N
N

N

HAL

open science

Aspect and XML-oriented Semantic Framework
Generator: SmartTools

Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Joél Fillon,
Christophe Held, Didier Parigot, Claude Pasquier

» To cite this version:

Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Joél Fillon, et al.. Aspect and XML-
oriented Semantic Framework Generator: SmartTools.

Science, 2002, 65 (3), pp.97-116. 10.1016/S1571-0661(04)80429-8 . hal-00172776

HAL Id: hal-00172776
https://hal.science/hal-00172776

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Electronic Notes in Theoretical Computer

https://hal.science/hal-00172776
https://hal.archives-ouvertes.fr

Aspect and XML-oriented Semantic Framework Generator:
SmartTools’

Isabelle Attali, Carine Courbis, Pascal
Degenne, Alexandre Fau, Joel Fillon,
Christophe Held, Didier Parigot
INRIA Sophia-Antipolis - Oasis project
2004, route des Lucioles - BP 93
06902 Sophia-Antipolis cedex, France

First.Last@sophia.inria.fr

ABSTRACT

SmartTools is a semantic framework generator, based on
XML and object technologies. Thanks to a process of au-
tomatic generation from specifications, SmartTools makes
it possible to quickly develop environments dedicated to
domain-specific and programming languages. Some of these
specifications (XML, DTD, Schemas, XSLT) are issued from
the W3C which is an important source of varied emerging
domain-specific languages. SmartTools uses object tech-
nologies such as visitor patterns and aspect-oriented pro-
gramming. It provides code generation adapted to the us-
age of those technologies to support the development of se-
mantic analyses. In this way, we obtain at minimal cost
the design and implementation of a modular development
platform which is open, interactive, uniform, and most im-
portant prone to evolution.

Keywords

software generation, development environment, semantic anal-

yses, aspect-oriented programming, visitor pattern, program
transformation, XML, XSLT.

1. INTRODUCTION

With new technologies related to data processing for Inter-
net applications, the concept of language is more and more
used to structure information. Therefore, the World Wide
Web Consortium (W3C) has introduced new formalisms such
as DTDs (Data Type Definitions) or Schemas that popu-
larise the concept of abstract syntax, the basic component
to manipulate any program. Additionally, the software qual-
ity and the development speed are of major concern in this

*Supported by Schlumberger CP8, Microsoft Research and
INRIA
Draft September 21, 2001at 15:11

Claude Pasquier
Schlumberger - Advanced Research
68, Route de Versailles
78430 Louveciennes, France

Claude.Pasquier@sophia.inria.fr

particular application area. That justifies the creation of
a software generator strongly based on XML (eXtensible
Markup Language) and object technologies, named Smart-
Tools.

The main goal of this software generator is to help designers
of domain-specific or programming languages. No more than
one specification (e.g. a DTD) is needed to quickly produce
a dedicated development environment. Both, the target en-
vironment and the SmartTools framework must fulfil the
following requirements:

e easy to use with a minimal knowledge and based on
well-known techniques or standard specifications,

e modular and flexible implementation based on re-usable
and generic components and a distributed software ar-
chitecture,

e user-friendly thanks to a Graphic User Interface (GUI)
that offers multi-views and an interactive environment,

e open thanks to a standard data exchange format used
to communicate with its components and other exter-
nal applications.

To ease the development of semantic analyses, several tech-
niques have been introduced into SmartTools. First, the so-
lution of "visitor pattern" [10] was largely automated with
the generation of Java source code from abstract syntax defi-
nitions. Second, an aspect-oriented programming was added
to obtain more re-usable semantic components. This new
functionality does not require any program transformation.
Thus, the addition of aspects on a visitor can be completely
dynamic (without recompilation). Section 2 presents these
semantic tools.

To meet with the architecture requirements, the modular
software architecture of SmartTools was built around a cen-
tral software component: the message controller. Smart-
Tools is made of several independent software components
that communicate with each other by exchanging asynchronous
messages. The XML technologies are used to encode these
messages. In section 3, the modular architecture of Smart-
Tools is described.

Concerning the interactive requirements, SmartTools has an
extensible and modular GUI with a set of pretty-printers or
viewers strongly based on XML technologies. For data inte-
gration and to be open to new application fields, the XML
format is used for all data exchange between components
and as an description language for new applications. These
interactive functionalities are presented in section 4.

About the re-usability requirement, SmartTools uses and
provides several advanced software technologies stemming
from various research works [6, 4, 13, 18, 14, 25] but homo-
geneously gathered together. In fact, web applications and
the emergence of XML technologies are assets for a large
diffusion and new application fields for this software gener-
ator.

2. SEMANTICTOOLS

Internally, SmartTools uses extended and strongly typed ab-
stract syntax (AST) definitions for all its tools. The impor-
tant notions of these definitions are: ’operators’ and ’types’.
The operators are gathered into named sets: types. The sons
of operators are typed and named. Figure 1 shows the def-
inition of our toy language: tiny'. For example, the affect
operator belongs to the Statement type and has two sons:
the first one is of type Var and the second one of type Exp.

Formalismof tiny is
Root is %op;

Top = progran{Decl s declarationList, Statenents statements);
Decls = decl s(Decl [] declarationList);
Decl = intDecl (Var variable), bool eanDecl (Var variable);
Statenents = statenents(Statenment[] statenentList);
Statenent = affect(Var variable, Exp value),
whi | e(Condi ti onExp cond, Statenents statenents),
i f(ConditionExp cond, Statenents statenmentsThen,
Statenents statenmentsEl se);
ConditionOp = equal (ArithneticExp left, ArithmeticExp right),
not Equal (ArithneticExp left, ArithneticExp right);
Condi tionExp = % onditionQp, true(), false(), var;
ArithmeticOp = plus(ArithmeticExp left, ArithneticExp right),

minus(ArithmeticExp left, ArithneticExp right),
nul t (ArithmeticExp left, ArithmeticExp right),
div(ArithneticExp left, ArithmeticExp right);
ArithneticExp = %ArithneticOp, int as STRING var as STRING
Exp = %ArithmeticOp, %ConditionQp, var, int, true, false;
Var = var;
End

Figure 1: the AST definition of tiny

From the AST definition, SmartTools can automatically gen-
erate a structured editor specific to the language. To facil-
itate the editing (to copy-paste nodes), it is useful to make
the type inclusion possible.

