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Probing the tails of the ground state energy distribution

for the directed polymer in a random medium of dimension d = 1, 2, 3

via a Monte-Carlo procedure in the disorder

Cécile Monthus and Thomas Garel
Service de Physique Théorique, CEA/DSM/SPhT

Unité de recherche associée au CNRS
91191 Gif-sur-Yvette cedex, France

In order to probe with high precision the tails of the ground-state energy distribution of disordered
spin systems, Körner, Katzgraber and Hartmann [1] have recently proposed an importance-sampling
Monte-Carlo Markov chain in the disorder. In this paper, we combine their Monte-Carlo procedure
in the disorder with exact transfer matrix calculations in each sample to measure the negative
tail of ground state energy distribution Pd(E0) for the directed polymer in a random medium of
dimension d = 1, 2, 3. In d = 1, we check the validity of the algorithm by a direct comparison
with the exact result, namely the Tracy-Widom distribution. In dimensions d = 2 and d = 3, we
measure the negative tail up to ten standard deviations, which correspond to probabilities of order
Pd(E0) ∼ 10−22. Our results are in agreement with Zhang’s argument, stating that the negative tail

exponent η(d) of the asymptotic behavior lnPd(E0) ∼ −|E0|
η(d) as E0 → −∞ is directly related to

the fluctuation exponent θ(d) ( which governs the fluctuations ∆E0(L) ∼ Lθ(d) of the ground state
energy E0 for polymers of length L) via the simple formula η(d) = 1/(1 − θ(d)). Along the paper,
we comment on the similarities and differences with spin-glasses.

I. INTRODUCTION

Since the ground-state energy E0 of a disordered sample is the minimal energy among the energies of all possible
configurations, the study of its distribution belongs to the field of extreme value statistics. Whereas the case of
independent random variables is well classified in three universality classes [2], the problem for the correlated energies
within a disordered sample remains open and has been the subject of many recent studies. The interest lies both
(i) in the scaling behavior of the average Eav

0 (L) and the standard deviation ∆E0(L) with the size L
(ii) in the asymptotic distribution P (x) of the rescaled variable x = (E0 − Eav

0 (L))/∆E0(L) in the limit L → ∞

PL(E0) ≃
L→∞

1

∆E0(L)
P

(

x =
E0 − Eav

0 (L)

∆E0(L)

)

(1)

In this introduction, we first recall what is known in the field of spin-glasses, before focusing on the directed polymer
model.

A. Ground state energy distribution in spin-glasses

For spin-glasses in dimension d, let us consider samples containing N = Ld, where where L denotes the linear size,
and follow the notations of Ref. [3]. The ‘ shift exponent’ θs governs the correction to extensivity of the averaged
value

Eav
0 (L) ∼ Lde0 + Lθse1 + ... = Ne0 +Nθs/de1 + ... (2)

Within the droplet theory [4, 5], this shift exponent θs coincides with the domain wall exponent θDW and with the
droplet exponent θ of low energy excitations. The ‘ fluctuation exponent’ θf governs the growth of the standard
deviation

∆E0(L) ∼ Lθf e2 = Nθf/de2 (3)

In any finite dimension d, it has been proven that the fluctuation exponent is θf = d/2 [6]. Accordingly, the rescaled
distribution P (x) of Eq. (1) was numerically found to be Gaussian in d = 2 and d = 3 [3], suggesting some Central
Limit theorem. On the contrary, in mean-field spin-glasses, the width does not grows as N1/2 and the distribution
is not Gaussian. In the Random Energy Model [7], the width remains finite ∆E0(N) ∼ O(1) and the distribution is
the Gumbel distribution [8]. In the Sherrington-Kirpatrick model, the width grows as ∆E0(N) ∼ N1/4 according to
some theoretical arguments [3, 9] and numerics [3, 10], and the distribution is clearly asymmetric [1, 10]. Finally for
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the one dimensional disordered spin chain with power-law interactions that allows to interpolate between effectively
finite-dimensional and mean-field models, the transition between short-range and infinite-range behaviors corresponds
to the Gaussian-non Gaussian transition for the ground state energy [11].

