitary preclones (resp. pg-pairs), there exists a least
pseudovariety containing K, which is said to be generated by K and is denoted
by 〈K〉, see [15, Section 4.2]. We record in particular the following results, which
follow from [15, Propositions 3.3 and 4.16, Corollary 4.8].

Proposition 1.7 Let K be a class of finitary preclones (resp. pg-pairs) and let
V be the pseudovariety generated by K. The syntactic preclone (resp. pg-pair)
of a recognizable tree language belongs to V if and only if it is a quotient of a
sub-preclone (resp. sub-pg-pair) of a direct product of elements of K.

Proposition 1.8 A pseudovariety of preclones (resp. pg-pairs) is entirely de-
termined by the syntactic preclones (resp. pg-pairs) it contains.

Note that pseudovarieties of preclones can be seen as particular examples
of pseudovarieties of pg-pairs, in the sense of Proposition 1.9 below1. If K is a

1The notion of pseudovarieties of pg-pairs could be generalised to the notion of varieties

of stamps as is done for word languages, see [33, 21].
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class of pg-pairs, we let precl(K) be the class of preclones S such that (S,A) ∈ K

for some set A. Conversely, if L is a class of preclones, we let pgp(L) be the
class of finitary pg-pairs (S,A) such that S ∈ L. Let us say that a class K of
pg-pairs is full if membership of a pg-pair (S,A) in K depends only on S; that
is, K = pgp(precl(K)).

Proposition 1.9 A pseudovariety V of pg-pairs is full if and only if there exists
a pseudovariety W of preclones such that V = pgp(W) and in that case, W is
the pseudovariety generated by precl(V).

Moreover, if K is a full class of pg-pairs and V is the pseudovariety gener-
ated by K, then V is full as well and precl(K) and precl(V) generate the same
pseudovariety of preclones.

Proof. Let W be a pseudovariety of preclones and let V = pgp(W). The class
V is full by definition. Let us first verify that it is closed under taking sub-pg-
pairs, quotients, finite direct products and finitary inverse limits of ω-diagrams.
Suppose for instance that (S,A) is a sub-pg-pair of (T,B) with T ∈ W. Then
S is a sub-preclone of T , so S ∈ W and (S,A) ∈ V. The verification is equally
routine for quotients and finite direct products. As for inverse limits of ω-
diagrams, it was shown [15, Proposition 4.23] that if (S,A) = limn(S

(n), A(n)),
then S = limn S

(n). Thus, if the (S(n), A(n)) are in V, then the S(n) are in W

and hence S ∈ W and (S,A) ∈ V.
Now let us show that if L is a class of finitely generated finitary preclones,

then pgp(〈L〉) ⊆ 〈pgp(L)〉. Let (U,C) be a finitary pg-pair with U ∈ 〈L〉: we
want to show that (U,C) ∈ 〈pgp(L)〉. Combining technical results from [15]
(namely Propositions 4.5 and 4.16), we may assume that there exist preclones
S(1),. . . , S(n) in L such that U = ϕ(T ′) for some morphism ϕ:T ′ → U where
T ′ is a sub-preclone of

∏
i S

(i). Since L consists of finitely generated preclones,
let A(i) be a finite set of generators of S(i). Let B be a finite subset of T ′ such
that ϕ(B) = C and for each i, let B(i) be the projection of B onto the i-th
component. Finally, let T be the sub-preclone of T ′ generated by B. Then
(U,C) = ϕ(T,B) and (T,B) is a sub-pg-pair of

∏
i(S

(i), A(i) ∪ B(i)). This
establishes that (U,C) ∈ 〈pgp(L)〉.

Let now K be a full class of finitary pg-pairs and let W = 〈precl(K)〉.
We verify that 〈K〉 = pgp(W), which implies that 〈K〉 is full. Indeed, since
K is full, we have K = pgp(precl(K)) and hence 〈K〉 = 〈pgp(precl(K))〉 ⊆
〈pgp(W)〉. The first part of the proof establishes that pgp(W) is a pseudovariety,
so 〈K〉 ⊆ pgp(W). Moreover, the discussion in the previous paragraph, applied
to L = precl(K), shows that pgp(W) ⊆ 〈K〉. The expected equality follows.

Applying this result to K = V, a full pseudovariety of pg-pairs, and to W =
〈precl(V)〉, shows that V = pgp(W), as announced. Finally, if V = pgp(W′)
for some other pseudovariety of preclones W′, then W and W′ have the same
finitely generated elements, and hence must be equal by Proposition 1.8. This
concludes the proof of the proposition. ⊓⊔

Before we discuss varieties of tree languages, let us define quotients of tree
languages. Let L ⊆ ΣMk, let k1, k2 be integers with k1 + k2 ≤ k and let
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u ∈ ΣMk1+1+k2 . The left quotient of L by (u, k1, k2) is the subset of ΣMk−k1−k2

(u, k1, k2)
−1L = {f ∈ ΣMk−k1−k2 | u · (k1 ⊕ f ⊕ k2) ∈ L}.

If v ∈ ΣMn,k, then the right quotient of L by v is

Lv−1 = {f ∈ ΣMn | f · v ∈ L}.

Remark 1.10 With the above notation, (u, k1, v, k2) is an L-context of an
element f if and only if f ∈

(
(u, k1, k2)

−1L
)
v−1 = (u, k1, k2)

−1
(
L(k1 ⊕ v ⊕

k2)
−1

)
.

Moreover, if (u, k1, v, k2) and (u′, k1, v
′, k2) are contexts such that u ∼L u′

and v ∼L v′, then
(
(u, k1, k2)

−1L
)
v−1 =

(
(u′, k1, k2)

−1L
)
v′

−1
. ⊓⊔

We say that a morphism ϕ: ΣM → Σ′M is a literal morphism if ϕ(Σ) ⊆
Σ′. A variety of tree languages (resp. a literal variety of tree languages) is a
collection V = (VΣ,k)Σ,k, where Σ runs over all ranked alphabets, k runs over
non-negative integers, such that each VΣ,k is a Boolean algebra of recognizable
languages in ΣMk, and V is closed under quotients and under inverse morphisms
(resp. inverse literal morphisms) between free preclones. In particular, every
variety of tree languages is a literal variety.

If V is a pseudovariety of preclones (resp. pg-pairs), we let var(V) = (VΣ,k)
be such that VΣ,k is the class of languages in ΣMk with syntactic preclone
(resp. pg-pair) in V. If V is a variety (resp. literal variety) of tree languages,
let psv(V) be the class of finitary preclones (resp. finitary pg-pairs) which only
accept languages in V . The following result was proved in [15].

Theorem 1.11 The mappings var and psv are mutually inverse lattice isomor-
phisms between the lattice of pseudovarieties of preclones (resp. pg-pairs) and
the lattice of varieties (resp. literal varieties) of tree languages.

We note the following corollary of Theorem 1.11, which will be used in the
sequel.

Corollary 1.12 Let V be a literal variety and let V be the corresponding pseu-
dovariety of pg-pairs. Then V is full if and only if V is a variety.

Example 1.13 Let 〈T∃〉 be the pseudovariety of preclones generated by T∃, and
let V be the corresponding tree language variety. Then a language L ⊆ ΣMk

is in VΣ,k if and only if L is a Boolean combination of languages of the form
Σ′Mk, Σ′ ⊆ Σ, see Example 1.4 and [15, Section 5.2.1]. ⊓⊔

More complex examples are discussed in [15, Section 5.2], and the main
results of this article provide further examples.
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2 Logically defined tree languages

Let Σ be a ranked alphabet. We will define tree languages by means of logical
formulas. We consider the atomic formulas of the following form

Pσ(x), x < y, Succi(x, y), root(x), maxi,j(x), leftj(x) and rightj(x),

where σ ∈ Σ, i, j are positive integers, i is less than or equal to the maximal
rank of a letter in Σ, and x, y are first-order variables. If k ≥ 0, subsets of
ΣMk will be defined by formulas of rank k, composed using atomic formulas
with j ∈ [k], the Boolean constants false and true, the Boolean connectives
and a family of generalized quantifiers called Lindström quantifiers, defined in
Section 2.1 below. As usual, each quantifier binds a first-order variable (within
the scope of the quantifier), and variables that are not bound are called free.
A formula without free variables is called a sentence. We denote by Lind the
logic defined in this fashion.

When a Lind-formula is interpreted on a tree t ∈ ΣMk, first-order variables
are interpreted as nodes in NV(t) — and we assume t 6= 1, so that NV(t) is non-
empty. Then Pσ(x) holds if x is labeled σ (σ ∈ Σ), x < y holds if y is a proper
descendant of x, and Succi(x, y) holds if y is the i-th successor of x. Moreover,
root(x) holds if x is the root of t and maxi,j(x) holds if the i-th successor of x
is labeled by vj , the j-th variable. Finally, leftj(x) (resp. rightj(x)) holds if the
index of the highest (resp. least) numbered variable labeling a leaf to the left
(resp. right) of the frontier of the subtree rooted at x is j, see Figure 3. The
interpretation of Lindström quantifiers is described in Section 2.1.

x

v1 vh vj vk

Figure 3: lefth(x) ∧ rightj(x)

Recall that formally, an interpretation is a mapping λ from the set of free
variables of a formula ϕ (or from a set containing the free variables of ϕ) to the
set NV(t) of Σ-labeled nodes of a tree t. If t satisfies ϕ with this interpretation,
we say that (t, λ) satisfies ϕ and we write (t, λ) |= ϕ. If ϕ is a sentence, we
simply write t |= ϕ.

Remark 2.1 In Lind-formulas, first-order variables are never interpreted as
one of the vi-labeled leaves. In fact, as far as logical constructs go, these partic-
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ular leaves are not considered as proper nodes of the tree, but rather as place
markers – which explains the fact that they are labeled by their position in the
left-to-right order, and may be relabeled appropriately when trees are composed.

When we deal with traditional trees, that is, trees in ΣM0, this peculiarity
disappears, and we observe that in that case, our atomic formulas (Pσ, <, root

and the Succi) are the atomic formulas of the usal logic on rooted ranked trees
[34]. ⊓⊔

Example 2.2 Let A be an unranked alphabet, viewed as a ranked alphabet as
in Example 1.1. Then AM1 is equal to the set A∗v1, and is isomorphic to the
free monoid A∗. In this situation, the boundary of the trees in AM consist of
a single node, labeled v1, that is left1(x) and right1(x) always evaluate to false.
Thus the relevant atomic formulas are Pa(x) (a ∈ A), x < y, Succ1(x, y), root(x)
and max1,1(x). Note that in this case, root(x) is the predicate usually denoted
by min(x) (or x = min) and max1,1(x) is the predicate max(x) (or x = max).
That is, we have the same atomic formulas as in Büchi’s classical sequential
calculus [20, 34, 32]. The condition t 6= 1 imposed to interpret formulas, is
equivalent to the fact that logical formulas are not interpreted on the empty
word. ⊓⊔

Next to the atomic formulas defined above, we also use the following short-
hand notation. Let k > 0 and let left0(x) be the formula of rank k left0(x) =∧
j∈[k] ¬leftj(x). Then left0(x) holds if no leaf situated to the left of the frontier

of the subtree rooted at x, is labeled by a variable. We observe that for different
values of k, we get different formulas left0(x), and our notation assumes that k
is clear from the context.

Similarly, if k is clear from the context, we define rightk+1(x) to be the
formula of rank k rightk+1(x) =

∧
j∈[k] ¬rightj(x). Its meaning is that no leaf

situated to the right of the frontier of the subtree rooted at x, is labeled by a
variable.

2.1 Lindström quantifiers

Before we give formal definitions, we discuss an important example.

Example 2.3 Let us consider the first order formula ∃x · ϕ(x), where ϕ is a
formula with free variables in a set Y ∪ {x} (x 6∈ Y ). Let λ:Y → NV(t). Recall
that (t, λ) |= ∃x·ϕ if there exists a node v in NV(t) such that (t, [λ;x 7→ v]) |= ϕ.
For convenience, let λv denote the interpretation [λ;x 7→ v]. We can express
the satisfaction of ∃x · ϕ in the following, more generalizable fashion: we label
each node v ∈ NV(t) with 1 if (t, λv) |= ϕ, with 0 otherwise (the variable labeled
nodes are left unchanged). If t̄λ denotes the resulting Boolean-labeled tree, then
(t, λ) |= ∃x · ϕ if and only if t̄λ belongs to the set of trees with at least one 1
label.
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To be formally accurate, the nodes of t̄λ must be labeled by a ranked alpha-
bet, that is, we need to have, for each rank n, a letter 1n and a letter 0n. The
definition of Lindström quantifiers below generalizes this example. ⊓⊔

Let ∆ be a ranked alphabet containing letters of rank n for each n such that
Σn 6= ∅ and let 〈ϕδ〉δ∈∆ be a family of rank k formulas on Σ-trees. We say that
this family is deterministic with respect to a first-order variable x if for each tree
t ∈ ΣMk, for each integer n, and for each interpretation λ of the free variables
in the ϕδ mapping x to a rank n node of t, then (t, λ) satisfies exactly one of
the ϕδ, δ ∈ ∆n. Whenever needed, we will also assume that x is not bound in
any of the ϕδ.