We want, as much as possible, to use existing software com-
ponents stemming from the W3C standards, such as the
DOM (Document Object Model) API to handle XML docu-
ments. But, this latter API does not consider strongly typed
structures. To manipulate strongly typed trees, we have ex-
tended it with the notions of fixed node, listed node and
typed node (c.f. Figure 2). In this way, the tree consistency
is guaranteed by the Java type-checker at its construction.
For each operator, SmartTools automatically generates one
class and the associated interface (Figure 3 shows the inter-
face generated for the affect operator), and one interface by
type. These classes contain the getters and setters needed
to handle the sons (e.g. getValueNode, setValueNode).

lused all along this article

S INYCR N

[org.w3c.dom.Element |

DOM

or g.apache.xer ces.dom.ElementI mpl |

[fr.smarttools.tree.UntypedNode]
JAN

tiny.ast.AffectNodel mpl

+getVariableNode(): tiny.ast.VarType
+setVariableNode(tree:tiny.ast.Var Type):void|
+getVaueNode():tiny.ast. ExpType
+setValueNode(tree:tiny.ast. ExpType):void

Figure 2: Class hierarchy for the affect operator

package tiny.ast;

public interface AffectNode extends Statement Type {
public tiny.ast.Var Type get Vari abl eNode();
public void setVariabl eNode(tiny. ast.Var Type tree);
public tiny.ast.ExpType getVal ueNode();
public void setVal ueNode(tiny.ast.ExpType tree);

}

Figure 3: Generated affect operator interface: Af-

fectNode

It is important that the language designers can define their
languages (abstract syntax) by using standard formats (DTD
or Schema) proposed by the W3C and not necessarily with
the internal AST definition format of SmartTools. There-
fore, we have implemented conversion tools with some re-
strictions. For example, the notion of type does not explic-
itly exist within the DTD format i.e. the elements (seen
as operators) do not belong to named sets. As this notion
was essential, we had to define a type inference mechanism
to convert DTDs. Additionnaly, the right part of element
definitions should only contain parameter entity references
to indicate the types of the sons (e.g. the line 6 of Figure
4 shows a DTD-equivalent definition of the affect operator).
Unfortunately, few DTDs are written in this way. To be able
to accept as many as possible DTDs, a more complex type
analysis (type inference) was carried out.

<IENTITY % Top ' program >

<IENTITY % Statenents ’'statenents’ >

<IENTITY % Staterment 'if|while|affect’>

<! ELEMENT program ((%ecls;), (%statenents;))>
<! ELEMENT statenents (%tatenent;)*>

<! ELEMENT affect ((%ar;), (%Exp;))>

Figure 4: Part of the generated DTD of tiny

Moreover, we have implemented generators that produce a
parser and the associated pretty-printer to manipulate pro-
grams with a more readable format than the XML one. For
this purpose, the designer has to provide extra attributes
information on each element (or operator) defintion (see at-
tributes in Figure 5). This possibility is useful for designers
that do not have expertise on how to write a parser and
makes sense only for small and unambiguous languages.

af fect (Var variable, Exp value)
with attributes {fixed String S1 = "="

fixed String styleSl = "kw',
fixed String AO =
fixed String slerAO— "kw'}

Figure 5: Extra data of the affect operator useful
for generating a parser and the associated pretty-
printer

Figure 6 shows all the specifications that can be generated
from an AST specification:

e the API of the language (i.e. one class and the associ-
ated interface by operator, and one interface by type),

e the basic visitors useful for creating semantic analyses,

e a parser for the language (if extra syntactic sugars are
provided as operator attributes in the language defini-
tion),

e a pretty printer to unparse ASTs according to these
extra syntactic sugars,

e 3 minimal resource file that contains useful information
for the structured editor and the parser,

e the DTD or the Schema.

APl of Tiny
Af f ect Node. j ava “ny dtd P
Af f ect Nodel npl . j ava ar ser
St at enent Type. j ava ti ny XSd Gener at or @
Ti nyParser. j ava
TinyLexer.java
API Ti nyPar ser TokenTypes. j ava
Gener at or Ti nyPar ser TokenTypes. t xt
Pretty
i Printer [tiny. xpp]
ti ny. ast Gener at or
Abstract TinyVisitor.java
Traversal TinyVisitor.javal Resour ce
Gener at or
Vi sitor -
DD tiny.dtd
or Schema
CGener at or
TypeChecker . xpr o tiny. xsd

Abst ract TypeChecker Ti nyVisitor.java
Traver sal TypeChecker TinyVisitor.jav.

Figure 6: All the specifications generated from an

AST

For example, thanks to these tool generators, the tiny envi-
ronment (Figure 18) was automatically generated only from
one AST specification (cf Figure 1), one xprofile specifica-
tion (cf Figure 7) , and the type-checker visitor (XXX Java
lines).

Semantics

This sub-section presents ways to write analyses (e.g. a
type-checker, an evaluator or a compiler) on programs by
using the visitor design pattern. If the reader wants to have
more details and explanations on this well-known method-
ology, he can refer to [10, 24, 23]. For instance, we present
three extensions of the visitor pattern technique: v1 using

OO W

reflexivity mechanism with profiled visits and tree traversal
possibilities, v2 adding simple aspect-oriented programming,
v3 splitting the tree traversal (visit method calls) and the
semantic actions by using more complex aspects.