B. Ground state energy for the directed polymer

The directed polymer model in 1 + d dimensions, is defined by the following recursion for the partition function

ZL+1(~r) =

2d
∑

j=1

e−βǫL(~r+~ej ,~r)ZL(~r + ~ej) (4)

The bond-energies ǫL(~r + ~ej, ~r) are random independent variables, drawn with the Gaussian distribution

ρ(ǫ) =
1√
2π

e−
ǫ2

2 (5)

This model has attracted a lot of attention for two main reasons : (i) it is directly related to non-equilibrium
properties of growth models [12] (ii) as a disordered system, it presents some similarities with the spin-glass physics
[4, 12, 13, 14, 15]. At low temperature, there exists a disorder dominated phase, where the order parameter is an
‘overlap’ [13, 15].
The probability distribution of the ground state energy E0 is expected to follows the scaling form of Eq. (1). In

contrast with spin-glasses where the shift exponent θs (Eq. 2) and the fluctuation exponent θf (Eq. 3) are different,
there is a single exponent θ(d) that governs both the correction to extensivity of the average Eav

0 (L) and the width
∆E0(L)

Eav
0 (L) ∼ Le0 + Lθ(d)e1 + ... (6)

∆E0(L) ∼ Lθ(d)e2 + ... (7)

This exponent also governs the statistics of low excitations within the droplet theory [4], as confirmed numerically
[16]. This exponent is exactly known in one-dimension [17, 18, 19, 20]

θ(d = 1) = 1/3 (8)

and has been numerically measured in dimensions d = 2, 3, 4, 5 [16, 22, 23, 24, 25]

θ(d = 2) ∼ 0.244 (9)

θ(d = 3) ∼ 0.186 (10)

For the mean-field version on the Cayley tree, the exponent vanishes θ(d = ∞) = 0 [13, 26], with a width of order
O(1) for the probability distribution, but with a non random O(lnL) correction to the extensive term e0L in the
averaged value [13].
The rescaled distribution Pd is exactly known in d = 1 and is related to Tracy-Widom distributions of the largest

eigenvalue of random matrices ensembles [19, 20, 21]. On the Cayley tree, the rescaled distribution was found to be
non universal and to depend on the disorder distribution [26].

C. Numerical measure of the ground state energy distribution

The numerical measure of the ground state energy distribution is usually done by a simple sampling procedure,
where the histogram of the energies of independent samples are collected. However recently, Körner Katzgraber and
Hartmann [1] have proposed an importance-sampling Monte-Carlo algorithm in the disorder, which allows to measure
much more precisely the tails of the distribution. In the case of the Sherrington-Kirkpatrick model of spin-glasses,
this procedure was used to measure the negative tail on systems of size N ≤ 128 [1] up to x ≥ −15 corresponding
to probabilities P (x) ≥ 10−18 (see Eq. 1), whereas the simple sampling procedure cannot go beyond x ≥ −5
corresponding to P (x) ≥ 10−4 [10].
For the directed polymer in dimensions d = 2 and d = 3, the rescaled distribution Pd has been numerically measured

via simple sampling in [27] with results in the region x ≥ −5. In this paper, we use the importance sampling algorithm
recently proposed in [1] to measure precisely the negative tail of the probability distribution up to x ≥ −10.
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The paper is organized as follows. In Section II, we recall Zhang’s argument [12] that relates the decay of the
rescaled distribution Pd to the fluctuation exponent θf . In Section III, we describe the Monte-Carlo procedure in the
disorder proposed in [1] and mention the specific choices for the application to the directed polymer model. In Section
IV, we show the validity of the procedure in d = 1 via the direct comparison with the exactly known distribution
(Tracy-Widom). Finally in Sections V and VI, we present our results for d = 2 and d = 3 respectively. We present
our conclusions in Section VII.

II. ZHANG’S ARGUMENT FOR THE NEGATIVE TAIL EXPONENT

A. Distribution of the free-energy in the low temperature phase

According to the droplet theory[4], the whole low temperature phase 0 < T < Tc is governed by a zero-temperature
fixed point. In particular, at T < Tc, the droplet exponent θ(d) governs the width ∆F (L, T ) and the correction to
extensivity of the average F av(L, T )

∆F (L, T ) ∼ Lθ(d)f2(T ) + ... (11)

F av(L, T ) ∼ Lf0(T ) + Lθ(d)f1(T ) + ... (12)

and the rescaled probability distribution of the free-energy coincides with the rescaled distribution Pd describing the
ground-state energy distribution (1)

Pd(F,L, T ) ≃
1

∆F (L, T )
Pd

(

x =
F − F av(L, T )

∆F (L, T )

)

(13)

as recently checked numerically using simple sampling [28].