Example 2.4 If ∆ = Σ, a very simple example of such a family is given by
letting ϕδ(x) = Pδ(x) for each δ ∈ ∆. ⊓⊔

Example 2.5 Another natural example is given over a ranked Boolean alpha-
bet ∆, that is, an alphabet such that whenever ∆n 6= ∅, then ∆n = {1n, 0n}. If
for each such n, ϕ0n

is logically equivalent to ¬ϕ1n
, then 〈ϕδ〉δ∈∆ is deterministic

with respect to any first order variable x.
In later examples, when dealing with ranked Boolean alphabets, we will write

ϕn instead of ϕ1n
and we will assume that ϕ0n

= ¬ϕn. Then a deterministic
family will simply be written 〈ϕn〉n. ⊓⊔

With this notion, we define (simple) Lindström quantifiers, a definition adap-
ted from [17, 7] to the case of finite trees. Let K ⊆ ∆Mk be a language of rank k
trees and let 〈ϕδ〉δ∈∆ be a family of rank k formulas which is deterministic with
respect to x. Then the quantified formula QKx · 〈ϕδ〉δ∈∆, where the quantifier
QK binds the variable x, is interpreted in the following manner.

Given a tree t ∈ ΣMk and an interpretation λ of the free variables in the
ϕδ except for x, we construct a tree t̄λ ∈ ∆Mk as follows: t and t̄λ have the
same underlying tree structure with the same variable-labeled nodes, that is, the
same set of nodes and the same relations <, Succi, root, maxi,j , leftj and rightj).
Moreover, for each rank n node v of t (for some n), let λv be the interpretation
[λ, x 7→ v]: then the node v in t̄λ is labeled by the unique element δ ∈ ∆n such
that (t, λv) satisfies ϕδ. The tree t̄λ is called the characteristic tree determined
by t, λ and the formulas ϕδ. If the ϕδ have no free variable other than x, we
write t̄ for t̄λ. Finally, we say that (t, λ) satisfies QKx · 〈ϕδ〉δ∈∆ if t̄λ ∈ K.

Remark 2.6 With the above notation, we note that (t, λv) |= ϕδ(x) if and only
if (t̄λ, [x 7→ v]) |= Pδ(x). Since x is the only free variable in Pδ(x), this is also
equivalent to (t̄λ, λv) |= Pδ(x). ⊓⊔

Example 2.7 Suppose that ∆ = Σ and ϕδ = Pδ(x) as in Example 2.4. If
t ∈ ΣMk, it is easily verified that the trees t̄ and t are equal. In particular, if
K ⊆ ∆Mk is a language of k-ary trees, then t satisfies QKx · 〈ϕδ〉δ∈∆ if and
only if t ∈ K. ⊓⊔
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Example 2.8 Let A be an unranked alphabet, seen as a ranked alphabet as
usual, suppose that ∆k = ∅ for all k 6= 1 and let K ⊆ ∆M1. Then K can also
be seen as a word language since ∆M1 is isomorphic to the free monoid ∆∗

1,
and the logic Lind is analogous to the logic for word languages studied by Ésik
and Larsen in [13] (the latter does not include min and max among its atomic
formulas). ⊓⊔

In the next examples, ∆ is a ranked Boolean alphabet such that ∆n is non-
empty whenever Σn is, and 〈ϕn〉n is a family of formulas which is deterministic
with respect to a first order variable x, see Example 2.5.

Example 2.9 Let K = Kk(∃) denote the set of all trees in ∆Mk containing at
least one node labeled 1n (for some n), see Example 1.4. Then the Lindström
quantifier QK is a generalization of the existential quantifier, as indicated in
Example 2.3.

More precisely, (t, λ) satisfies QKx · 〈ϕn〉n if and only if there exists a node
v ∈ NV(t) such that (t, λv) satisfies ϕn, where n is the rank of v and λv is the
interpretation [λ, x 7→ v].

Let finally A be an unranked alphabet, viewed as a ranked alphabet as in
Example 1.1, and suppose that k = 1. Then (t, λ) |= QKx · 〈ϕn〉n (where t is
viewed as a tree in AM1) if and only if (t, λ) |= ∃x ·ϕ1(x) (where t is viewed as
a non-empty word in A∗). ⊓⊔

Example 2.10 In the same manner as in Example 2.9, if p ≥ 1, r < p and
K = K(∃rp) denotes the set of those trees in ∆Mk such that the number of
nodes labeled 1n (for some n) is congruent to r modulo p (see Example 1.4),
then the Lindström quantifier QK is a generalization of a modular quantifier.

More precisely, (t, λ) satisfies QKx · 〈ϕn〉n if and only if, for some n, the
number of nodes v ∈ NV(t) such that (t, λv) satisfies ϕn(x) (where n is the rank
of v) is congruent to r mod p.

If A is an unranked alphabet, then (t, λ) |= QKx · 〈ϕn〉n (where t is viewed
as a tree in AM1) if and only if (t, λ) |= ∃rpx · ϕ1(x) (where t is viewed as a
non-empty word in A∗). ⊓⊔

Example 2.11 Let K = Kk(∃path) be the set of all trees in ∆Mk such that all
the nodes along at least one maximal path from the root to a leaf are labeled
1n (for appropriate values of n).

Then (t, λ) satisfies QKx · 〈ϕn〉n if and only if there exists a maximal path
such that, for every node v ∈ NV(t) along this path, (t, λv) |= ϕn(x) (where n
is the rank of v).

If A is an unranked alphabet, then (t, λ) |= QKx · 〈ϕn〉n (where t is viewed
as a tree in AM1) if and only if (t, λ) |= ∀x · ϕ1(x) (where t is viewed as a
non-empty word in A∗). ⊓⊔
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Example 2.12 Let Kk(∀next) be the set of all trees in ∆Mk such that the
children of the root are labeled 1n (for the appropriate n).

Then (t, λ) satisfies QKx · 〈ϕn〉n if and only if, for every child v of the root,
(t, λv) |= ϕn(x) (where n is the rank of v).

If A is an unranked alphabet, then (t, λ) |= QKx ·〈ϕn〉n (where t is viewed as
a tree in AM1) if and only if (t, λ) |= ∃x · (Succ(1, x)∧ϕ1(x)), — more formally,
(t, λ) |= ∃x ·

((
∀y · (min(y) → Succ(y, x))

)
∧ ϕ1(x)

)
— (where t is viewed as a

non-empty word in A∗).
Other next modalities can be expressed likewise, e.g., requesting that at

least one (resp. an even number, etc.) of the children of the root satisfies the
appropriate ϕn. ⊓⊔

2.2 The language associated with a Lind-formula

Let ϕ be a Lind-sentence of rank k over Σ. We denote by Lϕ the set of trees
in ΣMk that satisfy ϕ, and we say that Lϕ is defined by the formula ϕ.

For a class K of tree languages, we let Lind(K) denote the fragment of Lind

consisting of the formulas in which all Lindström quantifiers are of the form QK
with K ∈ K. If ϕ is a Lind(K) sentence, we say that Lϕ is Lind(K)-definable,
and we let Lind(K) denote the class of Lind(K)-definable tree languages.

Example 2.13 Let K∃ be the class of all the languages of the form Kk(∃)
on a Boolean ranked alphabet. In view of the discussion in Example 2.9, it
is reasonable to say that Lind(K∃) is exactly the class of FO-definable tree
languages. Examples 2.9 and 2.10 show that if K∃,mod is the class of all languages
of the form Kk(∃) or Kk(∃rp), then Lind(K∃,mod) is the class of (FO + MOD)-
definable tree languages. ⊓⊔

It will be useful to associate a tree language also with the Lind-formulas that
contain free variables (as is done in [32, Section II-2] for word languages). Let Z
be a finite set. We extend Σ to the ranked alphabet ΣZ , whose set of letters of
rankm (m ≥ 0) is Σm×P(Z). We identify each σ ∈ Σ with the pair (σ, ∅) ∈ ΣZ .
An element z ∈ Z is said to occur in t ∈ ΣZM at node v if the label of v is of
the form (σ, Z ′) and z ∈ Z ′. If each z ∈ Z occurs exactly once in t ∈ ΣZMk,
then t is called a Z-structure of rank k over Σ. We note that a Z-structure
uniquely determines a tree t ∈ ΣM and a mapping λ:Z → NV(t). Conversely,
any such pair (t, λ) determines a unique Z-structure, written str(t, λ). Now let
ϕ be a rank k Lind-formula with free variables in a set Y . Let str(t, λ) be a
Z-structure with Z ⊆ Y . If µ:Y \ Z −→ NV (t), we write (str(t, λ), µ) |= ϕ if
(t, [λ;µ]) |= ϕ, where [λ;µ] is the map from Y to NV(t) determined by λ and µ.
If Z = Y , we write simply str(t, λ) |= ϕ and we say that str(t, λ) satisfies ϕ. We
let Lϕ be the set of Y -structures satisfying ϕ.

Example 2.14 Let σ ∈ Σm, and let ϕ be the rank k formula ϕ = Pσ(x). Let
Y be a set containing x. Then Lϕ is the collection of all Y -structures of rank k
over Σ such that some (necessarily unique) node has a label of the form (σ, Y ′)
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with x ∈ Y ′. It is immediate to observe that any two trees of equal rank in ΣM
have the same contexts in Lϕ, that is, the restriction of the syntactic congruence
of Lϕ to ΣM is the universal relation. The same holds for any atomic formula
ϕ. ⊓⊔

2.3 Properties of the operator Lind

We now explore the properties of the operator Lind on families of languages.

2.3.1 Lind is a closure operator

Theorem 2.15 Lind is a closure operator on classes of languages. That is, for
all language classes K and K′, the following holds.

(1) K ⊆ Lind(K);

(2) if K ⊆ K′ then Lind(K) ⊆ Lind(K′);

(3) Lind(Lind(K)) ⊆ Lind(K).

Item (1) follows immediately from Example 2.7, and Item (2) is immediate
from the definition. The rest of Section 2.3.1 is devoted to the proof of Item
(3).

Let ϕ be a Lind(Lind(K))-formula of rank k over Σ. We argue by induction
on the structure of ϕ to show that there is an equivalent formula ϕ̂ of Lind(K),
that is, a formula with the same free variables as ϕ and such that Lϕ = Lϕ̂
in ΣYMk for any finite set Y containing the free variables of ϕ. This will be
sufficient to prove Theorem 2.15.

If ϕ is an atomic formula, we let ϕ̂ = ϕ, since ϕ is also a Lind(K)-formula.
If ϕ = ϕ1 ∨ ϕ2 (resp. ϕ = ¬ϕ1), we let ϕ̂ = ϕ̂1 ∨ ϕ̂2 (resp. ϕ̂ = ¬ϕ̂1). The
equivalence of ϕ and ϕ̂ is easily verified.

The last case occurs when ϕ is of the form ϕ = QKx · 〈ϕδ〉δ∈∆, where
K ∈ Lind(K) and the ϕδ form a family of rank k formulas of Lind(Lind(K))
over Σ that is deterministic with respect to x. In particular, K = Lψ where ψ
is a rank k Lind(K)-sentence over ∆.

By induction, for each δ ∈ ∆, there exists a Lind(K)-formula ϕ̂δ equivalent
to ϕδ, so that ϕ is equivalent to QKx · 〈ϕ̂δ〉δ∈∆. Thus, we may assume that the
ϕδ are Lind(K)-formulas.

Before we proceed with the end of the proof, we establish a technical fact. If
χ is a formula and p, q are variables, we denote by χ[q/p] the formula obtained
from χ by substituting the variable q for all free occurrences of p. (Bound
occurrences of q in χ are renamed as usual.)

Let χ be a rank k formula over ∆. We then define χ̃ to be the rank k formula
over Σ obtained from χ by replacing each subformula of the form Pδ(z), where
z is any first-order variable, by the formula ϕδ[z/x]. Since the quantifiers in χ
also occur in χ̃, and the quantifiers in χ̃ occur either in χ or in the ϕδ, it is clear
that χ is a Lind(K)-formula if and only if χ̃ is one. In the sequel, we assume
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that neither x nor any free variable of one of the ϕδ, is free in χ, and that no
free variable has bound occurrences in the formulas under consideration. Let
us then assume that Y (the finite set containing the free variables of ϕ and not
containing x) also contains the free variables of χ.

Fact 2.16 With the notation above, let t ∈ ΣMk, let λ:Y → NV(t) be a func-
tion, and let t̄λ ∈ ∆Mk be the characteristic tree determined by t, λ and the
formulas ϕδ. Then we have

(t, λ) |= χ̃ ⇐⇒ (t̄λ, λ) |= χ.