Reoexive visitors (v1)

To make the development of visitors based on the AST def-
initions easier, SmartTools automatically generates two vis-
itor classes: AbstractVisitor and TraversalVisitor. The ab-
stract visitor declares all the visit methods (one by opera-
tor). The Traversal Visitor inherits from the Abstract Visitor
and implements all the visit methods in order to perform an
in-depth tree traversal. This visitor can be extended and its
visit methods refined (overridden) to specify an analysis.

Thanks to the xprofile specification language of SmartTools,
it is possible to specify the visit signatures i.e. to generate
visits with different names, return types, and parameters.
The granularity of this personalization is at the (AST) type
level. Figure 7 presents the xprofile specification of a type-
checker for tiny. From this specification, the system au-
tomatically generates the two correctly-typed visitors (Ab-
stractVisitor and Traversal Visitor). Only useful visit meth-
ods have to be overridden to implement the type-checker (cf
Figure 8 for the affect operator). The advantage of using
profiled visits is to avoid casts and obtain more readable
visitor programs.

XProfile TypeChecker;
Formal i smtiny;
inport tiny.visitors. TinyEnv;

Profiles
bj ect
bj ect
Obj ect
Obj ect
Obj ect
String
String
String
String
String
String

check(%op, TinyEnv env);
check(%Decl s, TinyEnv env);
check(%ecl, TinyEnv env);

check(%8t at enents, TinyEnv env);
check(%8st at ement, TinyEnv env);
check(%Exp, TinyEnv env);
check(%ArithmeticQOp, TinyEnv env);
check(%Condi ti onOp, TinyEnv env);
check(%Arithmeti cExp, TinyEnv env);
check(%Condi ti onExp, TinyEnv env);
check(%/ar, TinyEnv env);

Strat egy TOPDOWN;

Figure 7: Visit signatures of a type-checker for tiny

public Object check(AffectNode node, TinyEnv env) throws VisitorException {
String varName = node. get Vari abl eNode() . get Val ue() ;
String typeLeft = env.get Type(var Name);

String typeRi ght = check(node. get Val ueNode(), env); //visit the val ue node
if (typeLeft == null)

errors.setError(node, "This variable " + varName + " was not declared");
else {

if (!typeRight.equals(Ti nyEnv ERROR) && (!typeLeft.equal s(typeRi ght)))
errors. set Error(node, "lnconpatible types " + varNane + " is a"
typeLeft.equal s(TinyEnv. INT)?"int":"bool") +" variable");

return null;

Figure 8: Affect visit of the type-checker

With the xprofile language, it is also possible to specify
the tree traversal (from the starting node to the destina-
tion node(s)) of a visitor. Thus, only the nodes on the path
are visited instead of all the nodes of the tree. It reduces the
visitor runtime on sizeable trees and above all the size of the
generated visitors. A dependence graph analysis on the AST
definition is performed to generate the corresponding ab-
stract and traversal visitors with the 'right’ visits according

to the given path. For example with the traversal specified
on Figure 9, only the visits of the while and affect operators
and the visits of the operators contained between the root
(TOP) and these operators (i.e program, statements and if
according to the AST definition of Figure 1) will be called.

Traversal Essai:
%op -> while, affect;

Figure 9: Traversal specification from the root
(TOP) to while and affect

In SmartTools, we use the Java reflexivity mechanism to
implement the visitor technique and not the classical solu-
tion of a specific method, usually denoted accept, defined on
each operator?. Indeed, the introduction of a visitor profile
prohibits from using this classical solution (accept method).
A generic method (named invokeVisit) is executed when any
visit method is called. The goal of this generic method is to
invoke the ’right’ visit method (with a strongly-typed node)
by using reflexivity.

The use of reflexivity is runtime-expensive. To accelerate
the invoke process, an indirection table is statically pro-
duced at compilation-time when the abstract visitor is gen-
erated. This table contains for each pait (operator, type)
the Java reference to the visit java.lang.reflect. Method ob-
ject to call. With this table, it is also possible to change the
visit method name and to have different arguments. This
solution is a simplification of the multi-method approach
that dynamically performs the search of the best method to
apply. We have compared these two approaches by using a
Java multi-method implementation [9]. The performances
are equivalent, but our approach is much easier to realize.

Visitors with Aspect (v2)

The reflexivity mechanism used to implement the visitor
pattern technique makes the execution of additional code
before or after the visit calls possible. In this way, a con-
cept of aspect-oriented programming [15, 17| specific for our
visitors can be added without modifying the source code,
unlike the first versions of AspectJ [3, 16]. An aspect can be
defined just by implementing the Aspect interface and then
recorded (see methods on Figure 10) on any visitor. For
example, if the aspect of Figure 11 is recorded on a visitor,
it will trace out all the called visits.