B. Zhang’s argument for the directed polymer

In finite dimensions d > 1, the rescaled distribution Pd is not known but there exists a simple argument due to
Zhang [12] that allows to determine the exponent η of the negative tail of the free energy distribution

Pd(x → −∞) ∼ e−c|x|η(d)

(14)

If η(d) > 0, the moments of the partition function can be evaluated by the saddle-point method, with a saddle value
F ∗ lying in the negative tail (14)

Zn
L =

∫

dFPL(F,L)e
−nβF ∼

∫

dFe
−c
(

|F |

Lθ(d)

)η(d)

e−nβF ∼ eb(n)L
θ(d)η(d)
η(d)−1

(15)

Since for positive integer n, these moments of the partition function can be formulated in terms of the iteration of
some transfer matrix, they have to diverge exponentially in L with some Lyapunov exponent. As a consequence, the
exponent η(d) of the negative tail (14) is not a free parameter, but is fixed by the value of the fluctuation exponent

η(d) =
1

1− θ(d)
(16)

In dimension d = 1 where the droplet exponent is exactly known θ(d = 1) = 1/3 (Eq. 8), this yields the negative tail
exponent

η(d = 1) =
3

2
(17)

in agreement with the exact Tracy-Widom distributions [19, 20, 21]. In dimensions d = 2 and d = 3, the numerical
estimates of the droplet exponents (Eq. 10) yield the following predictions

η(d = 2) ∼ 1.32

η(d = 3) ∼ 1.23 (18)

These predictions have been tested numerically in [27] using simple sampling that do not allow to have data far in
the tails. In the following, we will use the importance sampling Monte-Carlo method in the disorder to probe the
negative tail more precisely.
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C. Zhang’s argument for spin-glasses

To the best of our knowledge, Zhang’s argument seems to be applied only in the context of directed polymers [12],
whereas it can be applied for other kinds of disordered systems since it is only based on scaling argument within a
saddle-point approximation in the large L limit (Eq. 15). It is thus interesting to describe now its implications in the
field of spin-glasses.
For spin-models in finite dimensions, the fluctuations of free energies over the samples scale instead as

[∆FL]samples ∼ Ld/2 (19)

at any temperature as proven in [6]. This scaling simply reflects the Central-Limit fluctuations of the Ld disorder
variables defining the sample. ( The directed polymer escapes from these normal fluctuations because it is a one-
dimensional path living in a 1+d disordered sample : each configuration of the polymer only sees L random variables
among the L1+d disorder variables that define the sample, and the polymer can ’choose’ the random variables it sees.)
Repeating Zhang argument in this case (19) yields for the negative tail exponent η(d) = 2. This is in agreement with

the recent numerical studies [3, 11] that find a Gaussian distribution in finite dimensions and in the one dimensional
Ising spin-glass with long range interactions in the non-mean-field regime.
On the contrary, for the Sherrington-Kirkpatrick model [1, 3, 10], the probability distribution of the ground state

is found to be asymmetric, and has been fitted with generalized Gumbel distribution [1, 10].
However, if one repeats Zhang argument for the SK model with the measured fluctuation exponent θf ∼ 0.235 [10]

for the width ∆E0(N) ∼ Nθf , one obtains the negative tail exponent

ηSK =
1

1− θf
∼ 1.3 (20)

If the value of the fluctuation exponent is exactly θf = 1/4 as suggested by some theoretical arguments [3, 9], the
negative tail exponent would be ηSK = 4/3.
This could explain why the fit with generalized Gumbel distributions whose negative tail is a simple exponential

e−m|x| with exponent η = 1 and coefficient m leads to increasing effective values of m when the range over which
the tail is measured grows : the fit with simple scaling data on x ≥ −6 leads to m ∼ 6 [10], whereas the importance
scaling data on x ≥ −15 leads to a completely different estimate m ∼ 11 [1].

III. DESCRIPTION OF THE IMPORTANCE-SAMPLING MONTE-CARLO ALGORITHM IN THE

DISORDER

In Ref. [1], a procedure based on an importance-sampling Monte-Carlo algorithm in the disorder was proposed to
probe with high precision the tails of the ground-state energy distribution of disordered systems, and was applied
for the Sherrington-Kirpatrick mean-field Ising spin-glass, where probabilities up to 10−18 could be measured. In
this Section, we summarize their method which can be divided in three steps. For each step we mention the specific
choices we have made to apply it to the directed polymer model.

A. Simple sampling

A disorder configuration will be denoted by D, and its ground state energy E(D). For the directed polymer, the
ground state energy can be computed via transfer matrix. A simple sampling numerical estimation Psimple(E) of the
ground state energy distribution P (E) consists in drawing ns independent disordered samples D1, ...Dns

, in computing
the corresponding ground state energies E(D1), ..., E(Dns

), and in constructing the histogram

Psimple(E) =
1

ns

ns
∑

i=1

δ (E − E(Di)) (21)

This histogram is very useful to measure the distribution P (E) where P (E) ≫ 1
ns
, but gives no information on the

tails where P (E) < 1
ns
, since no events are found.