Proof. We argue by induction on the structure of χ. Suppose first that χ =
Pδ(z). Then χ̃ = ϕδ[z/x]. Let µ be the restriction of λ to Y \ {z} and let t̄µ be
the characteristic tree determined by t, µ and the ϕδ[z/x]. A node v is labeled
δ in t̄λ if and only if (t, λv) = (t, [λ;x 7→ v]) |= ϕδ. Since z does not occur in ϕδ,
this is equivalent to (t, [µ; z 7→ v]) |= ϕδ[z/x], and hence to the labeling of v by
δ in t̄µ. Thus t̄λ = t̄µ. Then we have:

(t, λ) |= χ̃ = ϕδ[z/x] ⇐⇒ (t, [µ; z 7→ λ(z)]) |= ϕδ[z/x] by definition of µ

⇐⇒ (t̄µ, [z 7→ λ(z)]) = (t̄λ, [z 7→ λ(z)]) |= Pδ(z)

⇐⇒ (t̄λ, λ) |= Pδ(z) = χ.

If χ is another atomic formula (namely, z1 < z2, Succi(z1, z2), root(x), maxi,j(z),
leftj(z) or rightj(z) with z, z1, z2 ∈ Y ∪{x}), then χ̃ = χ. Since t and t̄λ have the
same variable-labeled nodes and they differ only in the labeling of their nodes,
and since χ does not depend on that labeling, we have in each case

(t, λ) |= χ̃ ⇐⇒ (t̄λ, λ) |= χ.

We have now established our claim for atomic formulas.
The induction step is immediate if χ is of the form χ = χ1 ∨χ2 or χ = ¬χ1.

We now assume that χ = QLz · 〈χω〉ω∈Ω where L ⊆ ΩMk, z 6∈ Y ∪ {x}, and
〈χω〉ω∈Ω is a family of rank k formulas over ∆ with free variables in Y ∪ {z},
which is deterministic with respect to z.

By construction χ̃ = QLz · 〈χ̃ω〉ω∈Ω, and by induction hypothesis, for each
node w ∈ NV(t) and for each ω ∈ Ω, we have

(t, [λ; z 7→ w]) |= χ̃ω ⇐⇒ (t̄λ, [λ; z 7→ w]) |= χω.

It follows in particular that 〈χ̃ω〉ω∈Ω is deterministic with respect to z. More-
over, the characteristic tree determined by t, λ and 〈χ̃ω〉ω∈Ω is the same as that
determined by t̄λ, λ and 〈χω〉ω∈Ω. Thus we have

(t, λ) |= χ̃ ⇐⇒ (t̄λ, λ) |= χ,

which concludes the induction and the proof. ⊓⊔
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We now return to the proof of Theorem 2.15. Recall that ϕ = QKx · 〈ϕδ〉δ∈∆

and K = Lχ ⊆ ∆Mk for some rank k Lind(K)-sentence χ over ∆ (without free
variables). We want to construct a formula in Lind(K) that is equivalent to ϕ
and we claim that χ̃ is such a formula.

Indeed, let t ∈ ΣMk, let λ be a mapping λ:Y 7→ NV(t), and let t̄λ ∈ ∆Mk be
the characteristic tree determined by t, λ and the ϕδ. By definition, (t, λ) |= ϕ
if and only if t̄λ ∈ K, that is, t̄λ |= ψ, or equivalently, (t̄λ, λ) |= ψ. It was
established in Fact 2.16 that this is equivalent to (t, λ) |= ψ̃, which concludes
the proof. ⊓⊔

2.3.2 Closure properties of Lind(K)

The objective of this section is to prove the closure properties summarized in
Theorem 2.17 below.

Theorem 2.17 Lind(K) is closed under Boolean operations and inverse literal
morphisms. Moreover, Lind(K) is closed under left (resp. right) quotients if
and only if any left (resp. right) quotient of a language in K belongs to Lind(K).

We now prove Theorem 2.17, by considering separately each closure proper-
ties.

Boolean operations The fact that Lind(K) is closed under the Boolean op-
erations follows directly from the fact that Lind(K)-formulas are closed under
disjunction and negation. ⊓⊔

Inverse literal morphisms Let h: Σ′ → Σ be a rank-preserving mapping,
and let us also denote by h the induced morphism h: (Σ′M,Σ′) → (ΣM,Σ).
Note that if t is a tree, then h(t) differs from t only in the labeling of the nodes
in NV(t). Let ϕ be a rank k Lind(K)-formula over Σ with free variables in a
finite set Y . We show by structural induction on ϕ that there exists a rank
k Lind(K)-formula ϕ′ over Σ′, with the same free variables as ϕ, and such
that (t, λ) |= ϕ′ if and only if (h(t), λ) |= ϕ for any tree t ∈ Σ′Mk and any
interpretation λ:Y → NV(t).

If ϕ = Pσ(x) for some σ ∈ Σ, we let ϕ′ =
∨
Pσ′ (x), where the disjunction

runs over the letters σ′ ∈ Σ′ such that h(σ′) = σ. If ϕ is another type of atomic
formula, then ϕ does not depend on the labeling of the tree, and it suffices to
choose ϕ′ = ϕ.

The inductive step for the Boolean connectives is equally natural: if ϕ =
ϕ1 ∨ ϕ2 (resp. ϕ = ¬ϕ1), then we let ϕ′ = ϕ′

1 ∨ ϕ
′
2 (resp. ϕ′ = ¬ϕ′

1).
Suppose finally that ϕ is of the form QKx · 〈ϕδ〉δ∈∆. By induction, there

exist formulas ϕ′
δ over Σ′ such that, for each δ, (t, λv) |= ϕ′

δ if and only if
(h(t), λv) |= ϕδ for any tree t ∈ Σ′Mk, node v in t and mapping λ:Y → NV(t).
It follows that the characteristic tree determined by t, λ and 〈ϕ′

δ〉δ∈∆, and the
characteristic tree determined by h(t), λ and 〈ϕδ〉δ∈∆ coincide. As a result, we
have (t, λ) |= ϕ′ if and only if (h(t), λ) |= ϕ. ⊓⊔
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Left quotients We now assume that any left quotient of a language in K
belongs to Lind(K). Let k1, k2, ℓ be non-negative integers and let k = k1+ℓ+k2.
Let also ϕ be a rank k Lind(K)-formula over Σ with free variables in a finite set
Y , and let U = str(u, µ) be a Z-structure of rank k1 + 1 + k2 for some Z ⊆ Y .
(Without loss of generality, we may assume that u 6= 1.) Let X = Y \ Z. We
prove by structural induction on ϕ that there exists a rank ℓ Lind(K)-formula
ϕ′ over Σ, with free variables in X and such that, for every tree t ∈ ΣMℓ and
every mapping λ:X → NV(t) (see Figure 4), we have

(t, λ) |= ϕ′ ⇐⇒ (U · (k1 ⊕ t⊕ k2), λ) |= ϕ.

If ϕ is a formula without free variables (X = Y = Z = ∅, U = u ∈
ΣMk1+1+k2), this shows that Lϕ′ = (u, k1, k2)

−1Lϕ, and hence that Lind(K) is
closed under left quotients.

We now proceed with the proof. We first observe that NV(t) may be viewed
as a subset of NV(U · (k1 ⊕ t ⊕ k2)): more precisely, the latter set is equal to
the disjoint union of NV(t) and NV(U) = NV(u).

U

k1 k2

t

a Z-structure

variables in X are interpreted here

Figure 4: S = U · (k1 ⊕ t⊕ k2)

If ϕ is equal to Pσ(x), we let ϕ′ = ϕ if x 6∈ Z, and ϕ′ = true (resp. false) if
x ∈ Z and x occurs at a node of U for which the first component of the label is
(resp. is not) σ. That is, if x ∈ Z and U satisfies (resp. does not satisfy) ϕ.

Let now ϕ = leftj(x) (resp. rightj(x), maxi,j(x)) with 1 ≤ j ≤ k. If x 6∈ Z,
we let ϕ′ = leftj−k1(x) if k1 ≤ j ≤ k1+ℓ (resp. rightj−k1(x) if k1 < j ≤ k1+ℓ+1,
maxi,j−k1 (x) if k1 < j ≤ k1 + ℓ), and ϕ′ = false otherwise. If x ∈ Z, then it
does not depend on t and λ whether (U · (k1 ⊕ t ⊕ k2), λ) |= ϕ or not, and we
let ϕ′ = true or false accordingly.

If ϕ = root(x) and x 6∈ Z, we let ϕ′ = false. If x ∈ Z, we let ϕ′ = true or
false depending on whether U |= ϕ.

Now consider the case where ϕ = (x < y). If x, y 6∈ Z, we let ϕ′ = ϕ. If
x 6∈ Z and y ∈ Z, we let ϕ′ = false. If x ∈ Z but y 6∈ Z, we let ϕ′ = true

or false depending whether the node of U where x occurs in an ancestor of the
(k1 + 1)-st variable leaf. Finally, if x, y ∈ Z, we let ϕ′ = true or false depending
whether U |= ϕ.

The last case of an atomic formula occurs if ϕ is of the form Succi(x, y). If
x, y 6∈ Z, we let ϕ′ = ϕ. If x, y ∈ Z, we let ϕ′ = true or false, depending on
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whether U |= ϕ. If x 6∈ Z and y ∈ Z, we let ϕ′ = false. Finally, if x ∈ Z and
y 6∈ Z, let w be the node of U where x occurs. If the i-th successor of w is the
(k1 + 1)-st variable leaf, we let ϕ′ = root(y); otherwise we let ϕ′ = false.

As usual, if ϕ = ϕ1 ∨ ϕ2 (resp. ϕ = ¬ϕ1), then we let ϕ′ = ϕ′
1 ∨ ϕ′

2 (resp.
ϕ′ = ¬ϕ′

1).
We now consider the case where ϕ = QKx · 〈ϕδ〉δ∈∆. We may assume that

x 6∈ Y . Let S = U · (k1 ⊕ t⊕k2), let s = u · (k1 ⊕ t⊕k2) and let λ:X → NV(t).
Let s̄λ be the characteristic tree determined by s, [λ;µ] and 〈ϕδ〉δ∈∆. Then, for
any v ∈ NV(s) and for any δ, we have

(s̄λ, [x 7→ v]) |= Pδ(x) ⇐⇒ (s, [λ;µ;x 7→ v]) |= ϕδ

⇐⇒ (S, [λ;x 7→ v]) |= ϕδ.

Moreover,
(s, [λ;µ]) |= ϕ ⇐⇒ (S, λ) |= ϕ ⇐⇒ s̄λ ∈ K.

For each δ ∈ ∆, let ϕ′
δ be the formula associated with ϕδ and U by the

induction hypothesis. Let t̄λ be the characteristic tree determined by t, λ and
〈ϕ′
δ〉δ∈∆. Then, for any node v ∈ NV(t), we have

(S, [λ;x 7→ v]) |= ϕδ ⇐⇒ (t, [λ;x 7→ v]) |= ϕ′
δ

⇐⇒ (t̄λ, [x 7→ v]) |= Pδ(x),

and hence s̄λ is of the form s̄λ = û · (k1 ⊕ t̄λ ⊕ k2) for some tree û which differs
from u only in the labeling of the nodes in NV(u).

For each v ∈ NV(u), we let U (v) be the (Z ∪{x})-structure obtained from U
by adding x to the second component of the label of v. Then, for each δ ∈ ∆, we
let ψδ,v be the formula associated with ϕδ and U (v) by the induction hypothesis.
Then we have

(t, λ) |= ψδ,v ⇐⇒ (U (v) · (k1 ⊕ t⊕ k2), λ) |= ϕδ

⇐⇒ (S, [λ;x 7→ v]) |= ϕδ

⇐⇒ (s̄λ, [x 7→ v]) |= Pδ(x).

Now, for each mapping α: NV(u) → ∆, let ûα be the tree obtained from u
by relabeling each node v ∈ NV(u) with α(v). Let also ψα be the conjunction
of the ψα(v),v when v runs over NV(u). Then

(t, λ) |= ψα ⇐⇒ s̄λ = ûα · (k1 ⊕ t̄λ ⊕ k2).

Finally, let

ϕ′′ =
∨

α

(
ψα ∧Q(ûα,k1,k2)−1K〈ϕ′

δ〉δ
)
,

where the disjunction runs over all mappings α: NV(u) → ∆. Then the above
discussion establishes that (t, λ) satisfies ϕ′′ if and only if (U · (k1 ⊕ t⊕ k2), λ)
satisfies ϕ. Moreover, since each (ûα, k1, k2)

−1K is in Lind(K), the formula ϕ′′

is a Lind(Lind(K))-formula, and by Theorem 2.15, ϕ′′ is equivalent to some
Lind(K)-formula ϕ′, which concludes this proof. ⊓⊔

21



Right quotients The proof concerning the closure under right quotients is
similar. We assume that every right quotient of a language in K belongs to
Lind(K). Let k ≥ 0 and let ϕ be a rank k Lind(K)-formula over Σ with free
variables in a finite set Y . Let n ≥ 1 and Z ⊆ Y , and let U = U1 ⊕ · · · ⊕ Un ∈
ΣZMn,k where each Ui is a Zi-structure of rank ki, Ui = str(ui, µi), k =

∑
i ki

and the Zi form a partition of Z. Let u = ⊕iui, µ = [µ1, . . . , µn] and X = Y \Z.
We show by structural induction on ϕ that there exists a rank n Lind(K)-

formula ϕ′ with free variables in X such that, for every tree t ∈ ΣMn and every
mapping λ:X → NV(t) (see Figure 5), we have

(t, λ) |= ϕ′ ⇐⇒ (t · U, λ) |= ϕ.

t

U

variables in X are interpreted here

a ⊕-sum of Zi-structures

Figure 5: S = t · U

We first consider the case of atomic formulas. If ϕ = Pσ(x), we let ϕ′ = ϕ if
x 6∈ Z and ϕ′ = true or false if x ∈ Z, depending on whether U satisfies ϕ.