Visitorimpl

+vi si t (node: Node, parans: Obj ect): Object

#i nvokeVi si t (paranms: Cbject[]): Object

+addAspect (aspect: Aspect): void

+r enoveAspect (aspect : Aspect): void

+addAspect OnQper at or (op: Oper at or, aspect : Aspect): void

+r enoveAspect OnOper at or (op: Oper at or, aspect : Aspect): void
+addAspect OnType(t ype: Type, aspect : Aspect): void
+renoveAspect OnType(type: Type, aspect : Aspect): void

Figure 10: Visitor with aspect (v2) API

2SmartTools can also help designers to develop this kind of
efficient visitors. But, their codes are less readable (more
casts, no aspect, no tree traversal choice, etc) than the vl
or v2 visitors . Therefore, we do not describe them in this
article.

package fr.snarttool s. debug;
inmport fr.smarttools.tree.visitorpattern. Aspect;
import fr.smarttools.tree. Type;

public class TraceAspect inplenents Aspect {
public void before(Type t, Object[] paran) {
Systemout.println (“Start visit on " + paranf0].getC ass());

}
public void after(Type t, Object[] param {
Systemout.println ("End visit on " + paran{0].getd ass());

Figure 11: Aspect that traces out the visit methods

Several aspects can be connected on a visitor. They are
executed in sequence (according to the registration order).
This connection (as well as the disconnection) can be done
dynamically at runtime. The behavior of a visitor can thus
be modified dynamically by addition or withdrawal of these
aspects. For example, a graphical debug mode for the visi-
tors with a step-by-step execution was specified as an aspect
regardless of any visitor. To add these aspects on the v1 vis-
itors, the generic method (invokevisit) was extended.

Visitor with Tree Traversal and complex Aspects (v3)

With the concept of aspect-oriented programming, it is pos-
sible to split the tree traversal (visit method calls) and the
semantic processing (semantic actions). Let us suppose that
the visit code of the affect(Var, Exp) operator has this shape:

visit(AffectNode node ...) {
codeBef ore
visit of the first son
codeBet weenl_2
visit of the second son
codeAfter

One can observe that the semantic part (i.e all except the re-
cursive calls) is divided into N sons + 1 pieces of code. These
N-+1 pieces can be treated like aspects with new points of
anchoring i.e before, between and after the visit method
calls of the sons. We have defined a new visitor (named v3
visitor) that takes as arguments a tree traversal and one or
more semantic actions (i.e. in the form of aspects) as shown
on Figure 12. This visitor can call these aspects on these
new points of anchoring. Therefore, these aspects must have
for each operator, in addition to the traditional before and
after methods, the betweeni_i+1 methods (code to be exe-
cuted between the i*" and i+1*" sons). This new visitor can
connect one or more aspects described in the v2 visitors.
Figure 13 shows the type-checker semantics associated with
the affect operator using this new form of aspect. There is
no more recursive call unlike the v1 (cf Figure 8 line 4) or v2
visitors but it is necessary to use stacks (cf Figure 13 lines
5 and 6) to transmit the visit results of the sons.

The type-checker of tiny was extended with a initialization
check on variables (see Figure 14) only by composing the
two aspects (see Figure 15). The main interest of this pro-
gramming style is to make the extension of analyses possible
without modification only by adding new aspects. In this
way, analyses are modular and re-usable. However, these
analyses are more complex to program because of the split-
ting of the semantics and the tree traversal (compare Figures
13 and 8). Currently, we study how to share data between

©OND O WN

Semanticl
+before(): Obj ect
TreeTraversal +after(): Object
+bet weenN M) Cbj ect
traver se(node: Node) : voi d
+backward(): voi d before, after, betwegh /(L
+forvard(): void
+i gnore(): voi d
#junpTo(): void kS eemme e
clyrent, visit, before, after SemanticN
Fafter(): Obj ect
+before(): Object
ignore, backward, forward, jumh[o [tbet weenN_M): Obj ect

ignore, backward, forward, jumpTo

VisitorAspect

Fcurrent (). void
+visit(): Object
+i nvokeVisit():
+backvar d(): voi d
+forward(): void
+i gnore(): void
+j unpTo(): voi d
+bet ween(): Cbj ect
+before(): voi d
+after(): void

+addAspect OnType()

Figure 12: v3 visitor

public void before(AffectNode node, Cbject param {}
public void betweenl_2(AffectNode node, Object paran) {}
public void after(AffectNode node, bject param) {
String varNane = node. get Vari abl eNode() . get Val ue() ;
String typeRight = (String)typeStack.pop();
String typeLeft = (String)typeStack.pop();

same if code than Figure 8 (lines 6 to 12)

Figure 13: Type-checker of the affect operator

public void before(AffectNode node, Object paran) {unplugVariabl eCheck

public void visitl(AffectNode node, Object paran) {unplugVariabl eCheck

public void after(AffectNode node, Cbject param) {
env.setlnitialized(node. getVariabl eNode(). get Val ue());

}

true;}
fal se;

Figure 14: Initialization check for the affect operator
(v3 visitor)

TypeChecker Vi sitor typeCheck = new TypeCheckerVisitor();
TinyEnv env = typeCheck. get Env();
I ni t Var Checker Vi si tor initVarCheck = new I nitVarChecker Visitor(env);
new Vi si tor(new Left ToRi ght TreeTraversal (),
new Semantics[]{typeCheck, initVarCheck}).start(tree, null);

Figure 15: Composition of two aspects

semantics, problems linked to the common tree traversal
(e.g. what to do if one semantics wants to loop on a node
and not the others?), ; we also study mechanisms to ease
the programming of these aspects by hiding the stack man-
agement.

For the v3 visitor (see Figure 12), there is also a generic
method that manages the next node to visit according to the
current position, the tree traversal and some special traver-
sal instructions. This method also copes with the search of
the next method to call and the invocation of the v2 aspects
on these visits.

3. ARCHITECTURE

SmartTools is composed of independent software modules
that communicate with each other by exchanging asynchro-
nous messages. These messages are typed and can be con-
sidered as events. Each module registers itself on a central
software component, the message controller (c.f. Figure 16),

to listen to some specific types of messages. It can react to
them by possibly posting new messages. The controller is
responsible for managing the flow of messages and deliver-
ing them to their specific destination(s). The components of
SmartTools are thus event-driven. This section presents the
different modules of SmartTools and describes the behavior
of the message controller.

