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Nonlinear modeling and estimation of force in a piezoelectric
cantilever

Micky Rakotondrabe, Yassine Haddab and Philippe Lutz

Abstract—This paper deals with the estimation of
force in a piezoelectric cantilever. The nonlinearities,
i.e. hysteresis and creep, are taken into account. A
nonlinear model relating the force, the voltage and the
resultant deflection is first developped. The proposed
estimator has been experimented and compared with
the classical linear estimator. The results confirm the
interest of the proposed method in term of accuracy.

Index Terms—Modeling, estimation, force, nonlin-
ear, piezoelectric cantilever.

I. Introduction

In micromanipulation, a high positioning accuracy is
required. In addition, phenomena neglected in macro-
manipulation becomes paramount when the sizes of the
manipulated parts are very small. These phenomena,
called scale effects, are mainly the adhesion forces [1].
In order to achieve successfully a micromanipulation
task, the design of the micromanipulators and the mi-
crorobots must takes into account the characteristics of
the microworld: high accuracy and adhesion forces. For
that, instead of using joints, one uses active materials as
microactuators. Because of their good resolution, good
accuracy and high speed, piezoelectric materials still stay
loyal systems for microactuators. One of the applications
of piezoelectric materials is the microgripper (Fig. 1)
[2][3]. Here, the piezoelectric microgripper is made up
of two piezoelectric cantilevers.
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Fig. 1. Two piezoelectric cantilevers used as a microgripper.

In order to avoid the destruction of the parts dur-
ing a micromanipulation task, in particular biological
or optical parts, it is crucial to take into account the

Laboratoire d’Automatique de Besançon
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handling force. However, having force sensors adapted for
microgrippers is very difficult because of the necessary
accuracy and sizes. Then, instead of using sensors, one
of the possibilities is the use of a force estimator. In [4],
a linear force estimator has been proposed. It is based on
a linear dynamic model between the applied voltage, the
applied force and the resultant deflexion on a piezoelec-
tric cantilever. However, when the volatge becomes large,
typically higher than 15% of the maximal field strength
[5], the linear relation between the deflection and the
voltage is not applicable anymore and hysteresis and
creep phenomena arise. This paper deals with a modeling
and a force estimator in a piezoelectric cantilever taking
into account the nonlinearities.

In the second section, the relation between the applied
voltage and the resultant deflection is developped. The
relation between the applied force and the corresponding
deflection is developped in the third section. The com-
plete model, i.e. the nonlinear model relating the voltage,
the force and the deflection, is given in section five. The
last section presents the nonlinear force estimator and
the experiments.

II. Modeling of the voltage-deflection
transfer

When applying an electrical excitation U to a piezo-
electric cantilever or a mechanical excitation F at its tip
(Fig. 2), the classical working relation is [6]:

δ = (dp.U + sp.F ) .D(s) (1)

where δ is the obtained deflection, dp and sp are re-
spectively a piezoelectric constant and an elastic constant
associated to the whole cantilever. The dynamic part is
represented by D(s), with s the Laplace variable.
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Fig. 2. Bending of a piezoelectric cantilever.



When the applied voltage U becomes large, hysteresis
and creep effect arise (Fig. 3). The creep is defined as a
drift of the deflection after the transient part (Fig. 3-
b). In this section, we describe the relation between
the deflection and the voltage taking into account these
nonlinearities. For that, the force is considered to be null.
Let the expression δ = dp.U be replaced by δ = Γ(.),
where Γ(.) is an operator incorporating the hysteresis
and the creep. The notation ’(.)’ means that the operator
depends on the present and on the past of the voltage.
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Fig. 3. a: hysteresis phenomenon. b: creep phenomenon.

For all the experiments, we use a piezoelectric uni-
morph cantilever made up of a PZT layer (Lead Zirconate
Titanate) and a metallic layer (Copper). Its sizes are
15mm × 2mm × 0.3mm (length, width and total thick-
ness) (Fig. 4).
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Fig. 4. Photography of the piezoelectric cantilever.

A. Systemic scheme
First, let us study the hysteresis. Using a harmonic

analysis, it is easy to show that the hysteresis shape of a
piezoelectric cantilever depends on the applied frequency.
Such an hysteresis is called dynamical hysteresis (or rate-
dependent hysteresis) [7]. However, our previous work [8]
has shown that for piezoelectric cantilevers, the dynam-
ical hysteresis Hd(.) is equivalent to a statical hysteresis

Hi(.) in serie with a linear dynamical part D(s) (Fig. 5).
A statical hysteresis (or rate-independant hysteresis) has
a constant shape whatever the frequency is.
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Fig. 5. The dynamical hysteresis Hd(.) is equivalent to a statical
hysteresis Hi(.) in serie with a dynamical part D(s) [8].