As an example, we show on Fig. 1 the results we have obtained recently via simple sampling for d = 1, 2, 3
respectively [16] : whereas the core of the distribution is well measured, the tails suffer from statistic fluctuations
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FIG. 1: (Color online) Logarithmic plot of the rescaled probability distribution Pd(x) (Eq. (1)) as measured via simple
sampling for (a) L = 12, 50, 200, 800 in d = 1 ; (b) L = 10, 40, 160 in d = 2; (c) L = 6, 18, 36 in d = 3

as soon as the probability becomes too small. Moreover, if one chooses to make the same CPU effort on all sizes,
the number of samples rapidly decay with the size L, so that the data for the tails are less and less precise as L
grows. Since one is interested into the asymptotic regime L → ∞, the correct measure of the tails quickly becomes
intractable within the simple sampling procedure.
This is why a correct measure of the tails requires the use of some importance sampling, as stressed in [1]. However,

the simple sampling study is the first necessary step within the present method, for three reasons :
(i) the simple sampling results are needed to construct the guiding function of the importance sampling measure[1]
as described below
(ii) the simple sampling results give accurate results for the average value Eav

0 (L) and the standard deviation ∆E0(L),
that do not have to be measured via importance sampling [1]. In particular, this allows to work on a finite box
[xmin, xmax] for the rescaled variable (1), and to choose freely the boundaries of the box, for instance xmax = −1. to
concentrate on the negative tail, as will be done below for the directed polymer.
(iii) finally, the simple sampling results allow to check the validity of the importance sampling measures on the core
of the distribution where the simple sampling results are sufficiently precise.

B. Construction of a guiding function G(E) from the simple sampling result Psimple(E)

−5 −3 −1 1 3
−10
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0
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ln P(x)

(a)
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−10
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0

x
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(b)
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−10

0
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ln P(x)
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FIG. 2: (Color online) Fits of the GOE Tracy-Widom distribution lnPGOE
TW (x) by generalized Gumbel distributions ln gm(x)

(Eq. 22) on various intervals : (a) fit on [-5,3.7] corresponding to lnP > −10 with m = 12.93 ; (b) fit on [-8,5] corresponding
to lnP > −20 with m = 14.71 (c) fit on [-10,6] corresponding to lnP > −30 with m = 15.92 ;

The simple sampling result Psimple(E) exists in the range in E where Psimple(E) > 1/ns, whereas the guiding
function G(E) needed for the importance sampling below has to be defined in the tails where Psimple(E) < 1/ns.
The guiding function G(E) should be in some sense the ‘best’ extrapolation of the data Psimple(E). The proposal of
[1] is to define G(E) as the best fit of Psimple(E) within the one parameter family of generalized Gumbel distribution
gm(x), which reads for the normalization conditions < x >= 0 and < x2 >= 1

gm(x) ≡ 1

β(m)

mm

Γ(m)

(

e
x−α(m)
β(m)

−e
x−α(m)
β(m)

)m

(22)
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where β(m) = 1
√

Γ′′(m)
Γ(m)

−
(

Γ′(m)
Γ(m)

)2
and α(m) = −β(m)

(

Γ′(m)
Γ(m) − ln m

)

. The usual Gumbel distribution corresponds

to m = 1, whereas the Gaussian can be formally recovered in the limit m → ∞. This choice was motivated by
the numerical finding that the rescaled probability distribution as measured via simple sampling could be fitted
extremely well by a generalized Gumbel distribution gm(x) of parameter m ∼ 6 [1, 10]. It turns out that many recent
studies in various contexts have found that asymmetric distributions could be extremely well fitted by generalized
Gumbel distributions with various non-integer values of m [29, 30, 31, 32]. This has motivated theoretical studies to
understand the origin of this type of distribution [33]. However as discussed in ref. [29], it is empirically known that
probability distribution functions (PDF) with the same first four moments approximately coincide over the range of
a few standard deviation which is precisely the range of numerical -or experimental- data. So generalized Gumbel
PDF’s, with arbitrary m, should not be considered more than a convenient one parameter fit. To demonstrate clearly
how misleading these fits can be, we show on Fig 2 how the Tracy-Widom GOE distribution PGOE

TW (which represents
the exact rescaled distribution for the directed polymer model in d = 1 [19, 20, 21]) can be fitted by generalized
Gumbel distributions on the three ranges P > 10−10, P > 10−20 and P > 10−30 : the best fit corresponds to
increasing values of the parameter m. For the first range P > 10−10, the found fit is ‘perfect’, whereas a slight
difference begin to appear in the negative tail as the range grows. Moreover, the Tracy-Widom distribution is known
to have the following asymptotic behavior

PGOE
TW (x) ≃

x→−∞
e−c1|x|

η1
with η1 =

3

2
(23)

whereas the generalized Gumbel distribution have for for anym an exponential tail with exponent η = 1 and coefficient
m

gm(x) ≃
x→−∞

e−m|x| (24)