Message control | er

[evment 1] e 1 o
Docunent 2 . View2 / Docl
Graphi ¢
Interface
(Vi ew Docl G Viewl / Doc2

| |

| Base |

| Docunent nanager | | Par ser manager |

Figure 16: Architecture of SmartTools

The main software modules of SmartTools are the following:

e Each document contains an AST. In Figure 16, Doc-
ument 1 and Document 2 contain the ASTs on which
the user is working. Document GI is a special one. It
contains the AST describing the structure of the GUI
(e.g. the AST of the Figure 23).

e The user interface module manages the views, the
menus and the toolbar of SmartTools.

e Each view is an independent module showing the con-
tent of a document in a format depending on the type
of the view. For example, some views display the tree
in colored-syntax text format, others as a graphical
representation.

e The parser manager chooses the right parser to use
for a file. Then, it runs the parser and builds the
corresponding AST. The document manager uses
this tree to build a document module and connects it
to the message controller.

e The base is a module that contains definitions of re-
sources used in SmartTools: colors, styles, fonts, menus,
toolbars, actions, etc.

Of course, new types of modules can register themselves on
the message controller. That is one of the ways to extend
the features of SmartTools for a specific purpose or to embed
SmartTools in another environment.

When a module needs to communicate with another mod-
ule, it creates a message and posts it on the message con-
troller. Then, the message controller broadcasts this mes-
sage to the appropriate listeners (modules) that will react to
it. Thus, modules that want to receive special types of mes-
sages from the message controller have to become listeners
of these types of messages. They have to implement the Ms-
gListener interface and provide a receive(xxxMsg) method

for every type of supported message. Then, they have to
register on the message controller (see code just below) and
obtain their unique module identifier from it.

i dDoc= nsgControl er.register(this);

XxxMsg in the receive method stands for the class of the
expected message. Messages are typed objects i.e there is
one specific class for every type of message. Their common
behavior is held in one abstract class that is the super class
of all the messages. New kinds of messages can be created by
extending that common class or any other existing message
class.

In the following example, the module expects to receive Se-
lectMsg, CloseDocMsg and CutMsg messages sent to the
module identified by idDoc and coming from an anonymous
sender.

nmsgCont rol er. addMsgLi st ener (" Sel ect Msg", i dDoc, Msg. ANONYMOUS) ;
msgCont rol er. addMsgLi st ener (" C oseDocMsg", idDoc, Msg. ANONYMOUS) ;
nsgCont rol er. addMsgLi st ener (" Cut Msg", idDoc, Msg. ANONYMOUS) ;

Documents (i.e ASTs) and views are independently regis-
tered on the message controller. A document does not need
to know how many views are related to it. When a modifi-
cation is made, the document posts a modification message.
The type of that message indicates which modification has
been done and the message body contains the path of the
modified node (from the root of the tree). For some kind of
messages, the change is also specified. Such messages will
be sent only to the views that are registered to receive these
modification messages coming from this document. Other
modules will not receive them.

The message controller has a built-in message filtering capa-
bility. It is possible to write filters that watch or influence
the flow of input and output messages on the controller.
That filtering capability has been successfully used for sev-
eral specific needs: benchmarking, debugging, undoing user
actions, and automatically translating messages in another
format (SOAP messages).

The architecture of SmartTools is designed to ease connec-
tion with other development environments or tools. Some
experiments [26] are in progress to provide several features
of SmartTools as web services and to use them from a client
tool running on a .NET platform.

4. GRAPHICAL USER INTERFACE

SmartTools has a GUI (c.f Figure 18) based on the docu-
ment/views concept i.e. the user interface is the framework
in which views on a document (AST) can be displayed and
manipulated. For each open document, it is possible to build
and display one or more views showing different aspects of
the tree according to different formats. XML technologies
are extensively used to build this GUI et the different views.

A view on a document is built by applying a transforma-
tion to its AST. We have experimented with two differ-
ent approaches to perform tree transformations and build
graphical views. The first approach was to write a visitor

that transforms the tree and directly builds the hierarchy
of graphical components. That was fast and efficient but
required to recompile every time a change is done in the
transformation. The second technique was to specify a tree
transformation using XSLT to produce a BML description
of graphical components to create. The BML result is then
interpreted to build the actual view (see Figure 17). Even
though there is a loss of efficiency when using XSLT and
BML engines, the technique has proved to be easier to learn,
more open to new view designs, and well-adapted for send-
ing views through networks.

Syntax tree Base

L ION

XSLT
Transformation

BM. descri ption
of enbedded
graphi ¢ conponent s

BML
Interpreter

Gaphi ¢ conponents of def |Stn?/
the vieww th style
properties

le
tions

Figure 17: Schema of graphical view construction

Xpp language

A higher-level transformation language, called Xpp, has been
defined on top of XSLT to specify the pretty-printing of an
XML document. Its features are similar to those of XSLT
but it is much more concise, more readable and it can per-
form transformations only on subtrees for incremental pur-
poses. Xpp consists of a set of rule definitions (cf Figure 19)
which match patterns with explicit variables for subtrees.
These variables are used in the right part for recursive calls.

Rul es
formalismtiny
affect(x, y) -> h(x, label ("="), y, label (";")):

plus(x, y) -> h(x, label ("+"), y);

Figure 19: A part of the Xpp specification

We have defined formatting functions (horizontal or vertical
alignment, indentation, etc) that designers may use to write
their pretty-printers in the right part of the rules. When
Xpp specifications are translated into XSLT stylesheets (see
Figure 20), the designers only need to indicate the expected
output format (either BML, HTML or text at the moment)
useful for the system to choose the right implementation of
the formatting functions (see Figure 21).