If ϕ = root(x), we let ϕ′ = ϕ if x 6∈ Z, and false if x ∈ Z.
If ϕ = maxi,j(x) and x 6∈ Z, we let ϕ′ = ϕ if j = k1 + · · · + kh−1 + 1

for some h such that Uh = 1, and ϕ′ = false otherwise. If x ∈ Z and k1 +
· · · + kh−1 ≤ j ≤ k1 + · · · + kh, we let ϕ′ = true or false depending on whether
Uh |= maxi,j−(k1+···+kh−1)(x).

Suppose now that ϕ = (x < y). If x, y 6∈ Z, we let ϕ′ = ϕ. If x, y ∈ Z, we let
ϕ′ = true or false depending on whether one of the Uj satisfies ϕ. If x ∈ Z and
y 6∈ Z, we let ϕ′ = false. Finally, if x 6∈ Z and y ∈ Z, let 1 ≤ j ≤ n be such that
y ∈ Zj (i.e. y occurs in Uj). Then we let ϕ′ =

∨
i<j lefti(x) ∧

∨
j<h righth(x).

The situation is similar if ϕ = Succi(x, y). If x, y 6∈ Z, we let ϕ′ = ϕ. If
x, y ∈ Z, we let ϕ′ = true or false depending on whether one of the Uj satisfies
ϕ. If x ∈ Z and y 6∈ Z, we let ϕ′ = false. Finally, if x 6∈ Z and y ∈ Z, let j be
such that y ∈ Zj . If y does not occur at the root of Uj , we let ϕ′ = false. If y
does occur at the root of Uj, we let ϕ′ = maxi,j(x).

Finally, suppose that ϕ = leftj(x) (resp. rightj(x)). If x ∈ Z, let i be
such that x ∈ Zi. Then we let ϕ′ = true or false according to whether
k1 + · · · + ki−1 ≤ j ≤ k1 + · · · + ki and Ui satisfies leftj−(k1+···+ki−1)(x) (resp.
rightj−(k1+···+ki−1)(x)). If x 6∈ Z, we let ϕ′ = lefth(x) if j =

∑
i≤h ki (resp.

j = 1 +
∑

i≤h ki) for some h, and ϕ′ = false if j is not of that form.
If ϕ = ϕ1 ∨ ϕ2 (resp. ϕ = ¬ϕ1), then we let ϕ′ = ϕ′

1 ∨ ϕ
′
2 (resp. ϕ′ = ¬ϕ′

1),
and we now assume that ϕ = QKx · 〈ϕδ〉δ∈∆, with x 6∈ Y . Let S = t · U , let
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s = t · u and let λ:X → NV(t). Let s̄λ be the characteristic tree determined
by s, [λ;µ] and 〈ϕδ〉δ∈∆. For each δ ∈ ∆, let ϕ′

δ be the formula associated
with ϕδ and U by the induction hypothesis, and let t̄λ be the characteristic tree
determined by t, λ and 〈ϕ′

δ〉δ∈∆. Then the tree s̄λ is of the form s̄λ = t̄λ · û for
some tree û which differs from u only in the labeling of the nodes in NV(u).

We continue as in the left quotient case. For each v ∈ NV(u), we let U (v) be
the structure obtained from U by adding x to the second component of the label
of v and for each δ ∈ ∆, we let ψδ,v be the formula associated with ϕδ and U (v)

by the induction hypothesis. As above, we verify that if ûα is the relabeling of
u determined by the mapping α: NV(u) −→ ∆, and if ψα is the conjunction of
the ψα(v),v (over the nodes v ∈ NV (u)), then

(t, λ) |= ψα ⇐⇒ s̄λ = t̄λ · ûα.

We then let
ϕ′′ =

∨

α

(
ψα ∧QKû−1

α
〈ϕ′
δ〉δ

)
,

where the disjunction runs over all mappings α: NV(u) → ∆, and we note that
(t, λ) satisfies ϕ′′ if and only if (t · U, λ) satisfies ϕ. Since each Kû−1

α is in
Lind(K), the formula ϕ′′ is a Lind(Lind(K))-formula, and hence is equivalent
to a Lind(K)-formula ϕ′, which concludes the proof. ⊓⊔

2.4 Logics admitting relativization

We say that a fragment L of Lind admits relativization if Properties R1 and
R2 below hold.

Property R1 For all integers k1, k2 ≥ 0 and k ≥ k1 + k2, for each L-sentence
ϕ of rank k1 + 1 + k2 over an alphabet Σ and for each first-order variable x
without occurrence in ϕ, there exists an L-formula ϕ[6> x] of rank k in the free
variable x with the following property. For each tree t ∈ ΣMk and for each node
v ∈ NV(t), (t, x 7→ v) satisfies ϕ[6> x] if and only if

• if s is the subtree of t with root v, then t is of the form t = r · (k1 ⊕s⊕k2)
(see Figure 6), and

• r |= ϕ.

Property R2 For all ranked alphabet Σ, integer i ≥ 1 less than or equal to
the maximal rank of a letter in Σ and integers k1, k2, ℓ ≥ 0, for each rank ℓ
L-sentence ϕ and for each first-order variable x without occurrence in ϕ, there
exists an L-formula ϕ[≥ xi] of rank k1 + ℓ + k2 over Σ in the free variable x
with the following property. For each tree t ∈ ΣMk1+ℓ+k2 and for each node
v ∈ NV(t), (t, x 7→ v) satisfies ϕ[≥ xi] if and only if

• the rank of v is greater than or equal to i, and its i-th child, w, has rank ℓ
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Figure 6: The factorizations of t in Properties R1 and R2 respectively

• if s is the subtree of t with root w, then t is of the form t = r ·(k1⊕s⊕k2),
and s |= ϕ (see Figure 6).

Proposition 2.18 Let K be a class of tree languages containing K∃ and closed
under the following operations. Let k1, k2, ℓ ≥ 0, let ∆ be a ranked alphabet
and let E be a disjoint ranked alphabet such that card(En) = 1 if ∆n 6= ∅, and
card(En) = 0 otherwise: if K ⊆ ∆Mk1+1+k2 belongs to K, then K · (k1⊕EMℓ⊕
k2) ∈ Lind(K); if K ⊆ ∆Mℓ belongs to K, then EMk1+1+k2 · (k1 ⊕K ⊕ k2) ∈
Lind(K).

Then Lind(K) admits relativization.

Proof. We first consider Property R1. Let k1, k2 ≥ 0, let k ≥ k1 + k2 and let
ϕ be a Lind(K) formula over Σ, of rank k1 + 1 + k2, without any occurrence of
x. We show by structural induction on ϕ that there exists a rank k Lind(K)-
formula ϕ[6> x] where x is a free variable and such that, for any tree t ∈ ΣMk,
the following holds: if v ∈ NV(t) and t = r · (k1 ⊕ s⊕k2) with the tree s rooted
at v, and if λ:Y → NV(r) is an interpretation (where Y is a set containing the
free variables of ϕ and not containing x), then

(t, [λ;x 7→ v]) |= ϕ[6> x] ⇐⇒ (r, λ) |= ϕ.

If ϕ = leftj(y) with j > k1, we let ϕ[6> x] = leftj+ℓ(y), where ℓ = k − (k1 + k2).
If ϕ = rightj(y) with j > k1 + 1, we let ϕ[6> x] = rightj+ℓ(y). If ϕ = maxi,j(y)
with j > k1 + 1, we let ϕ[6> x] = maxi,j+ℓ−1(y). And if ϕ = maxi,k1+1(y), we
let ϕ[6> x] = Succi(y, x).

For all other atomic formulas, we let ϕ[6> x] = ϕ. It is elementary to verify
that these choices guarantee the expected equivalence. Similarly, if ϕ = ϕ1 ∨ϕ2

(resp. ϕ = ¬ϕ1), we let ϕ[6> x] = ϕ1[6> x] ∨ ϕ2[6> x] (resp. ϕ[6> x] = ¬ϕ1[6> x]).
Let us now assume that ϕ = QKy · 〈ϕδ〉δ∈∆ where K ⊆ ∆Mk1+1+k2 is in

K, y 6∈ Y ∪ {x} and the ϕδ are deterministic with respect to y. Let E be a
ranked alphabet disjoint from ∆, with a single rank n element εn for each n
such that ∆n 6= ∅; and let ∆′ = ∆ ∪ E. Let L = K · (k1 ⊕ EMℓ ⊕ k2); then
L ∈ Lind(K) by assumption. For each δ ∈ ∆, we let ψδ = ¬(y ≥ x) ∧ ϕδ[6> x];
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and we let ψε = (y ≥ x) for each ε ∈ E.2 We note that the ψδ have their
free variables in Y ∪ {x, y}. Using the induction hypothesis, one verifies that
〈ψδ〉δ∈∆′ is deterministic with respect to y, and we let ψ = QLy ·〈ψδ〉δ∈∆′ . Then
ψ is a Lind(Lind(K))-formula, and by Theorem 2.15, there exists an equivalent
Lind(K)-formula ψ′.

By the induction hypothesis, for every w in NV(r) and δ ∈ ∆, (t, [λ;x 7→
v, y 7→ w]) |= ψδ if and only if (r, [λ, y 7→ w]) |= ϕδ. Also, (t, [λ;x 7→ v, y 7→
w]) |= (y > x) for all w ∈ NV(s). Thus, the characteristic tree determined by t,
[λ;x 7→ v] and the ψδ is of the form r̂ · (k1⊕ ŝ⊕k2), where r̂ is the characteristic
tree determined by r, λ and the ϕδ, and where each w ∈ NV(ŝ) is labeled in E.
Thus, letting ϕ[6> x] = ψ′, we have the desired equivalence.

Let us now consider Property R2. Let i ≥ 1, k1, k2, ℓ ≥ 0, let k = k1 + ℓ+k2

and let ϕ be a rank ℓ Lind(K)-formula over Σ without any occurrence of x. We
show by structural induction on ϕ that there exists a rank k Lind(K)-formula
ϕ[≥ xi] where x is a free variable and such that, for any tree t ∈ ΣMk, the
following holds: if v ∈ NV(t), then

(t, [λ;x 7→ v]) |= ϕ[≥ xi] ⇐⇒






v has rank at least i,
t factors as t = r · (k1 ⊕ s⊕ k2)
(s, λ) |= ϕ,

where s is the subtree of t rooted at the i-th successor of v and λ:Y → NV(s).
If ϕ = leftj(y) (resp. rightj(y), maxh,j(y)), we let ϕ[≥ xi] = leftk1+j(y) (resp.

rightk1+j(y), maxh,k1+j(y)). If ϕ = root(y), we let ϕ[≥ xi] = Succi(x, y). For all
other atomic formulas, we let ϕ[≥ xi] = ϕ. If ϕ = ϕ1 ∨ ϕ2 (resp. ϕ = ¬ϕ1), we
take ϕ[≥ xi] = ϕ1[≥ xi] ∨ ϕ2[≥ xi] (resp. ϕ[≥ xi] = ¬ϕ1[≥ xi]). Again, it is
elementary to verify that these choices guarantee the expected equivalence.

Let us now assume that ϕ = QKy · 〈ϕδ〉δ∈∆ where K ⊆ ∆Mℓ is in K,
y 6∈ Y ∪ {x} and the ϕδ are deterministic with respect to y. Let E and ∆′ be
as in the first part of the proof, and let L = EMk1+1+k2 · (k1 ⊕K ⊕ k2); then
L ∈ Lind(K) by assumption.

For each n ≥ 0 such that Σn 6= ∅, let χn be the formula Succi(x, z)∧ (z ≤ y)
(independent of n), and let χ = QKk(∃)z · 〈χn〉. By assumption, χ is a Lind(K)-
formula. Moreover, (t, [x 7→ v; y 7→ w]) satisfies χ if and only if v has rank at
least i and w is a descendant of the i-th child of v.

For each ε ∈ E, let ψε = ¬χ, and for each δ ∈ ∆, let ψδ = ϕδ[≥ xi] ∧ χ.
By induction, the ψδ (δ ∈ ∆′) are Lind(K)-formulas with free variables in
Y ∪ {x, y}. Using the induction hypothesis again, one verifies that 〈ψδ〉δ∈∆′

is deterministic with respect to y, and we let ψ = QLy · 〈ψδ〉δ∈∆′ . Then ψ
is a Lind(Lind(K))-formula, and by Theorem 2.15, there exists an equivalent
Lind(K)-formula ψ′.