This explains why the effective m of the best fit grows with the range. In conclusion, whenever the fit of the core of
the distribution leads to an effective m which grows with the range, as in the SK model where m ∼ 6 and m ∼ 11
were found depending on the range [1, 10], the PDF is probably not a generalized Gumbel distribution, but is likely
to have a negative tail exponent η > 1 (as already suggested around Eq. 20 using Zhang’s argument ). And if one
focuses on the negative tail, it is clear that the fit with a simple exponential (24) is very restrictive.
As a consequence, in the following where we focus on the negative tail x ≤ −1 for the directed polymer, we have

chosen not to work with generalized Gumbel distribution, but to construct a guiding function G(E) which fit the
simple sampling data and whose leading behavior involves the negative tail exponent ηd as obtained from Zhang
argument ( see Eqs 16, 17 and 18). In practice, we have found convenient to work in d = 2 and d = 3 on the range
x ∈ [−10,−1] with some guiding function Gd(x) of the form

lnGd(x) = a0 − a1|x|ηd + a2 ln |x| (25)

where the three parameters ai(d) were chosen to fit best the simple sampling data.

C. Importance sampling with the guiding function G(E)

The importance sampling Monte Carlo algorithm proposed in [1] is defined by the following Markov chain :
(1) From the current disorder configuration Di, construct a candidate D′ for the next disorder configuration Di+1

by replacing a subset of Di chosen at random with new values drawn with the original disorder distribution. For a
spin model of N spins, this subset can be for instance a single bond chosen at random, or all bonds connected to
a site chosen at random, so that the proposed change in the ground state energy is of order O(1) with respect to a
value of order E0(N) = Ne0 + ..., i.e. its relative order of magnitude is of order 1/N [1]. For the directed polymer
studied here, we have chosen for this subset the energies of a whole time-slice, i.e. all the disorder variables seen by
a given monomer. Then the proposed change in the ground state energy is of order O(1) with respect to a value of
order E0(N) = Ne0 + ... as in spin models.
(2) Calculate the new ground state energy E(D′) and compare it with the previous ground state energy E(Di)

using the guiding function G(E) : set Di+1 = D′ with probability

paccept (D′|Di) = min

[

G(E(Di))

G(E(D′))
, 1

]

(26)

and set Di+1 = Di otherwise.
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This Markov chain is expected to converge towards a stationary state where a disorder configuration D is visited
with probability ∝ 1/G(E(D)). The stationary probability to visit a disorder configuration with energy E is now
given by the ratio

Rstationary(E) =
P (E)

G(E)
(27)

If the guiding function G(E) were the exact P (E), this would corresponds to a flat-histogram sampling of P (E). If
G(E) is just a reasonable extrapolation of the simple sampling result Psimple(E), one expect to measure nevertheless
much better the tails of P (E).
(3) Measurements from the Monte-Carlo procedure : since successive configurations visited by a Monte-Carlo

algorithm are not independent, one usually keeps only decorrelated configurations for the numerical measure
Rimportance(E) of the theoretical stationary solution Rstationary(E). This means in practice that one should first
estimate some typical correlation time τ and use only every τth configuration

R
(τ)
importance(E) =

1

mI

mI
∑

j=1

δ (E − E(Di+jτ )) (28)

where the number mI of measured is simply the ratio mI = T
τ of the total number T of Monte-Carlo iterations by

the correlation time τ . For instance in [1], the time τ was chosen to be τ = 4τe where τe is the time where the
autocorrelation of the ground state energy

C(t) =
< EiEi+t > − < Ei >< Ei+t >

< E2
i > − < Ei >2

(29)

decays to 1/e. For the SK model with 16 ≤ N ≤ 128 spins, the autocorrelation time was found to be of order of
400-700 MC steps [1].

For the directed polymer, we actually find that the histograms R
(τ)
importance(E) obtained for τ = 1 and τ ≫ τe

coincide, except that the histograms with large τ contain more noise since they are built out of less events. From a
theoretical point of view, one can justify this finding as follows : if the total Monte-Carlo time T is much bigger than
the typical time tcross to cross the interval [Emin, Emax], then the average with respect to the stationary measure
should be equivalent to the time average of the Monte-Carlo procedure where all times are kept

∫

dEf(E)Pstationary(E) =
1

T

T
∑

t=1

f(E(t)) for T ≫ tcross (30)

Indeed for a free random walk in a finite box, it seems clear that one obtains the flat histogram via measuring the
positions at all times, instead of throwing away most of the times to have independence between two consecutive
measures. The quality of the convergence towards the stationary distribution then depends on the number

ncross ∼
T

tcross
(31)

of crossings of the interval [Emin, Emax] during the total number T of the Monte-Carlo, which should be large enough
ncross ≫ 1.