The plus(x,y) -> h(x,label(”+7),y); Xpp rule specifies that
the left and right subtrees for each plus operator will be hor-
izontally aligned and separated by the + sign. The h and
label formatting functions are defined in all the available
output formats. Xpp can be extended by adding new for-
matting functions defined for every available output format.

o
File Edit Display View Visitor Resources Exp
FEE B EEEE
infinteMultiplication.exp |
i i . : 5 :Edilinnstrul:t
Beans view [_] Mavigate @ ‘ | s | ‘ |) Scroll @ Scene * [Beans views [Navigate @, | ‘ + | ‘ | i scroll ® Scene |" oy s var
Selected operatar is
oy -~
int £t = 2,' L= var { ovar)
. c o </booleanDecl>
Tme A =
; ;g . <j >
boolean isInfinite = true, intDecl
. s < > < =
int res : var >res </var>
while (isInfinite) <none/>
res = i*t; </intDecl>
print £ & ™ & i & "=" & res; || </decls>
) If] {Ipebug
Beans view? @ Scroll) Scene HaTree 7 Nawigate @% | ‘ o | ‘ | ‘ ’@: | »
CI - = |: Temporisation: [100 (] Stop on Breakpoints
B rrrue : d =
s E ; =] L e | Com | o [oo
Eres (var) - decls &
B (rone) e — isinfinite =l h—
B bt amnis) | T : == Variahle names | Types [values
EE phile) - L = Sl '
Baoirinis B — I"'['
B8 (p1ock mlDec\’i bt -
B rdecis) nore =G i Dl
EE (atatements) L 2 :; Visit method on
’—islnﬁmte “[..E Type: Var Operator: exp.ast.yarTree - |

Figure 18: An example of Graphical User Interface

<alias:tenplate match="plus[*[1]][*[2]][count (*)=2]">
<alias:variable nane="left" select="./*[1]"/>
<alias:variable nane="right" select="./*[2]"/>
<bean class="fr.smarttool s.vi ew. GNodeCont ai ner ">
<property name="|ayout">
<bean cl ass="fr.smarttool s. vi ew. HFl owLayout "/ >
</ property>
<add>
<alias:apply-tenplates select="8left"/>
</ add>
<add>
<bean class="fr.smarttool s.view. FJLabel ">
<args>
<string>+</string>
</ args>
</ bean>
</ add>
<add>
<alias:apply-tenplates select="$right"/>
</ add>
</ bean>
</alias:tenplate>

Figure 20: XSLT program for plus operator

XSL styl esheet
for BM. output

transformation

XSL styl esheet
for HTM. out put

XSLT
transformtion

Typed XM tree

XSL styl esheet

XSLT
transformation for text output

Figure 21: From Xpp to XSLT

M apping between logical and graphical views
For BML output, every transformation rule specifies how to
build a hierarchy of graphical components. Some of these
components are associated with nodes of the tree and are
marked so. Others are only syntactic sugars and are just or-
dinary graphical objects (not marked). This marking tech-
nique is a convenient way to be able to match any graphical
object with its corresponding node in the document tree.
When a part of the document tree is modified, an update
message is sent to the views of that document. The up-
date message contains the path of the modified subtree and
the new subtree. Transformation rules are applied to that
new subtree to create a local hierarchy of graphical com-
ponents: a graphical subtree. The path contained in the
update message is interpreted thanks to the marked com-
ponents and the obsolete graphical subtree is found. It is
then replaced by the new one to reflect the document tree
modification.

The Base module

Definitions of style (fonts, colors, etc.) are stored in separate
XML resource files that are managed by the Base module.
When a view (or any other module) needs style information,
the Base module uses visitors to find appropriate informa-
tion in the resources (represented as ASTs). There are three
successive search levels: first on a general resource tree, then
on the current language-specific resource tree, and finally on
the active view-specific resource tree. At every step, the re-
sult is overloaded by the newly found information.

GUI description language

A special XML language of SmartTools, called Imlitree, was
designed to describe the structure of the user interface. From
such a description, SmartTools builds its user interface by
transforming this description with the XSLT engine. The
GUI is thus only a view of this description. Figure 22 shows
such a description, Figure 23 the schematic graph of its AST,
and Figure 18 the resulting GUI.

<?xnl version="1.0" encodi ng="1 SO 8859- 1" ?>
<! DOCTYPE | ayout SYSTEM "I ni.dtd" >
<l ayout >
<frane title="Smarttools V3">
<set title="InfiniteMiltiplication.exp">
<split position="55" orientation="0">
<split position="50" orientation="1">
<view title="Beans view' Type="Bm View' style="default.xsl" />
<split position="70" orientation="1">
<view title="Beans viewd" Type="Bm View' style="xn.xsl" />
<view title="EditionStruct" Type="StructEditionView'
styl e="edstruct.xsl"/>
</split>
</split>
<split position="25" orientation="1">
<view title="Beans view2" Type="BnlView' style="generic.xsl" />
<split position="60" orientation="1">
<view title="GIree" Type="GreeView' style="" />
<view title="Debug Type="DebugView' style="" />
</split>
</split>
</ set >
</frame>
</ | ayout >

Figure 22: Lmltree specification of the GUI of Fig-
ure 18

hori zontal
split

vertical
split

B Vi ew vertical Bnl Vi ew vertical
"Beans view' split " Beans vi ew2" split

Bnl Vi ew QGreeView DebugVi ew
" Beans vi ew3" " GIree” " Debug”

Figure 23: Schematic graph of the AST in Figure 22

vertical
split

Struct Edi tionVi ew
"Edi tionStruct”

5. APPLICATIONS

SmartTools has been used to develop or quickly prototype
various environments of several languages. Its first appli-
cations were dedicated to the languages used by the system
itself; it is bootstrapped. For instance, specific environments
were created to edit the resources, to manipulate AST def-
initions or visit method profiles. Much more complex and
powerful environments can be created with additional work.