It follows as above that (t, [λ;x 7→ v]) |= ψ′ if and only if the rank of v is

2To justify this choice of ψδ, we need to verify that y = x is expressible: it is equivalent to
∀z∧n

i=1
Succi(x, z) ↔ Succi(y, z)∧Succi(z, x) ↔ Succi(z, y) where n denotes the maximal rank

of a letter in Σ. The presence of a universal quantifier is acceptable since we have assumed
that K contains K∃.
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at least i and t factors as t = r · (k1 ⊕ s ⊕ k2) with (s, λ) |= ϕ, where s is the
subtree of t with root v. ⊓⊔

This can be applied to the classes K∃ and K∃,mod discussed in Example 2.13.

Corollary 2.19 The logics Lind(K∃) and Lind(K∃,mod) admit relativization.

Proof. Let ∆ be a ranked Boolean alphabet, let E be a disjoint ranked alphabet
as in the statement of Proposition 2.18, and let ∆′ = ∆ ∪E. Denote by εn the
element of rank n in E, if it exists. Let k1, k2, ℓ ≥ 0, and k = k1 + ℓ+ k2.

Let K = Kk1+1+k2(∃) and L = K · (k1 ⊕EMℓ⊕k2). Define, for each m ≥ 0
such that Σm 6= ∅

ϕm = P1m
(x),

ϕ = QKk(∃)x · 〈ϕn〉n,

χm = (x ≤ y) ∧ ¬Pεm
(y),

χ = QKk(∃)y · 〈χn〉n,

ωm = ¬(x ≤ y) ∧ Pεm
(y),

ω = QKk(∃)y · 〈ωn〉n,

ψm = leftk1(x) ∧ rightk1+ℓ+1(x) ∧ ¬χ ∧ ¬ω and

ψ = QKk(∃)x · 〈ψn〉n.

Then a tree t ∈ ∆′Mk satisfies ϕ if and only if a letter of the form 1n occurs
at least once in t; (t, [x 7→ v]) satisfies χ (resp. ω) if some descendant (resp.
non-descendant) of v has its label in ∆ (resp. in E); and t satisfies ψ if and only
if t can be factored as t = r · (k1 ⊕ s⊕ k2) with all the nodes in NV(s) labeled
in E and all the nodes in NV(r) labeled in ∆. It is immediate that L is defined
by the Lind(K∃)-formula ϕ ∧ ψ.

Now let K = Kℓ(∃) and L = EMk1+1+k2 · (k1 ⊕K ⊕ k2). Define, for each
m ≥ 0 such that Σm 6= ∅

χm = ¬(x < y) ∧ ¬Pεm
(y),

χ = QKk(∃)y · 〈χn〉n,

ωm = (x < y) ∧ Pεm
(y),

ω = QKk(∃)y · 〈ωn〉n,

ψm = leftk1(x) ∧ rightk1+ℓ+1(x) ∧ ¬χ ∧ ¬ω and

ψ = QKk(∃)x · 〈ψn〉n.

Then if t ∈ ∆′Mk, we have (t, [x 7→ v]) |= ω (resp. χ) if some proper descendant
(resp. non proper-descendant) of v has its label in E (resp. in ∆); and t satisfies
ψ if and only if t can be factored as t = r · (k1 ⊕ s ⊕ k2) with all the nodes in
NV(r) labeled in E and all the nodes in NV(s) labeled in E. It is immediate
that L is defined by the Lind(K∃)-formula ϕ ∧ ψ.

The proof that Lind(K∃,mod) admits relativization is similar. ⊓⊔
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3 Algebraic characterization of logically defined

tree languages

3.1 The block product of preclones

In this section, we introduce our main algebraic tool, the block product of
preclones and of pg-pairs. This is a generalization of an operation on monoids
that was introduced by Rhodes and Tilson [25], as a two-sided generalization of
the more classical wreath product.

Let S and T be preclones. We define preclones S⊓⊔k T for each k ≥ 0. Recall
(Section 1.3) that, for each k, n ≥ 0, Ik,n denotes the set of n-ary contexts in
Tk. The set of rank n elements of S ⊓⊔k T is defined to be

(S ⊓⊔k T )n = S
Ik,n
n × Tn, n ≥ 0.

The identity 1 is the pair (F1,1), where F1(C) = 1, for all C ∈ Ik,1. As for
the composition operation, let (F, f) ∈ (S ⊓⊔k T )n, and let (Gi, gi) ∈ (S ⊓⊔k T )mi

for each i ∈ [n]. Let g = g1 ⊕ · · · ⊕ gn ∈ Tn,m, where m =
∑n

i=1mi. Then we
let

(F, f) · ((G1, g1) ⊕ · · · ⊕ (Gn, gn)) = (Q, f · g),

an element of (S ⊓⊔k T )m = S
Ik,m
m × Tm, where Q: Ik,m → Sm is described as

follows.
For each (u, k1, v, k2) ∈ Ik,m, we have v = v1⊕ · · ·⊕vm ∈ Tm,ℓ, where ℓ =

k− (k1 + k2). Let v̄1 be the ⊕-sum of the first m1 vj ’s, v̄1 = v1 ⊕ · · · ⊕ vm1
, let

v̄2 be the ⊕-sum of the next m2 vj ’s, etc, until v̄n = vm−mn+1 ⊕ · · · ⊕ vm is the
⊕-sum of the last mn vj ’s, see Figure 7. In particular, v =

⊕n
i=1 v̄i. For each

i ∈ [n], let ℓi be the total rank of v̄i, so that v̄i ∈ Tmi,ℓi and
∑

i ℓi = ℓ.
For each i ∈ [n], we observe that gi · v̄i ∈ Tℓi , and we let

ci = u ·
(
k1 ⊕ f · (g1 · v̄1 ⊕ · · · ⊕ gi−1 · v̄i−1 ⊕ 1⊕ gi+1 · v̄i+1 ⊕ · · · ⊕ gn · v̄n)⊕k2

)
.

We note that u·(k1⊕f ·g ·v⊕k2) = ci ·(p1⊕gi ·v̄i⊕p2), where p1 = k1+
∑
j<i ℓj

and p2 =
∑

j>i ℓj + k2. Then ci is an element of T with rank p1 + 1 + p2 =
k1 + k2 + ℓ− ℓi + 1 = k− ℓi + 1. (Of course, the integers p1 and p2 depend on i
even though our notation does not show it.)

In particular, Ci = (ci, p1, v̄i, p2) is a context in Ik,mi
, see Figure 7. We are

finally ready to define Q:

Q(u, k1, v, k2) = F (u, k1, g · v, k2) · (G1(C1) ⊕ · · · ⊕Gn(Cn)).

Lemma 3.1 The above definition satisfies the axioms of preclones.

Proof. Let us first verify the axioms concerning the identity element. Let
(G, g) ∈ (S ⊓⊔k T )m and let (Q, g) = (F1,1) · (G, g). Let (u, k1, v, k2) ∈ Ik,m.
With reference to the notation in the definition above, we have n = 1 and
C1 = (u, k1, v, k2). It follows that Q = G, so (F1,1) · (G, g) = (G, g).
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u

k1 k2

v

m

ℓ

u

k1 k2

· · ·v̄1

m1

ℓ1

v̄n

mn

ℓn

u

k1 k2

f

g1

v̄1

· · ·

gn−1

v̄n−1

v̄n

Figure 7: Two views of (u, k1, k2, v) ∈ Ik,m, and the context Cn

Let now (F, f) ∈ (S⊓⊔kT )n and let (Q, f) = (F, f)·((F1,1)⊕· · ·⊕(F1,1)). Let
(u, k1, v, k2) ∈ Ik,n. ThenQ(u, k1, v, k2) = F (u, k1, v, k2)·(F1(C1)⊕· · ·⊕F1(Cn))
for some C1, . . . , Cn, and hence Q(u, k1, v, k2) = F (u, k1, v, k2) · (1 ⊕ · · · ⊕ 1) =
F (u, k1, v, k2). Thus (F, f) · ((F1,1) ⊕ · · · ⊕ (F1,1)) = (F, f).

Next let (F, f) ∈ (S ⊓⊔k T )n; for i ∈ [n] let (Gi, gi) ∈ (S ⊓⊔k T )mi
and let

m =
∑

i∈[n]mi; for j ∈ [m], let (Hj , hj) ∈ (S ⊓⊔k T )pj
and let p =

∑
j∈[m] pj .

Let g = ⊕i∈[n]gi and let h = ⊕j∈[m]hj . We also denote by h̄1 the ⊕-sum of
the first m1 hj ’s, h̄2 the ⊕-sum of the next m2 hj’s, etc, to h̄n the ⊕-sum of the

last mn hj ’s, so that h = ⊕i∈[n]h̄i. The rank of h̄i is
∑m1+···+mi

j=m1+···+mi−1+1 pj .

We need to consider p-ary contexts in Tk: let (u, k1, v, k2) ∈ Ik,p be such a
context. Then v = v1 ⊕ · · · ⊕ vp ∈ Tp,ℓ with ℓ = k − k1 − k2. Let v̄1 denote
the ⊕-sum of the first p1 vi’s, v̄2 the ⊕-sum of the next p2 vi’s, etc to v̄m the
⊕-sum of the last pm vi’s. For i ∈ [n], we also denote by ¯̄vi the ⊕-sum of the v̄j
where hj is part of the summation defining h̄i. That is, ¯̄v1 = v̄1 ⊕ · · · ⊕ v̄m1

,. . . ,
¯̄vn = v̄m−mn+1 ⊕ · · · ⊕ v̄m.

We first consider the product

(
(F, f) ·

(
(G1, g1) ⊕ · · · ⊕ (Gn, gn)

))
·
(
(H1, h1) ⊕ · · · ⊕ (Hm, hm)

)

= (Q, f · g) ·
(
(H1, h1) ⊕ · · · ⊕ (Hm, hm)

)

= (R, f · g · h).

Then we have R(u, k1, v, k2) = Q(u, k1, h ·v, k2) ·(H1(B1)⊕· · ·⊕Hm(Bm)), with
Bj = (bj , p

′
1, v̄j , p

′
2) where bj (j ∈ [m]) is

u · (k1 ⊕ f · g · (h1 · v̄1 ⊕ · · · ⊕hj−1 · v̄j−1 ⊕ 1⊕ hj+1 · v̄j+1 ⊕ · · · ⊕hm · v̄m)⊕k2),
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p′1 = k1 +
∑j−1

s=1 rank(v̄s) and p′2 = k2 +
∑m
s=j+1 rank(v̄s), so that

u · (k1 ⊕ f · g · h · v ⊕ k2) = bj · (p
′
1 ⊕ hj · v̄j ⊕ p′

2).

u

k1 k2

f

g

h1⊕···⊕hm−1

v̄1⊕···⊕v̄m−1

v̄m

u

k1 k2

f

g1⊕···⊕gn−1

h̄1⊕···⊕h̄n−1

¯̄v1⊕···⊕¯̄vn−1

h̄n

¯̄vn

u

k1 k2

f

g1⊕···⊕gn−1

h̄1⊕···⊕h̄n−1

¯̄v1⊕···⊕¯̄vn−1

¯̄vn

Figure 8: The contexts Bm, Cn and Dn

Moreover, Q(u, k1, h · v, k2) = F (u, k1, g ·h · v, k2) · (G1(C1)⊕ · · · ⊕Gn(Cn)),
where Ci (i ∈ [n]) is the context (ci, r1, h̄i · ¯̄vi, r2) with ci equal to

u·
(
k1⊕f ·(g1·h̄1·¯̄v1⊕· · ·⊕gi−1·h̄i−1·¯̄vi−1⊕1⊕gi+1·h̄i+1·¯̄vi+1⊕· · ·⊕gn·h̄n·¯̄vn)⊕k2

)
,

r1 = k1 +
∑i−1

s=1 rank(¯̄vs), r2 = k2 +
∑n

s=i+1 rank(¯̄vs), so that

u · (k1 ⊕ f · g · h · v ⊕ k2) = ci · (r1 ⊕ gi · h̄i · ¯̄vi ⊕ r2).

See Figure 8. Thus

R(u, k1, v, k2) = F (u, k1, g · h · v, k2) ·
( n⊕

i=1

Gi(Ci)
)
·
( m⊕

j=1

Hj(Bj)
)
.

We compare this result with the product

(F, f) ·
((

(G1, g1) ⊕ · · · ⊕ (Gn, gn)
)
·
(
(H1, h1) ⊕ · · · ⊕ (Hm, hm)

))
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= (F, f) ·
(
(Q′

1, g1 · h̄1) ⊕ · · · ⊕ (Q′
n, gn · h̄n)

)

= (R′, f · g · h).

Then we have R′(u, k1, v, k2) = F (u, k1, g · h · v, k2) · (Q′
1(D1) ⊕ · · · ⊕Q′

n(Dn)),
where Di (i ∈ [n]) is the context (ci, r1, ¯̄vi, r2), where ci, r1, r2 are defined above.