D. Summary of the procedure used for the directed polymer

In the following sections, we will present the results for the ground state energy distribution obtained by combining
(i) the Monte-Carlo procedure in the disorder discussed above
(ii) the transfer matrix calculation of the ground state energy in each sample with a free boundary condition for the
end polymer.
We have chosen to focus on the negative tail, by working on the same finite box x ∈ [xmin, xmax] in terms of the

rescaled variable x (Eq. 1) for all sizes L. We now present our results for d = 1, 2, 3 respectively.
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IV. MEASURE OF THE GROUND STATE ENERGY DISTRIBUTION IN d = 1

In d = 1, the exact rescaled distribution of the ground state energy is exactly known and corresponds to the
Tracy-Widom GOE distribution PGOE

TW [19, 20, 21] if the last monomer is free, the case we consider here. (It would
be the Tracy-Widom GUE distribution PGUE

TW if the last monomer were fixed at the origin). We use this exact result
to check the validity of the Monte-Carlo procedure in the disorder and to describe its main properties.

A. Numerical details

In dimension d = 1, we have chosen to work on the interval [xmin, xmax] = [−11.,−1.] for the rescaled variable
x (Eq. 1), i.e. to probe the negative tail up to probabilities of order P1(x) > 10−32. We now give the sizes L we
have studied, together with the standart deviation ∆E0(L) measured by simple sampling and used in the rescaling
of Eq. 1 (the averaged values Eav

0 (L) can be found in our previous work [16]), the corresponding number TL of
Monte-Carlo iterations, the acceptation rate τacc(L) of Monte-Carlo moves, and the number ncross(L) of crossings of
the box [xmin, xmax] = [−11.,−1.].

L = 50, 100, 200, 400, 800, 1600 (32)

∆E0(L) ∼ 3.12, 3.98, 5.04, 6.36, 8.04, 10.11 (33)

TL = 33.108, 85.107, 225.106, 57.106, 7.106, 4.106 (34)

τacc(L) ∼ 0.54, 0.64, 0.72, 0.76, 0.82, 0.86 (35)

ncross(L) ∼ 98.104, 224.103, 45.103, 8.103, 670, 230 (36)

As L grows, the proposed Monte-Carlo moves ∆x in the rescaled variable x (Eq. 1) are smaller : this is why both
the acceptation rate τacc(L) and the crossing time tcross(L) (Eq. 31) also grows with L. The final result is that the
number of crossing ncross(L) decays with L, and since it should remain large enough to obtain a good measure (Eq.
31), this number fixes the maximal size that can be correctly studied.

B. Properties of the Monte-Carlo process in the disorder

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1e+08

2e+08

3e+08

∆x

(a)

−0.5 −0.25 0 0.25 0.5
0

50000

1e+05

∆x

(b)

FIG. 3: (Color online) Monte-Carlo procedure to measure the negative tail on x ∈ [−11,−1] in d = 1 : histograms of the
proposed and accepted Monte-Carlo changes ∆x in the disorder (a) for L = 25 where the acceptation rate is τacc ∼ 0.425 (b)
for L = 1600 where the acceptation rate is τacc ∼ 0.86 .

We show on Fig. 3 the histograms of the proposed and accepted Monte-Carlo changes in the disorder, for L = 25
and for L = 1600 respectively. The proposed changes are biased towards ∆x > 0, because here, in the negative tail, a
Monte-Carlo step ∆x > 0 corresponds to a move where the probability P (x) is bigger. The histogram of the accepted
moves is on the contrary almost symmetric around ∆x = 0 in order to generate a non-biased random walk. For
∆x < 0, the two histograms almost coincide, i.e. a move ∆x < 0 is almost always accepted. As the size L grows, the
proposed moves in the relative variable x are smaller, and as a consequence, the acceptation rate grows with L.
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−11
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FIG. 4: (Color online) Monte-Carlo procedure to measure the negative tail on x ∈ [−11,−1] in d = 1 : process x(t) during the
first 1 ≤ t ≤ 10000 Monte-Carlo iterations (a) for L = 50 (b) for L = 200

The resulting process x(t) are shown on Fig. 4 for the first 1 ≤ t ≤ 10000 Monte Carlo iterations, for L = 50 and
L = 200 respectively. The time tcross needed to cross the interval [xmin, xmax] = [−11,−1] grows with L.

C. Convergence towards the exact Tracy-Widom distribution

−11 −6 −1
0.05

0.07

0.09

0.11

0.13

0.15

ρ

x

L
(x)

(a)

−15 −10 −5 0 5
−40

−30

−20

−10

0

ln P (x)
1

x

(b)

FIG. 5: (Color online) Monte-Carlo procedure to measure the negative tail on x ∈ [−11,−1] in d = 1 : (a) relative histogram
ρL(x) = PL(x)/P

GOE
TW (x) with respect to the exact guiding function : convergence towards the flat histogram as L grows

: L = 200 (dashed line), 400, 800, 1600 (thick line). (b) logarithmic plot of the negative tail of the probability distribution
P1(x), as compared to simple sampling result for L = 1600. The exact Tracy-Widom distribution is also shown (thin line) to
demonstrate the validity of the Monte-Carlo procedure.