Java

An integrated environment for Java [7] is currently under
development. Figure 24 displays a source file (.java) and its
associated class file (.class) on different formats (i.e. using
different pretty-printers) as shown on Figure 25. These two
documents are linked, thus the selection in one document is
communicated to the other. The main tools of this environ-
ment are a bytecode type-checker and a bytecode simulator.
All these tools use the visitor pattern technique and can
be dynamically extended (e.g. with tracing or debugging
features) simply by connecting aspects.

=0l

asses rethods structions

ava/lang SuperSimple <init> dup
test Util start
Simple inc
inc
inc
inc
test

astore 1
aload 1
iload O

invokevirtual inc
ictara N

invokespecial <init>/

[P [| [son] [“rosat | [rovuomromonme |
class Simple extends SuperSimple

i

private static int data=12; @4 e ation: [50q
= public static void start 0
{ Evanators sats
for (inti=0;i < 3;i ++) Frame Locavariabi Stack
stan@s int(0) {UtiObject))
{ wnioect)
Utilu = new Util ();

i=u.inc (i);

Figure 24: GUI of the Java environment

val uat or
visitor

Source Document \ . links s
(java)

i

‘
Met hods
Vi ew

d asses

Packages
Vi ew

Vi ew

I'nstructions
vi ew

Figure 25: The different views of the Figure 24

Servlets and Web Services

As the SmartTools architecture was designed to easily plug
new components, servlets can quickly be registered on the
message controller. In this way, we have experimented a
distributed version of SmartTools to edit programs on any
applet-compatible web browser thanks to a Java applet.
This applet was designed to visualize components expressed
in BML and to handle user interactions. It uses the HTTP
protocol to communicate with SmartTools through a servlet.
A generalization of this experiment (Figure 26) was also per-
formed using Web Services (i.e. units providing data and
services to other applications). In this manner, applications
can access to these web services via standard web proto-
cols and data formats (e.g. XML, SOAP) without worrying
about how the service is implemented.

SVG and MathM L

We also wanted to display mathematical formulae in Smart-
Tools views to be able to show Coq® [12] theories. As Coq
can export its data in the MathML 2.0 format (see the
HELM project [2] for further information), we needed to find
a way to display this XML mathematical language. The so-
lution was to use visitors to transform MathML documents
into SVG* (Scalable Vector Graphics) format. Then, Smart-
Tools uses the Batik [1] SVG renderer to display these SVG
documents.

6. RELATED WORKS

3A proof assistant based on a explicite logic framework
4Another XML language used to describe two-dimensional
vector and mixed vector /raster graphics

SmartTools

BUS
VIEW XSLT SERVLET | xsLT WEB SERVICE
(XSLT transformati on) (XSLT transformati on) WSDL
BM. docurnent BM. document
graphical view
HTTP SOAP
APPLET
CLIENT C#
graphi cal view .net

Figure 26: How to access to SmartTools

There are many equivalent or comparable systems [4, 6, 14,
18]. The main difference is that SmartTools strongly uses
XML and object-oriented technologies. In this way, our sys-
tem is open and can take advantage of any further develop-
ment made around Java and XML technologies. It harmo-
niously integrates different tools and techniques (e.g. visitor
design pattern, aspect) thanks to its modular architecture
and has generic visualisation tools.

Our visitor approach is strongly based on this research work
[23] and very close to other developments [11, 19, 21]. We
essentially use a simplified version of the multi-methods [22,
9] instead of using accept methods. In this way, it is possible:

e to obtain much more readable visitor programs (i.e.
without cast) thanks to the xprofile specifications,

e to get a simple kind of adapative programming [15,
20] dedicated to our applications thanks to the tree
traversal specification,

e to introduce an aspect-oriented programming on the
top of the visitor design pattern. Our approach is com-
parable with a more general one [3]. In SmartTools,
aspects can be dynamically connected to visitors and
no transformation is needed unlike [11].

For the modular architecture, we designed a message con-
troller similar to the Toolbus [5] but it is restricted to our
needs. For data integration®, we use XML and for control
integration a multicasting approach. With a minimal de-
velopment effort, using existing software components (RMI
API) or standard protocols (SOAP protocol), we have ob-
tained a system where it is easy to:

e plug in new components,

e build a distributed environment in connection with a
web browser or the .NET platform,

®The terms data integration and control integration are ex-
plained in [5]

e transform it into a distributed version using ProActive

[8]-

For interactive requirements, our approach is different as
we use XML technologies. Moreover, we apply the same
transformation model for the document as well as for the
GUI, that is quite an original way of building a GUI. This
approach makes the export of views possible through the
networks (thanks to XML serialisation).

7. CONCLUSIONS

‘We have presented a software generator which produces pro-
gramming environments strongly based on XML and object-
oriented technologies. The most important contribution of
this approach was to propose at the same time and with a
uniform way, a set of advanced programming features, inte-
grated into a modular architecture, with extensible graph-
ical viewing engines and open to XML. We have chosen to
use non-proprietary APIs to be open and to take advantage
of future or external developments around W3C specifica-
tions. On the semantic level, we present a dedicated aspect-
oriented programming approach associated with the visitor
design pattern compliant with the DOM specifications. We
expect a large set of domain-specific languages to be based
on the W3C specifications. The users (and designers) of
such languages are not supposed to be experts of language
theories. Therefore, we propose a semantic framework easy
to use and requiring a minimal knowledge. Domain-specific
languages represent a large potential of applications in var-
ious fields and will certainly introduce new open problems.