Thus:

Hd(.) = Hi(.) ·D(s) (2)

According to this equation, the hysteresis only affects
the statical gain of the voltage-deflection transfer.

Now, let us apply a step voltage to a piezoelectric
cantilever. The creep phenomenon happens just after
the transient part (Fig. 6-a). It can be considered as an
additional behavior happening when the steady-state is
reached. However, the response time of the transient part
is very small in comparison with the response time of the
creep: less than 80ms for the former and more than 2min
for the latter. So, for the simplification, we assume that
the creep starts in the same time than the transient part
(Fig. 6-b).
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Fig. 6. a: the creep begins just after the transient part. b: the
duration of the transient part can be neglected.

Let Cr(s) represent the model of the creep phenom-
enon. From the precedent remarks, we can deduct the
systemic scheme relating the voltage and the deflection
(Fig. 7). The corresponding formulation is as follow:



δ = Cr(s).U + Hi(.).D(s) (3)
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Fig. 7. Relation between the deflection and the voltage.

Now, let us determine the hysteresis model Hi(.), the
dynamical part D(s) and the creep model Cr(s).

B. Model of the statical hysteresis Hi(.)

The hysteresis of a piezoelectric cantilever have been
subjected to various models. The one which offers a
simplicity in term of mathematical computing is based
on the Bouc-Wen model [9][10]. It is a set of nonlinear
differential equations. For piezoelectric cantilever, the
model is given by the following set of equations [11][12]:

δ = dp · U − z (4)

ż = Abw · U̇ −Bbw ·
∣∣∣U̇ ∣∣∣ · z − Γbw · U̇ · |z| (5)

where dp is the previous piezoelectric constant and
z is an internal state (restoring force) introducing the
hysteresis. The coefficient Abw controls the amplitude
of the restoring force while the coefficients Bbw and
Γbw control the shape of the hysteresis. The parameters
identification is performed using a low frequency sine
voltage in order to ensure a working domain where the
model is statical. We have:

dp = 1.0773× 10 - 6m/V

Abw = 6.064810× 10 - 7m/V

Bbw = 0.00833V −1

Γbw = 0.00833V −1

(6)

C. Model of the dynamic part D(s)

The dynamic model D(s) can be identified by using
the transient part of one step response (Fig. 8). This is
acceptable because the hysteresis only affects the statical
part while the creep happens after the transient part. A
second order model is assumed to be sufficient [4][12].
Using the ARMAX method, we obtain:

D(s) =
- 4.814× 10−3 · s2 + 919 · s + 2× 107

s2 + 459 · s + 2× 107 (7)
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Fig. 8. Step response of the piezoelectric cantilever.

D. Model of the creep Cr(s)
The creep can be considered as the result of a dy-

namical linear system [13]. In general, a first order linear
system can largely model it. To identify the model, we
again apply a step to the piezoelectric cantilever. After
applying the ARMAX-method, the obtained model is:

Cr(s) = 0.068 ·
(

225× 10 - 6 · s + 1
15.56 · s + 1

)
(8)

The Fig. 9 represents the step response of the real
system (creep part) and of the identified model Cr(s).
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Fig. 9. Simulated and measured deflection.

III. Modeling the force-deflection transfer

The previous section has given the nonlinear relation
between the voltage U and the resultant deflection δ. In
this section, we consider the relation between the applied
force F and the deflection.

In [14], it has been stated that the relation between the
deflection, the force and the voltage, when the electro-
mechanical transfer is nonlinear, is as follow:



δ = sp.F + Γ(U) (9)

However, it is a priori unkown if the elastic (force-
deflection) relation is linear or nonlinear. Thus, the two
first parts of this section is about the verification of the
presence or the absence of hysteresis and creep. For all
force-deflection characterizations and identifications, the
input voltage is null (U = 0) and the electrodes are short-
circuited in order to make the voltage null.

A. Hysteresis verification

This experiment consists in putting a weight at the
tip of the cantilever, removing it and putting it back
again. The principle of the experiment is presented in
the Fig. 10-a while the results in the Fig. 10-b. As shown,
the deflection always takes either 0µm or 51µm, each one
corresponding respectively to null mass and hung mass.
As there is no residual deflection, we confirm that there
is no mechanical hysteresis inside the working domain
([−50µm, 50µm]).
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Fig. 10. Hysteresis verification.

B. Creep verification

In this experiment, the mass is hung at the tip of
the cantilever during an extended period of time (up to
3min). As shown in the results (Fig. 11), the deflection
still stays constant after the transient part. We conclude
that there is no creep between the force and the deflec-
tion.