Next we compute Q′
1(D1): we have

Q′
1(D1) = Q′

1(c1, r1, ¯̄v1, r2) = G(c1, r1, h̄1 · ¯̄v1, r2) · (H1(E1) ⊕ · · · ⊕Hm1
(Em1

))

where Ej (j ∈ [m1]) is the context (ej , r
′
1,j , v̄j , r

′
2,j),

ej = u · (k1 ⊕ f · (g1 · (h1 · v̄1 ⊕ · · · ⊕ hj−1 · v̄j−1 ⊕ 1

⊕hj+1 · v̄j+1 ⊕ · · · ⊕ hm1
· v̄m1

) ⊕ g2 · h̄2 · ¯̄v2 ⊕ · · · ⊕ gn · h̄n · ¯̄vn) ⊕ k2)

and r′1,j and r′2,j are appropriate integers so that c1 · (r1 ⊕ g1 · h̄1 · ¯̄v1 ⊕ r2) =
ej · (r1,j ⊕ hj · v̄j ⊕ r2,j), see Figure 8.

We observe now that ej = bj and Ej = Bj for j ∈ [m1]. So we have
Q′

1(D1) = G1(C1) ·
⊕m1

j=1Hj(Bj).
Similarly, for each i ∈ [n], we have

Q′
i(Di) = Gi(Ci) ·

mi⊕

j=1

Hm1+···+mi−1+j(Bm1+···+mi−1+j),

and we have verified that R = R′. ⊓⊔

We also define block products of pg-pairs. If (S,A) and (T,B) are pg-pairs
and k ≥ 0, we define (S,A) ⊓⊔k (T,B) to be the sub-pg-pair of S ⊓⊔k T generated
by those pairs (F, g) such that for some n ≥ 0, g ∈ Bn and F (c) ∈ An for each
c ∈ Ik,n.

Let (S,A) and (T,B) be pg-pairs and let α:AM → S and β:BM → T be
the natural morphisms, so that α(a) = a and β(b) = b for all a ∈ A and b ∈ B.
Let (U,Σ) = (S,A) ⊓⊔k (T,B), and let ϕ: ΣM → U ⊆ S ⊓⊔k T be the natural
morphism. By definition, each σ ∈ Σn (n ≥ 0) is a pair σ = (Fσ, bσ) with

bσ ∈ Bn and Fσ ∈ A
Ik,n
n . Let π: ΣM → BM be the morphism induced by the

second component projection from Σ to B, and let τ = β ◦ π: ΣM → T , see
Figure 9. We now describe a way of computing ϕ(t) for a tree t ∈ ΣMn, say
ϕ(t) = (Qt, τ(t)).

ΣM BM

U T

π

β
τϕ

Figure 9: The morphisms ϕ, π and β
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Let D = (u, k1, v, k2) ∈ Ik,n. We define the tree t̄D by relabeling the nodes
of t in NV(t) with elements of A as follows. Let x be a node of t of rank m ≥ 0,
let g be the subtree of t whose root is x, and let h1, . . . , hm be the subtrees
whose roots are the children of x, see Figure 10. Let h = h1 ⊕ · · · ⊕ hm, let
σ ∈ Σm be the label of x in t and let r2 ≥ 0 be such that g = σ · h ∈ ΣMr2 and
h ∈ ΣMm,r2 .

f

r1 r3

x

r2

g

σ

h1 · · · hm

u

k1 k2

τ(f)

r1 r3

v̄1

p1

v̄3

p3

τ(h)

v̄2

Figure 10: The trees t and g = σ · h, and the context C

Let us write t = f · (r1 ⊕ g ⊕ r3), where r1 and r3 are integers such that the
node x is now labeled by a variable in f (that is, leftr1(x) and rightn−r3+1(x)
in t, and n = r1 + r2 + r3). Let v̄1 be the ⊕-sum of the first r1 vj ’s, v̄2
the ⊕-sum of the next r2 vj ’s and v̄3 the ⊕-sum of the last r3 vj ’s. Then
we have v̄1 ∈ Tr1,p1 , v̄2 ∈ Tr2,p2 and v̄3 ∈ Tr3,p3 for some p1, p2, p3 ≥ 0 (and
k = k1 + p1 + p2 + p3 + k2). Let then c = u · (k1 ⊕ τ(f) · (v̄1 ⊕ 1⊕ v̄3)⊕ k2), so
that C = (c, k1 + p1, τ(h) · v̄2, p3 + k2) ∈ Ik,m, see Figure 10. We finally label
the node x in t̄D by Fσ(C).

The resulting tree t̄D is an element of AMn. We now show the following
fact.

Fact 3.2 With the notation above, ϕ(t) = (Qt, τ(t)) where Qt(D) = α(t̄D) for
each context D ∈ Ik,n.

Proof. The proof is by structural induction on t. If t = 1, then t̄D = 1 for
each D, and ϕ(t) = (F1,1), so the announced result holds.

If t consists of a single node, then t = σ ∈ Σ0 and ϕ(t) = (Fσ, bσ). Now
let D = (u, k1,0, k2) ∈ Ik,0. With the notation above, we have g = σ = t,
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h = 0, f = 1, and pi = rj = 0. In particular, c = u. It follows that C = D
and t̄D = Fσ(D). Moreover, since Fσ(D) ∈ A, we have α(t̄D) = Fσ(D). This
concludes the verification of the equality for one-node trees.

Let us now assume that t ∈ ΣMn (n ≥ 0) has more than one node, let
σ ∈ Σm be the label of the root of t, and let s(1), . . . , s(m) be the subtrees of
t attached to the children of the root. Let also s = s(1) ⊕ · · · ⊕ s(m), so that
t = σ · s. Let D = (u, k1, w, k2) ∈ Ik,n. By induction, we have

Qt(D) = Fσ(u, k1, τ(s) · w, k2) ·
(
α(s̄

(1)
C1

) ⊕ · · · ⊕ α(s̄
(m)
Cm

)
)
,

where w = w̄1 ⊕ · · · ⊕ w̄n, Ci = (ci, q1, w̄i, q2),

ci = u · (k1 ⊕ τ(σ · (s(1) ⊕ · · · ⊕ s(i−1) ⊕ 1 ⊕ s(i+1) ⊕ · · · ⊕ s(m))) ⊕ k2)

and q1 and q2 are appropriate integers (which depend on i) such that

u · (k1 ⊕ τ(t) · w ⊕ k2) = ci · (q1 ⊕ τ(s(i)) · w̄i ⊕ q2).

We compare this value with α(t̄D). If a is the label of the root of t̄D and if
d1, . . . , dm are the subtrees of t̄D attached to the children of the root, then
α(t̄D) = α(a) ·

⊕
i α(di). We first discuss the value of a. With reference to the

notation in the definition of the labels of t̄D above, since t = σ · s, the integers
p1, p3, r1, r3 are all equal to 0 and v̄1 = v̄3 = 0. In particular, a = Fσ(u, k1, τ(s) ·
w, k2). Thus α(a) = α(Fσ(u, k1, τ(s) · w, k2)) = Fσ(u, k1, τ(s) · w, k2).

To conclude, we need only to verify that di = s̄
(i)
Ci

for each i ∈ [m], that is,

each node x of t in NV(s(i)), has the same label in di and in s̄
(i)
Ci

. But it is easy

to see that the label of x in both t̄D and s̄
(i)
Ci

is of the form Fρ(C) where ρ ∈ Σ

is the label of x in s(i) and C is appropriate. ⊓⊔

3.2 Closed pseudovarieties

We say that a pseudovariety V of preclones is closed if every block product S⊓⊔kT
with S, T ∈ V and k ≥ 0 belongs to V. Closed pseudovarieties of pg-pairs are
defined similarly. Since the intersection of a family of closed pseudovarieties is
closed, there exists a least closed pseudovariety containing any given class K of
finitary preclones (resp. finitary pg-pairs).

We now give a technical result on closed pseudovarieties, that will be used
in the proof of our main result. We consider the situation where S, T, T ′ are
preclones and T is a sub-preclone of T ′. Then the elements of S ⊓⊔k T ′ whose
second component belongs to T , form a sub-preclone of S⊓⊔kT ′ which we denote
by S ⊓⊔T

′

k T .

Proposition 3.3 Let V be a closed pseudovariety of preclones. Let S, T ∈ V

and let T ′ be a finitary preclone such that T is a sub-preclone of T ′. For each
k ≥ 0, the product S ⊓⊔T

′

k T belongs to V.
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Before we prove Proposition 3.3, we verify a technical lemma. In this lemma,
we use the notation in the proposition. In particular, we need to consider
contexts in both Tk and T ′

k. We denote by Ik,n (resp. I ′k,n) the set of n-ary
contexts in Tk (resp. T ′

k).

Lemma 3.4 Let S, T , T ′ and k be as in Proposition 3.3 and let C ∈ I ′k,n. There

exists a morphism αC :S ⊓⊔T
′

k T → S ⊓⊔n T such that, if (F, f) ∈ (S ⊓⊔T
′

k T )n, then
αC(F, f) is of the form αC(F, f) = (FC , f) with FC(1, 0,n, 0) = F (C).

Proof. Let C = (u, k1, v, k2) ∈ I ′k,n and let (F, f) ∈ (S⊓⊔T
′

k T )m, m ≥ 0. We first

define a mapping FC : In,m → Sm. Let D = (r, p1, s, p2) ∈ In,m. By definition,
p1 + p2 ≤ n, and we let v̄1 be the ⊕-sum of the first p1 vi’s, v̄2 be the ⊕-sum of
the last p2 vi’s, and v̄ be the ⊕-sum of the middle n−p1−p2 vi’s. In particular,
there exist integers q1, q, q2 such that v̄1 ∈ Tp1,q1 , v̄ ∈ Tn−p1−p2,q, v̄2 ∈ Tp2,q2
and k1 + p1 + q1 + q + q2 + p2 + k2 = k, see Figure 11. We let

FC(D) = F
(
u · (k1 ⊕ r · (v̄1 ⊕ 1 ⊕ v̄2) ⊕ k2), k1 + q1, s · v̄, q2 + k2

)
.

The verification that FC(1, 0,n, 0) = F (C) is straightforward, and we need to

u

k1 k2

r

p1 p2

v̄1

q1

v̄2

q2m

s

v̄

q

Figure 11: FC(D) is image by F of the context represented here

show that αC : (F, f) 7→ (FC , f) defines a morphism of preclones.
Let (F, f) ∈ (S ⊓⊔T

′

k T )m and let (Gi, gi) ∈ (S ⊓⊔T
′

k T )hi
(i ∈ [m]). For

convenience, we let g be the ⊕-sum of the gi, so g ∈ Tm,h with h =
∑

i hi. Let
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(Q, f · g) = (F, f) ·
⊕

i(Gi, gi), so that αC((F, f) ·
⊕

i(Gi, gi)) = (QC , f · g).
Moreover, let (R, f · g) = (FC , f) ·

⊕
i(G

C
i , gi). We need to verify that QC = R.

Let D = (r, p1, s, p2) ∈ Ih,n. For each i ∈ [m], let s̄i be the appropriate
⊕-sum of sj ’s such that g · s = g1 · s̄1 ⊕ · · · ⊕ gm · s̄m. Then R(D) = FC(r, p1, g ·
s, p2) ·

⊕
iG

C
i (Di), where Di = (ri, ℓ1, s̄i, ℓ2), ri is

r · (p1 ⊕ f · (g1 · s̄1 ⊕ · · · ⊕ gi−1 · s̄i−1 ⊕ 1⊕ gi+1 · s̄i+1 ⊕ · · · ⊕ gm · s̄m) ⊕ p2),

and ℓ1, ℓ2 are such that r · (p1 ⊕ f · g · s⊕ p2) = ri · (ℓ1 ⊕ gi · s̄i ⊕ ℓ2).
Thus R(D) is the composition of

F
(
u · (k1 ⊕ r · (v̄1 ⊕ 1 ⊕ v̄2) ⊕ k2), k1 + p1, g · s · v̄, p2 + k2

)

with

m⊕

i=1

Gi
(
u · (k1 ⊕ ri · (v̄

i
1 ⊕ 1⊕ v̄i2) ⊕ k2), k1 + ℓ1, g · s · v̄

i, ℓ2 + k2

)
,

where v = v̄i1 ⊕ v̄i ⊕ v̄i2 is the appropriate grouping. Observe that

u · (k1 ⊕ ri · (v̄
i
1 ⊕ 1⊕ v̄i2) ⊕ k2)

is equal to

u ·(k1⊕p1⊕f ·(g1 · s̄1⊕· · ·⊕gi−1 · s̄i−1⊕1⊕gi+1 · s̄i+1⊕· · ·⊕gm · s̄m)⊕p2⊕k2).