Acknowledgments

‘We have much benefited from discussions with Colas Naha-
boo, Thierry Kormann and Stéphane Hillion from the ILOG
team on the topic of XML technologies. We would also like
to thank Gilles Roussel, Etienne Duris and Rémy Forax for
their helpful comments of their Java Multi-Methods imple-
mentation.

8. REFERENCES
[1] Batik SVG Toolkit. Apache XML Project
http://xml.apache.org/batik/.

[2] A.Asperti, L.Padovani, C. Coen, and I.Schena. Helm
and the semantic math-web. In The 14th International
Conference on Theorem Proving in Higher Order
Logics, TPHOLS 2001,, volume 2115. Lect. Notes in
Comp. Sci., 2001.

[3] Aspectj-oriented programming (aop) for java.
http://www.aspectj.org.

[4] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: A
Tool Suite for Building GenVoca Generators. In 5th
International Conference in Software Reuse, June
1998.

[5] J. Bergstra and P. Klint. The discrete time ToolBus —
a software coordination architecture. Science of
Computer Programming, 31(2-3):205-229, July 1998.

[6] P. Borras, D. Clement, T. Despeyroux, J. Incerpi,
G. Kahn, B. Lang, and V. Pascual. CENTAUR: the

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

system. In P. Henderson, editor, Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, volume 24 of SIGPLAN, pages 14-24.
Feb. 1988.

D. Caromel, L. Henrio, and B. Serpette. Context
Inference for Static Analysis of Java Card Sharing. In
1. Attali and T. Jensen, editors, Smart Card
Programming and Security, volume 2140 of Lect. Notes
in Comp. Sci., Cannes (France), September 2001.
Springer-Verlag.

D. Caromel, W. Klauser, and J. Vayssiere. Towards
seamless computing and metacomputing in java. In
G. C. Fox, editor, Concurrency Practice and
Ezperience, volume 10 of Wiley and Sons, Ltd, pages
1043-1061, Sept. 1998.

R. Forax, E. Duris, and G. Roussel. Java
Multi-Method Framework. In International
Conference on Technology of Object-Oriented
Languages and Systems (TOOLS’00), Nov. 2000.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, Reading, MA, 1995.

G. Hedin and E. Magnusson. Jastadd—a java-based
system for implementing front ends. In M. van den
Brand and D. Parigot, editors, Electronic Notes in
Theoretical Computer Science, volume 44. Elsevier
Science Publishers, 2001.

INRIA. The Coq proof assistant. http://coq.inria.fr/.

M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le
Bellec. Design, implementation and evaluation of the
FNC-2 attribute grammar system. In Conf. on
Programming Languages Design and Implementation,
pages 209-222, White Plains, NY, June 1990.
Published as ACM SIGPLAN Notices, 25(6).

U. Kastens, P. Pfahler, and M. Jung. The Eli system.
In K. Koskimies, editor, Compiler Construction
CC’98, volume 1383 of Lect. Notes in Comp. Sci.,
portugal, Apr. 1998. Springer-Verlag. Tool
demonstration.

G. Kiczales. Aspect-oriented programming: A position
paper from the xerox PARC aspect-oriented
programming project. In M. Muehlhauser, editor,
Special Issues in Object-Oriented Programming. 1996.

G. Kiczales, J. Hugunin, M. Kersten, J. Lamping,

C. Lopes, and W. G. Griswold. Semantics-Based
Crosscutting in AspectJ. In Workshop on

Multi- Dimensional Separation of Concerns in Software
Engineering (ICSE 2000), 2000.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and

S. Matsuoka, editors, ECOOP ’97 — Object-Oriented
Programming 11th European Conference, Jyvaskyld,
Finland, volume 1241 of Lecture Notes in Computer
Science, pages 220-242. Springer-Verlag, New York,
NY, June 1997.

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

P. Klint. A Meta-Environment for Generating
Programming environments. ACM Transactions on
Software Engineering Methodology, 2(2):176-201, 1993.

T. Kuipers and J. Visser. Object-oriented tree
traversal with jjforester. In M. van den Brand and
D. Parigot, editors, Electronic Notes in Theoretical
Computer Science, volume 44. Elsevier Science
Publishers, 2001.

K. J. Lieberherr and D. Orleans. Preventive program
maintenance in Demeter/Java. In Proceedings of the
19th International Conference on Software
Engineering, pages 604-605. ACM Press, May 1997.

E. V. Merijn de Jonge and J. Visser. Xt: a bundle of
program transformation tools. In M. van den Brand
and D. Parigot, editors, Electronic Notes in
Theoretical Computer Science, volume 44. Elsevier
Science Publishers, 2001.

T. Millstein and C. Chambers. Modular statically
typed multimethods. In R. Guerraoui, editor,
Proceedings ECOOP’99, LCNS 1628, pages 279-303,
Lisbon, Portugal, June 1999. Springer-Verlag.

J. Palsberg and C. B. Jay. The Essence of the Visitor
Pattern. In COMPSAC’98, 22nd Annual International
Computer Software and Applications Conference,
Vienna, Austria, Aug. 1998.

J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A
New Approach to Compiling Adaptive Programs. In
H. R. Nielson, editor, Furopean Symposium on
Programming, pages 280295, Linkoping, Sweden,
1996. Springer Verlag.

T. Reps and T. Teitelbaum. The Synthesizer
Generator. In ACM SIGSOFT/SIGPLAN Symp. on
Practical Software Development Environments, pages
42-48. ACM press, Pittsburgh, PA; Apr. 1984. Joint
issue with Software Eng. Notes 9, 3.Published as ACM
SIGPLAN Notices, volume 19, number 5.

J. G. Variamparambil. Getting smarttools and
visualstudio.net to talk to each other using soap and
web services. Technical report, INRIA, 2001.
http://www-

sop.inria.fr/oasis/SmartTools/publications/Joseph /report.ps.