On Fig. 5 (a), we show the relative histogram PL(x)/P
GOE
TW (x) of the measured PL(x) via the Monte Carlo procedure

as L grows with respect to the Tracy-Widom GOE distribution that represents the asymptotic exact result for L → ∞
: these relative histograms becomes flatter as L grows.
On Fig. 5 (b), we show for comparison :

(i) the simple sampling histogram for L = 1600
(ii) the importance sampling measure of the tail on x ∈ [−11,−1] for L = 1600
(iii) the exact Tracy-Widom GOE distribution.
Our conclusion is thus that the Monte-Carlo in the disorder is a very efficient method to probe accurately the tails,

since they allow to reproduce the exact result on the range x ∈ [−11,−1] for sizes up to L = 1600.
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D. Extraction of the negative tail exponent value

Let us now make some comments on the extraction of the negative tail exponent value. The exact Tracy-Widom
GOE distribution PGOE

TW (x) has for negative exponent η1 = 3/2. However, the following fits of this distribution
PGOE
TW (x) on the finite range x ∈ [−11,−1] give slightly larger values :

(i) the fit of
(

lnPGOE
TW (x)

)

by a− b(−x)η1 containing three parameters yields η1 ∼ 1.58

(ii) the fit of
(

lnPGOE
TW (x)

)

by a− b(−x)η1 + c ln(−x) containing four parameters yields η1 ∼ 1.54.
This shows that the extracted value of the negative tail exponent from data on the finite range x ∈ [−11,−1] is not
very precise if there is not information on the subleading terms.
Similarly in higher d below, we expect that the Monte-Carlo procedure gives very accurate data on the range where

the tail is measured, but that the extraction of the negative tail exponent value suffers from some error directly related
to the range that is probed.

V. RESULTS FOR THE GROUND STATE ENERGY DISTRIBUTION IN d = 2

A. Numerical details

In dimension d = 2, we have chosen to work on the interval [xmin, xmax] = [−10.,−1.] for the rescaled variable x
(Eq. 1), i.e. to probe the negative tail up to probabilities of order P1(x) > 10−23. We now give the sizes L we have
studied, together with the standart deviation ∆E0(L) measured by simple sampling and used in the rescaling of Eq.
1 (the averaged values Eav

0 (L) can be found in our previous work [16]), the corresponding number TL of Monte-Carlo
iterations, the acceptation rate τacc(L) of Monte-Carlo moves

L = 20, 40, 80, 120, 160 (37)

∆E0(L) ∼ 1.58, 1.85, 2.18, 2.40, 2.54 (38)

TL = 125.107, 27.107, 47.106, 34.105, 64.104, 21.104 (39)

τacc(L) ∼ 0.24, 0.28, 0.38, 0.47, 0.5, 0.54 (40)

B. Monte-Carlo results
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x

ln P (x)
2
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FIG. 6: (Color online) Monte-Carlo procedure to measure the negative tail on x ∈ [−10,−1] in d = 2 for L = 120 : (a)
process x(t) during the first 1 ≤ t ≤ 10000 Monte-Carlo iterations (b) logarithmic plot of the negative tail of the probability
distribution P2(x), as compared to simple sampling result.

On Fig. 6 (a), we show the process x(t) during the first 10 000 Monte-Carlo iterations for L = 120. On Fig. 6 (b),
we compare the importance sampling measure of the negative tail with respect to the simple sampling evaluation.
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C. Negative tail exponent ηd=2

From the point of view of the convergence in L towards a fixed distribution, we find that the negative tail measured
for the two bigger sizes L = 120 and L = 160 nearly coincide on the whole interval [xmin, xmax] = [−10.,−1.] under
study ( whereas our results for the smaller sizes do not).
As explained previously in Section IVD for the case d = 1, the error on the estimated value of the negative tail

exponent is due to the range [xmin, xmax] = [−10.,−1.] over which the fits are made. As in Section IVD, we have
tried to fit our result for (lnP2(x)) as measured for the sizes L = 120 and L = 160 by the two following fits, with or
without power-law corrections with respect to the leading exponential term :
(i) the first fit a− b(−x)η2 containing three parameters yields η2 ∼ 1.4
(ii) the second fit by a− b(−x)η1 + c ln(−x) containing four parameters yields η2 ∼ 1.3.