Now, QC(D) = Q(u · (k1 ⊕ r · (v̄1 ⊕ 1⊕ v̄2)⊕ k2), k1 + p1, s · v̄, p2 + k2). By
definition of the block product, this is equal to the composition of

F
(
u · (k1 ⊕ r · (v̄1 ⊕ 1 ⊕ v̄2) ⊕ k2), k1 + p1, g · s · v̄, p2 + k2

)

with
m⊕

i=1

Gi(r
′
i, z1, s̄i · v̄

′
i, z2),

where v̄ =
⊕

i v̄
′
i is the appropriate grouping,

r′i = u · (k1 ⊕ r · (v̄1 ⊕ f · (g1 · s̄1 · ¯̄v1 ⊕ · · · ⊕ gi−1 · s̄i−1 · ¯̄vi−1 ⊕ 1

⊕gi+1 · s̄i+1 · ¯̄vi+1 ⊕ · · · ⊕ gm · s̄m · ¯̄vm) ⊕ v̄2) ⊕ k2)

where v = ¯̄v1 ⊕ · · · ⊕ ¯̄vm and z1 and z2 are appropriate integers.
It is now a straightforward verification that R(D) = QC(D), which concludes

the proof. ⊓⊔

Proof of Proposition 3.3. By Proposition 1.5, it suffices to verify that dis-
tinct elements of equal rank in S ⊓⊔T

′

k T can be separated by a morphism into an
element of V.

So we consider (F1, f1) and (F2, f2), rank n elements of S ⊓⊔T
′

k T . If f1 6= f2,
the second component projection is a morphism into T ∈ V which separates
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the two elements. If f1 = f2, then F1 6= F2 and we let C ∈ I ′k,n such that

F1(C) 6= F2(C). Then the morphism αC in Lemma 3.4 is a morphism into
S ⊓⊔n T ∈ V which separates the two elements. ⊓⊔

If (S,A) and (T ′, B′) are pg-pairs and (T,B) is a sub-pg-pair of (T ′, B′),
recall that the block product (S,A)⊓⊔k (T ′, B′) is generated by a ranked alphabet

Σ′ such that Σ′
m = A

I′k,m
m ×B′

m. We let (S,A)⊓⊔
(T ′,B′)
k (T,B) be the sub-pg-pair

of (S,A)⊓⊔k (T ′, B′) generated by the subset Σ of Σ′ such that Σm = A
I′k,m
m ×Bm

for each m.

Proposition 3.5 Let V be a closed pseudovariety of pg-pairs. Let (S,A) and
(T,B) be pg-pairs in V and let (T ′, B′) be a finitary pg-pair such that (T,B)

is a sub-pg-pair of (T ′, B′). For each k ≥ 0, the product (S,A) ⊓⊔
(T ′,B′)
k (T,B)

belongs to V.

Proof. We note that the morphism αC in the proof of Lemma 3.4, maps each

generator of (S,A) ⊓⊔
(T ′,B′)
k (T,B) to a generator of (S,A) ⊓⊔n (T,B), so αC is

also a morphism of pg-pairs between these block products.
The same scheme as in the proof of Proposition 3.3 can then be applied,

using Proposition 1.6 instead of Proposition 1.5. ⊓⊔

We conclude with a result on full pseudovarieties (see Section 1.4).

Proposition 3.6 Let W be a pseudovariety of preclones, let V = pgp(W) and

let Ŵ and V̂ be the closure of W and V respectively. Then V and V̂ are full

and V̂ = pgp(Ŵ).

Proof. In view of Proposition 1.9, it suffices to show that V̂ = pgp(Ŵ). We first

verify that if (S,A) ∈ V̂, then S ∈ Ŵ, by induction on the construction of (S,A)
from elements of V by means of block products. If (S,A) ∈ V, then S ∈ W

by definition and hence, S ∈ Ŵ. Now suppose that (S,A) < (S(1), A(1)) ⊓⊔k
(S(2), A(2)) and S(1), S(2) ∈ Ŵ. By definition of the block product of pg-pairs,

S < S(1) ⊓⊔k S(2) and hence S ∈ Ŵ.
Now we show that if (S,A) is a finitary pg-pair with S ∈ Ŵ, then (S,A) ∈ V̂.

The proof is by induction on the construction of S from elements of W by means
of block products. If S ∈ W, then (S,A) ∈ pgp(W) = V by definition. Now

suppose that S = S(1) ⊓⊔k S(2) and pgp(S(i)) ⊆ V̂. Let B(2) be the projection of
A onto S(2). Each element of A is of the form (F, b) with b ∈ B(2). Let B(1) be
the union of the ranges of the first components of elements of A. Then, if T (i)

is the sub-preclone of S(i) generated by B(i), we have (S,A) ⊆ (T (1), A(1)) ⊓⊔k
(T (2), A(2)). It follows that (S,A) ∈ V̂. ⊓⊔
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3.3 Characterizing Lind(K)

Our main result is:

Theorem 3.7 Let K be a class of recognizable tree languages such that each
quotient of a language in K belongs to Lind(K) and such that Lind(K) admits
relativization. Then a language is in Lind(K) if and only if its syntactic pg-
pair belongs to the least closed pseudovariety of pg-pairs containing the syntactic
pg-pairs of the languages in K.

The proof of Theorem 3.7 is based on Propositions 3.8 and 3.9 below. Ap-
plications are considered in the next section.

Proposition 3.8 Let K be a class of recognizable tree languages such that
Lind(K) admits relativization and let (S,A) and (T,B) be pg-pairs such that
every language recognizable by (S,A) or (T,B) belongs to Lind(K). Then every
language recognizable by a block product of (S,A) and (T,B) also belongs to
Lind(K).

Proof. Let k ≥ 0, (U,Σ) = (S,A) ⊓⊔k (T,B), and ϕ: (ΣM,Σ) → (U,Σ) be the
morphism induced by the identity map of Σ. Let L be a tree language recognized
by a morphism ϕ′: (Σ′M,Σ′) → (U,Σ). Since ϕ is onto and (Σ′M,Σ′) is free,
there exists a morphism ψ: (Σ′M,Σ′) → (ΣM,Σ) such that ϕ′ = ϕ ◦ ψ. In

particular, L = ϕ′−1
(ϕ′(L)) = ψ−1(ϕ−1(ϕ′(L))). In view of Theorem 2.17, it

suffices to show that every language recognized by ϕ lies in Lind(K). This in
turn reduces to showing that ϕ−1(F, g) ∈ Lind(K) for each (F, g) ∈ U .

We use the information obtained in Fact 3.2 on the computation of ϕ(t).
As in that statement, we let α:AM → S and β:BM → T be the natural
morphisms, we let π: ΣM → BM be the morphism induced by the second
coordinate projection from Σ to B, and we let τ = β ◦ π: ΣM → T . For each
σ ∈ Σ, we let ϕ(σ) = (Fσ , bσ).

Let (F, g) ∈ Un. For each t ∈ ΣMn, we have ϕ(t) = (Qt, τ(t)), where

Qt ∈ S
In,k
n is described in Fact 3.2. We note that τ−1(g) is recognized by

(T,B), and hence is in Lind(K). We denote by χg a rank n Lind(K)-sentence
defining τ−1(g).

Recall (from Fact 3.2) that Qt(D) = α(t̄D) for all D ∈ Ik,n. For each s ∈ S,
the tree languageKs = α−1(s) is recognized by (S,A), and henceKs ∈ Lind(K).
It now suffices to show that, for each s ∈ Sn and D ∈ Ik,n, there exists a rank
n Lind(K)-sentence ψs,D defining the language

{t ∈ ΣMn | t̄D ∈ Ks}.

Indeed, since Ik,n is finite, it will follow that ϕ−1(F, g) is defined by the conjunc-
tion of χg and the ψs,D (D ∈ Ik,n and F (D) = s). We construct the sentence
ψs,D in the form ψs,D = QKs

z · 〈ψa〉a∈A (where ψa is a rank n Lind(K)-formula
on Σ depending on a and D). (The formula ψs,D is actually a Lind(Lind(K))-
formula but this is sufficient for our purpose in view of Theorem 2.15 (3).)
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Let a ∈ Am and D = (u, k1, v, k2) ∈ Ik,n. For each 0 ≤ i < j ≤ n + 1,

let v̄1 = ⊕iq=1vq, v̄2 = ⊕j−1
q=i+1vq and v̄3 = ⊕nq=jvq; and let p1, p2, p3 be the

ranks of v̄1, v̄2 and v̄3 respectively. For each such i, j, for m ≥ 0, σ ∈ Σm,
c ∈ Tk1+p1+1+p3+k2 , c1 ⊕ · · · ⊕ cm ∈ Tm,p2 , we let

ψ′ = Pσ(z) ∧ lefti(z) ∧ rightj(z) ∧ χc[6> z] ∧
∧

ℓ∈[m]

χcℓ
[≥ xℓ]

and we let ψa(z) be the (finite) disjunction of the ψ′(z) when

Fσ(u · (k1 ⊕ c · (v̄1 ⊕ 1⊕ v̄3) ⊕ k2), k1 + p1, (c1 ⊕ · · · ⊕ cm) · v̄2, p3 + k2) = a.

It is elementary to verify that (t, z 7→ x) |= ψa if and only if node x is labeled a
in t̄D. Thus t satisfies ψs,D if and only if t̄D ∈ Ks, if and only if Q(t) = α(t̄D) ∈
α(Ks) = {s}, which concludes the proof. ⊓⊔

Proposition 3.9 Let Y be a set of first order variables and let y 6∈ Y . Let
〈ϕδ〉δ∈∆ be a family of rank k Lind-formulas over Σ, with free variables in
Y ∪ {y}, deterministic with respect to y, let K ⊆ ∆Mk be a tree language and
let ϕ = QKy · 〈ϕδ〉δ∈∆.

Let (S,A) be a pg-pair recognizing K, and let (T,B) be a pg-pair recognizing
simultaneously the languages Lϕδ

⊆ ΣY ∪{y}Mk (δ ∈ ∆). Then the language Lϕ
(a subset of ΣYMk) is recognized by (S,A) ⊓⊔k (T,B).

Proof. Let κ: (∆M,∆) → (S,A) be an onto morphism recognizing K, and let
τ : (ΣY ∪{y}M,ΣY ∪{y}) → (T,B) be an onto morphism recognizing each of the
Lϕδ

(δ ∈ ∆).
We observe the following: if t ∈ ΣY ∪{y}Mk is a (Y ∪ {y})-structure and y

occurs in the label of a rank n node, then there exists a unique δ ∈ ∆n such that
τ(t) ∈ τ(Lϕδ

). Indeed, the determinism of 〈ϕδ〉δ with respect to y shows that t
lies in exactly one of the Lϕδ

(δ ∈ ∆n): by hypothesis, τ−1
(
τ(Lϕε

)
)

= Lϕε
for

each ε, so τ(t) ∈ τ(Lϕε
) and ε ∈ ∆n implies ε = δ.

We consider the block product of pg-pairs (S,A)⊓⊔k (T,B). For each σ ∈ Σn
and Z ⊆ Y (so that (σ, Z) ∈ (ΣY )n), we let γ(σ, Z) = (Fσ,Z , τ(σ, Z)), where
Fσ,Z is defined as follows. Let (u, k1, v, k2) ∈ Ik,n. If u·(k1⊕τ(σ, Z∪{y})·v⊕k2)
is the τ -image of some (Y ∪ {y})-structure, then we let Fσ,Z(u, k1, v, k2) = κ(δ)
where δ ∈ ∆n is uniquely determined by the property τ(u ·(k1⊕(σ, Z∪{y}) ·v⊕
k2)) ∈ τ(Lϕδ

). Otherwise, we choose Fσ,Z(u, k1, v, k2) arbitrarily in An. Note
that γ(σ, Z) lies in the generator set of the pg-pair (S,A) ⊓⊔k (T,B).

Let now t ∈ ΣYMk and letD = (1, 0,k, 0) ∈ Ik,k. Then γ(t) = (Q, τ(t)), and
Q(D) = α(t̄D), where α:AM → S is the natural morphism and t̄D is described
in Fact 3.2. In particular, let x ∈ NV(t) be a rank n node, labeled by (σ, Z) in
t and let t factor as t = f · (r1 ⊕ (σ, Z) · h ⊕ r3) where f , r1 and r3 are such
that (σ, Z) · h is the subtree of t rooted at node x. The label of x in t̄D is equal
to Fσ,Z(τ(f), r1, τ(h), r2), for the computation of which we need to consider the
tree τ(f · (r1 ⊕ (σ, Z ∪ {y}) · h ⊕ r3)), that is, τ(t′), where t′ is equal to t with
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the label of x changed to (σ, Z ∪ {y}). Note that t′ is a (Y ∪ {y})-structure, so
x is labeled by κ(δ) (δ ∈ ∆n) in t̄D if and only if τ(t′) ∈ Lϕδ

.
Going back to the definition of the interpretation of Lindström quantifiers,

this shows that t ∈ Lϕ if and only if t̄D ∈ K. As a result, Lϕ = γ−1(P ) where
P consists of the pairs (F, f) such that F (1, 0,k, 0) ∈ α(K), and hence Lϕ is
recognized by (S,A) ⊓⊔k (T,B). ⊓⊔

We are now ready to complete the proof of Theorem 3.7.

Proof of Theorem 3.7. Let K be the class of syntactic pg-pairs of the ele-
ments of K, let V be the pseudovariety of pg-pairs generated by K, and let V̂

be the least closed pseudovariety containing V. We first show that if L is a
tree language with syntactic pg-pair (S,A) ∈ V̂, then L ∈ Lind(K). In view of
Proposition 1.7, (S,A) can be obtained from elements of K by a succession of
operations consisting of taking either a sub-pg-pair, a quotient, a direct product
or a block product. We let ♯(S,A) be the least number of such operations, and
we proceed by induction on ♯(S,A).