C. Statical characteristic

As there is no hysteresis, the statical gain (elastic
coefficient) sp of the piezoelectric cantilever is constant.
To identify it, a known mass m is hung at the tip of the
cantilever. We obtain:

sp =
δ

m · g
= 1.931µm/mN (10)

with g ≈ 10N/kg is the terrestrial acceleration.
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Fig. 11. Creep verification.

D. Dynamical characteristic

To identify the dynamical part, we use a canonical
force input. As a mechanical step is difficult to apply,
we choose a mechanical impulse by applying a shock
to the cantilever. The corresponding response is next
compared with the impulse response of D(s) expressed
by the equation (7). The results show that the transient
part of the force-deflection transfer is almost similar to
the transient part of the voltage-deflection transfer D(s)
(Fig. 12). Using a higher model order would give a better
correlation between the curves.
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Fig. 12. Comparison between the transient part of the force-
deflection transfer and the voltage-deflection transfer.

IV. Complete nonlinear model relating the
voltage, the force and the deflection

Combining the different precedent remarks, the com-
plete nonlinear model has the following form:

δ = sp.F.D(s) + Cr(s).U + Hi(.).D(s) (11)

Replacing the statical hysteresis operator Hi(.) by the
equations (4) and (5), we have the final model:




δ = (sp · F + dp · U − z) ·D(s) + U · Cr(s)

ż = Abw · U̇ −Bbw ·
∣∣∣U̇ ∣∣∣ · z − Γbw · U̇ · |z|

(12)

V. Estimation of the force

A. Equation of estimation

From the set of equations (12), we infer the force:


F =

1
sp

·
[
(δ − U · Cr(s)) ·D(s)−1 − dp · U + z

]

ż = Abw · U̇ −Bbw ·
∣∣∣U̇ ∣∣∣ · z − Γbw · U̇ · |z|

(13)

Where D(s)−1 must be causal. Without any loss of
generality, we suppose that we work in statical mode so
that D(s) = 1. In fact, the main origins of the imprecision
in the force estimation are the creep and the hysteresis.

Let
_

F be the estimated force. The set of equations for
the force estimation is finally:


_

F =
1
sp

· [δ − U · Cr(s)− dp · U + h]

ż = Abw · U̇ −Bbw ·
∣∣∣U̇ ∣∣∣ · z − Γbw · U̇ · |z|

(14)

The corresponding bloc-scheme is presented in the
Fig. 13.
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Fig. 13. Bloc-scheme of the force estimation.

B. Experiments

The proposed force estimator has been implemented
inside a LabView software in a Windows-XP environ-
ment. To measure the deflection, we use an optical sensor
(Keyence) with 10nm resolution and 40nm accuracy.
The setup principle is presented in the Fig. 14. The
experiments procedure is as follow:

• the force, to be estimated, applied at the tip of the
cantilever and the voltage are initially null,

• at t = 3s, we apply a voltage U = −30V ,
• at t = 13s, a force is applied. Without loss of

generality, we choose F = 20mN which corresponds
to the manipulation force of most applications.
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Fig. 14. Principle of the experiments.

In order to evaluate the advantages of the proposed
estimator, it has been compared with the linear estimator
proposed in [4] and based on the equation (1).

The voltage is presented in the Fig. 15-a while the
estimated force in the Fig. 15-b.

When the step voltage is applyed (t = 3s), a high pick
can be observed with the nonlinear estimator. This is due
to the derivation U̇ inside the equations. Between t = 3s
and t = 13s where the real force F = 0mN , because of
the hysteresis in the deflection, the linear estimator gives
an offset about 1.5mN . In addition, it presents a drift due
to the creep. On the other hand, the nonlinear estimator
minimizes these effects. When the real force F = 20mN
(t ≥ 13s), the linear estimator gives an accuracy about
1.4mN while the nonlinear estimator better than 0.5mN .
From these results, we deduce that the relative accuracy
is about 0.05mN/V for the linear estimator and about
0.017mN/V for the nonlinear one.

VI. Conclusion

In micromanipulation, the recognition of the handling
force is necessary with a view to avoid the destruction of
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Fig. 15. Experimental results of a force estimation.

the manipulated part. The accuracies of the correspond-
ing forces are milli- or submillinewton. However, the limit
of the existing technology is not yet able to process
sensors with such accuracies and with sizes appropriate
to the sizes of the microsystems. Hence, the development
of force estimators has a great interest. In piezoelectric
cantilevers, the classical linear force estimator has its
limits when the working voltages become large. Nonlin-
earities, i.e. the hysteresis and the creep, must be taken
into account. We proposed a nonlinear force estimator
for piezoelectric cantilevers in this paper. To perform
that, a complete model of the system has been devel-
opped. Experiments of force estimation were performed
and compared with the results that a linear estimator
would give. Their comparison has pointed substantial
accuracies given by the proposed method.
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