Our conclusion is thus that the extracted value of the negative tail exponent from our data on the finite range
x ∈ [−10,−1] is not very precise in the absence of information on the subleading terms, but is compatible with the
value ηZ2 = 1.32 predicted by Zhang’s argument (see Eqs. 16 and 18).

VI. RESULTS FOR THE GROUND STATE ENERGY DISTRIBUTION IN d = 3

A. Numerical details

In dimension d = 3, we have chosen to work on the interval [xmin, xmax] = [−10.,−1.] for the rescaled variable
x (Eq. 1), i.e. to probe the negative tail up to probabilities of order P1(x) > 10−21. We now give the sizes L we
have studied, together with the standart deviation ∆E0(L) measured by simple sampling and used in the rescaling
of Eq. 1 (the averaged values Eav

0 (L) can be found in our previous work [16]), the corresponding number TL of
Monte-Carlo iterations, the acceptation rate τacc(L) of Monte-Carlo moves, and the number ncross(L) of crossings of
the box [xmin, xmax] = [−10.,−1.].

L = 12, 24, 36, 48, 60, 72 (41)

∆E0(L) ∼ 1.15, 1.30, 1.39, 1.46, 1.52, 1.55 (42)

TL = 64.106, 43.105, 75.104, 95.104, 34.104, 182.103 (43)

τacc(L) ∼ 0.24, 0.27, 0.32, 0.34, 0.36, 0.37 (44)

ncross(L) ∼ 20000, 2400, 300, 522, 166, 94 (45)

B. Monte-Carlo results
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FIG. 7: (Color online) Monte-Carlo procedure to measure the negative tail on x ∈ [−10,−1] in d = 3 for L = 72 : (a) process
x(t) during the first 1 ≤ t ≤ 10000 Monte-Carlo iterations (b) logarithmic plot of the negative tail of the probability distribution
P3(x), as compared to simple sampling result.
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On Fig. 7 (a), we show the process x(t) during the first 10 000 Monte-Carlo iterations for L = 72. On Fig. 7 (b),
we compare the importance sampling measure of the negative tail with respect to the simple sampling evaluation.

C. Negative tail exponent ηd=3

As in Section IVD, we have tried to fit our result for (lnP3(x)) by the two following fits, with or without power-law
corrections with respect to the leading exponential term :
(i) the first fit a− b(−x)η3 containing three parameters yields η3 ∼ 1.25
(ii) the second fit by a− b(−x)η1 + c ln(−x) containing four parameters yields η3 ∼ 1.15.

Our conclusion is that the extracted value of the negative tail exponent from our data on the finite range x ∈
[−10,−1] is not very precise in the absence of information on the subleading terms, but is compatible with the value
ηZ3 = 1.23 predicted by Zhang’s argument (see Eqs. 16 and 18).

VII. CONCLUSION

In this paper, we have adapted the importance-sampling method in the disorder proposed in [1] for spin-glasses, to
measure with high precision the negative tail of the ground-state energy distribution Pd(E0) for the directed polymer
in a random medium of dimension d = 1, 2, 3. In d = 1, we have checked the validity of the procedure by a direct
comparison with the exact result, namely the Tracy-Widom GOE distribution. In dimensions d = 2 and d = 3, we
have measured the negative tail up to P ∼ 10−22. Our results are in agreement with Zhang’s argument, stating that
the negative tail exponent η(d) of the asymptotic behavior lnP (E0) ∼ −|E0|η(d) as E0 → −∞ is directly related to
the fluctuation exponent θ(d) via the simple formula η(d) = 1/(1− θ(d)).
Along the paper, we have also discussed the similarities and differences with spin-glasses. In particular, we have

argued that the application of Zhang’s argument for the Sherrington-Kirpatrick model of spin-glasses points towards
an asymptotic distribution which is not a generalized Gumbel distribution gm(x), in contrast with the current way
of fitting the numerical data [1, 10], but involves instead some non-trivial negative tail exponent ηSK > 1 directly
related to the fluctuation exponent (Eq. 20). The fact that the fitting value m of generalized Gumbel distribution
gm(x) depends on the probed range in the variable x (m ∼ 6 via simple sampling [10] and m ∼ 11 via importance
sampling [1]) also points towards ηSK > 1. More generally, we have explained in details how fits with generalized
Gumbel distributions of the core of the distribution could be very misleading if one is interested on the tails, since all
Gumbel distributions correspond to the exponent η = 1, which is very restrictive.
Finally, our conclusion concerning the algorithm is that the importance sampling Monte-Carlo Markov chain in

the disorder introduced in [1] is a very efficient method to probe precisely the tails of probability distributions over
the samples. In the field of disordered systems, this Monte Carlo procedure will be very useful to study probability
distributions of other observables, beside the ground state energy.
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