If ♯(S,A) = 0, then (S,A) ∈ K, that is, (S,A) is the range of the syntactic
morphism ϕ: (ΣM,Σ) → (S,A) of a language K ⊆ ΣMk in K. We want to show
that every language recognized by (S,A) is in Lind(K). As in the first lines of
the proof of Proposition 3.8, this reduces to showing that for each s ∈ S, we
have ϕ−1(s) ∈ Lind(K). Now we deduce from Remark 1.10 that

ϕ−1(s) =
⋂(

(u, k1, k2)
−1K

)
v−1 \

⋃(
(u, k1, k2)

−1K
)
v−1,

where the intersection runs over all n-ary contexts (u, k1, v, k2) over ΣMk such
that

(
(u, k1, k2)

−1K
)
v−1 meets ϕ−1(s), and the union over the n-ary contexts

that do not. Moreover, by Remark 1.10 again, this union and this intersection
are finite. It follows from Theorem 2.17 that ϕ−1(s), and hence any language
recognized by (S,A) lies in Lind(K).

We now suppose that ♯(S,A) > 0. If (S,A) is a sub-pg-pair or a quotient of

a pg-pair (T,B) ∈ V̂ with ♯(T,B) < ♯(S,A), Proposition 1.3 establishes that L
is also recognized by (T,B), so every such language is in Lind(K) by induction
hypothesis. If (S,A) is the direct product of pg-pairs (T,B) and (T ′, B′) with
lesser ♯-values, then by a standard argument, every language recognized by
(S,A) is a finite union of intersections of the form L∩L′, where L is recognized
by (T,B) and L′ by (T ′, B′). In particular, such a language is in Lind(K) by
Theorem 2.17. If on the other hand, (S,A) divides a block product of pg-pairs
with lesser ♯-values, the inductive step follows directly from Proposition 3.8.

This concludes the proof that every tree language recognized by a pg-pair in
V̂ is in Lind(K). We now turn to the converse, namely showing that any tree

language defined by a Lind(K)-sentence has its syntactic pg-pair in V̂.
This is implied by the following, more precise statement: if ϕ is a rank k

Lind(K)-formula with free variables in a finite set Y , then Lϕ is recognized

by a morphism α: (ΣYM,ΣY ) → (S,A) such that Im∅(α) ∈ V̂, where Im∅(α)
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denotes the sub-pg-pair of (S,A) generated by α(Σ) (recall that Σ is identified
with the subset Σ × {∅} of ΣY ).

We prove this statement by structural induction on ϕ. If ϕ is an atomic
formula and α is the syntactic morphism of Lϕ, then Im∅(α) is trivial by

Example 2.14, and hence lies in V̂. If ϕ = ϕ1 ∨ ϕ2, then by induction hy-
pothesis, there exist morphisms αi: (ΣYM,ΣY ) → (Si, Ai) recognizing Lϕi

with

Im∅(αi) ∈ V̂, i = 1, 2. It is immediate that Lϕ is recognizable by the target
tupling α = (α1, α2): (ΣYM,ΣY ) → ((S1, A1) × (S2, A2)), and that Im∅(α) is

a sub-pg-pair of the direct product Im∅(α1) × Im∅(α2). Since V̂ is a pseu-

dovariety, it follows that Im∅(α) is in V̂. The case where ϕ is of the form
ϕ = ¬ϕ1, is also easily treated: any morphism recognizing Lϕ1

also recognizes
its complement, namely Lϕ.

Finally, suppose that ϕ is of the form ϕ = QKy · 〈ϕδ〉δ∈∆, where K ⊆ ∆Mk

is recognized by some (S,A) ∈ K. Without loss of generality, we may assume
that y 6∈ Y . By induction, each Lϕδ

(δ ∈ ∆) is recognized by a morphism

βδ such that Im∅(βδ) ∈ V̂. Taking the target tupling of the βδ, we construct
a morphism β: (ΣY ∪{y}M,ΣY ∪{y}) → (T ′, B′) recognizing each Lϕδ

and such

that Im∅(β) ∈ V̂ (since Im∅(β) is a sub-pg-pair of the direct product of the
Im∅(βδ)). By Proposition 3.9 (and its proof), we find that Lϕ is recognized
by a morphism γ: (ΣYM,ΣY ) → (S,A) ⊓⊔k (T ′, B′), where the composition
π ◦ γ: (ΣYM,ΣY ) → (T ′, B′) agrees with β (here π is the second component
projection). In particular, Im∅(π ◦ γ) is contained in Im∅(β). Thus Im∅(γ)

is a sub-pg-pair of (S,A) ⊓⊔
(T ′,B′)
k Im∅(β), and hence Im∅(γ) ∈ V̂ by Proposi-

tion 3.5. ⊓⊔

3.4 Applications

The first result follows directly from Theorem 3.7 and Proposition 3.6.

Theorem 3.10 Let K be a class of recognizable tree languages such that each
quotient of a language of K is in Lind(K) and such that Lind(K) admits rela-
tivization. Let V be the least pseudovariety of pg-pairs containing the syntactic
pg-pairs of elements of K and let V̂ be the least closed pseudovariety containing
V. The following holds.

• Lind(K) is a literal variety of recognizable tree languages, associated with

the pseudovariety V̂ in the Eilenberg correspondence (Theorem 1.11).

• If K is the class of languages recognized by a class L of preclones, then
Lind(K) is a variety of recognizable tree languages. Moreover, if W is

the pseudovariety of preclones generated by L and Ŵ is the least closed

pseudovariety of preclones containing W, then Ŵ is the pseudovariety of
preclones associated with Lind(K).
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Proof. Theorem 3.7 shows that Lind(K) consists of recognizable languages and
Theorem 2.17 then shows that it is a literal variety. Let X be the pseudovariety
of pg-pairs associated with Lind(K) by Theorem 1.11. Then X and V̂ contain
the same syntactic pg-pairs by Theorem 3.7, and Proposition 1.8 shows that
this implies X = V̂. This concludes the proof of the first statement.

We now suppose that K is the class of tree languages recognized by the
preclones in a class L. By definition, V = 〈pgp(L)〉 and Proposition 1.9 shows
that V is full and

V = pgp(〈precl(V)〉) = pgp(〈L〉) = pgp(W).

Proposition 3.6 then shows that V̂ is full and V̂ = pgp(Ŵ). Thus Lind(K) is a
variety of tree languages (Corollary 1.12) and the corresponding pseudovariety

of preclones is precl(V̂) = Ŵ. ⊓⊔

The following statement is an important consequence of Theorem 3.10, which
motivated this work.

Corollary 3.11 Lind(K∃) (that is, the class of FO-definable tree languages) is
a variety of tree languages and the corresponding variety of preclones is the least
pseudovariety containing T∃ and closed under block product.

Proof. Note that, by Example 2.13, Lind(K∃) is the class of FO-definable tree
languages. Recall that K∃ consists of the language Kk(∃) ⊆ ∆Mk, where ∆ is
a ranked Boolean alphabet.

Now let V∃ be the variety of tree languages corresponding to the pseudova-
riety 〈T∃〉 generated by T∃. According to Example 1.13, a language L ⊆ ΣMk

is in V∃ if and only if it is a Boolean combination of languages of the form
Σ′Mk, Σ′ ⊆ Σ. Now the complement of Σ′Mk in ΣMk is the language of trees
that contain at least a letter outside Σ′: therefore this complement is the in-
verse image of Kk(∃) in the literal morphism from ΣM to ∆M that maps Σ′

to {0n | n ≥ 0} and Σ \ Σ′ to {1n | n ≥ 0}. In view of the closure properties
of Lind(K∃) (Theorem 2.17), it follows that K∃ ⊆ V∃ ⊆ Lind(K∃) and hence
Lind(V∃) = Lind(K∃) by Theorem 2.15.

By definition, V∃ is a variety and as such, it is closed under taking quotients.
The corresponding logic Lind(V∃) is equivalent to Lind(K∃) (since Lind(V∃) =
Lind(K∃)) and hence it admits relativization by Corollary 2.19. Thus we can
apply Theorem 3.10 to conclude the proof. ⊓⊔

A similar reasoning, using both T∃ and the preclones Tp (see Section 1.2 and
Examples 1.4, 2.10, 2.13 and Corollary 2.19), yields the following result.

Corollary 3.12 The class of (FO + MOD)-definable tree languages is a variety
of tree languages and the corresponding variety of preclones is the least pseu-
dovariety containing T∃ and the Tp (p ≥ 2) and closed under block product.
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Conclusion

We reduced the characterization of the expressive power of certain naturally de-
fined logics on trees, a chief example of which is given by first-order sentences,
to an algebraic problem. This algebraic problem is set in a new algebraic frame-
work, that of preclones, which the authors introduced in [15] precisely for the
purpose of discussing tree languages. It is worth stating again that the notion
of algebraic recognizability resulting from this new framework coincides with
the usual one: we simply gave ourselves a richer algebraic set-up to classify
recognizable tree languages.

Our result does not yield (yet?) a decidability result for, say, first-order
definable tree languages, but we can now look for a solution of this problem
based on the methods of algebra. In this process, it will probably be necessary
to develop the structure theory of preclones, to get more precise results on the
block product operation.

A positive aspect of our approach is its generality: it is not restricted to the
characterization of logics based on the use of Lindström quantifiers, nor indeed
to the characterization of logics. Our key algebraic tool is the block product: this
product was introduced by Rhodes and Tilson [25] for monoids, to investigate
the lattice of pseudovarieties of monoids and its application to the theory of
formal languages (of finite words), and we adapted its definition for preclones.
The use of wreath products instead of block products (the wreath product can
be seen as a one-sided restriction of the block product) can yield algebraic
characterizations for other natural classes of recognizable tree languages, see
[11].

Our approach also raises a number of questions. At a technical level first:
it was shown in [25] that for monoids, the block product can be expressed in
terms of a double semidirect product, a two-sided generalization of the semidi-
rect product. It might be convenient to have such a notion for preclones as well,
and to derive analogues of the wreath product principle and the block product
principle (general descriptions of the languages recognized by a wreath product
or a block product). This might yield, as in the finite word case, the charac-
terization of the recognizing power of the block product of two varieties, the
characterization of logical hierarchies within FO, etc.

At a more general level, we observe that in the word language case, the
decidability of first-order definability does not stem from the analogue of our
main result, namely the fact that a language is FO-definable if and only if its
syntactic monoid is in the least pseudovariety containing {0, 1} and closed un-
der block product. It follows rather from the characterization of that class of
monoids as the aperiodic monoids, see the theorems of McNaughton and Papert
on the equivalence of FO-definability and star-freeness, and of Schützenberger
on the equivalence between star-freeness and aperiodicity. This characterization
makes use in an essential way of the notion of star-freeness and of the struc-
ture theory of finite monoids. The question is therefore whether we can find
a useful analogue of star-freeness for tree languages. There were attempts in

41



this direction ([16, 24, 23]) that established that the more natural notions of
star-freeness for trees do not coincide with FO-definability. Are we missing on
an important concept? Taking the question from a different angle, can we di-
rectly develop the relevant fragment of a structure theory of finitary preclones,
to prove decidability of FO-definability?

Another, more general remark is the following. We are convinced that the
algebraic concept of preclones is well suited for the study and the classification
of recognizable languages of finite ranked trees. However, we are conscious that
beyond its qualities (the first of which is to allow results such as those proved in
this paper), our algebraic framework is cumbersome, and perhaps intimidating.
We argued in [15] that several known results on the characterization of particular
classes of tree languages can be expressed in a natural way in the language of
preclones, — but there might be an equivalent, yet lighter algebraic set-up.

This remark is related with another question. Other algebraic frameworks
are currently investigated in the literature to deal with languages of related
structures. For instance, Bojańczyk and Walukiewicz recently introduced the
promising and elegant notion of forest algebras [5] to discuss languages of un-
ranked, unordered trees, with which they also achieved an algebraic character-
ization of certain logically defined tree languages. Of course, forest algebras
are geared towards a different sort of objects, since we are dealing with ranked
ordered trees, but it is tempting to wonder whether this algebraic approach and
ours could be unified.

Possibly as a longer term project, one should consider the following. From
the point of view of applications (in the field of verification, the investigation
of distributed computation models, of game theory, etc), being able to handle
languages of infinite (ranked ordered) trees is important. Discussing languages
of infinite words as well as languages of finite words, was a topic of interest
from the very beginnings of automata theory (Büchi), automata models were
proposed quite early on, but the development of an algebraic model to handle
them (namely the notion of ω-semigroups) was very slow in coming, and was
matured only in the late 1980s (through work of Arnold, Perrin, Pin, Wilke,
etc, see [18]). Can an analogous extension be developed for our preclones? One
key technical tool in dealing with recognizable languages of infinite words is
Ramsey’s theorem, and the authors are unfortunately not aware of a relevant
analogue of this theorem for trees.
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