
HAL Id: hal-00172773
https://hal.science/hal-00172773

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SmartTools: A Generator of Interactive Environments
Tools

Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier
Parigot, Claude Pasquier

To cite this version:
Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier Parigot, et al.. SmartTools:
A Generator of Interactive Environments Tools. Electronic Notes in Theoretical Computer Science,
2001, 44 (2), pp.225-231. �10.1016/S1571-0661(04)80929-0�. �hal-00172773�

https://hal.science/hal-00172773
https://hal.archives-ouvertes.fr


SmartTools: A Generator of Interactive
Environments Tools?

Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier
Parigot, and Claude Pasquier

INRIA-Sophia – 2004 Route des Lucioles BP 93 06902 Sophia Antipolis Cedex
{First.Last}@sophia.inria.fr

Abstract. SmartTools is a development environment generator that
provides a structure editor and semantic tools as main features. The
well-known visitor pattern technique is commonly used for designing
semantic analysis, it has been automated and extended. SmartTools
is easy to use thanks to its graphical user interface designed with the
Java Swing APIs. It is built with an open architecture convinient for
a partial or total integration of SmartTools in other environments. It
makes the addition of new software components in SmartTools easy.
As a result of the modular architecture, we built a distributed instance
of SmartTools which required minimal effort. Being open to the XML
technologies offers all the features of SmartTools to any language defined
with those technologies. But most of all, with its open architecture,
SmartTools takes advantage of all the developments made around those
technologies, like DOM, through the XML APIs. The fast development
of SmartTools (which is a young project, one year old) validates our
choices of being open and generic.The main goal of this tool is to provide
help and support for designing software development environments for
programming languages as well as application languages defined with
XML technologies.

Keywords. Program transformation, Software development, In-
teractive Environment.

1 Introduction

Producing high-quality software has become a major concern in industry. There
is a long history of research about providing help and support during the devel-
opment process [6,7,9,14,15,16,21]. It is imperative that the research community
creates technologies to enhance the quality of software development and increase
the developers productivity. Those goals are addressed by the SmartTools frame-
work and research. It is composed of a set of generic and interactive software
components organized in a modular architecture.
? This project is supported in part by Microsoft Research and Dyade, the Bull-Inria

Research Joint Venture.

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 355–360, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



356 I. Attali et al.

The reason for building a generic integrated environment, rather a collection
of independent specific tools, is that integration enables the sharing of common
services. It is also important, for each new language created, such as domain
specific languages to propose and generate an interactive and uniform environ-
ment. The quality of these interactive environments must be as close as possible
to those proposed by industrial distributors like the Visual Studio environment
of Microsoft. Finally, the architecture of this system must be conceived with the
aim of facilitating the integration of research tools and widely used tools (e.g.
standardised Application Programming Interfaces, APIs).

These above requirements have justified our choice of Java and XML tech-
nologies. The SmartTools system is completely written with the Java program-
ming language and strongly uses XML technologies. The SmartTools framework
is a natural successor of the Centaur system [9] and uses the same basic concepts,
as the abstract syntax tree (AST) specification or formalism.

From an AST specification describing a given language L, SmartTools auto-
matically generates a structure editor dedicated to this language. So the end-
user (developer) can edit any L file thanks to this uniform structure editor with
generic visualisation tools (see Figure 1). For example, we can have many views
of a document: one for the text representation, one for the structure editing
menu and another for graphical representation.

With this basic environment, the designer of a given language is able to easily
define and implement using the generic tools, a set of specific applications for
his language. As we are using the Java Swing API, the graphical user interface
has a great quality and is easily configurable.

In the following, we will only focus on the important aspects of SmartTools
framework: the modular and extensible architecture, powerful and simple se-
mantics tools and the utilisation of XML technologies. The system is open to
other developments and uses standard mechanisms as XML for data exchange.

2 The Architecture of the SmartTools Framework

SmartTools is made of several independent software components that communi-
cate with each other through an asynchronous messaging system. One compo-
nent, the message controller, is in charge of controlling the flow of messages and
delivering them to their destinations. All other components have to register on
the message controller to let it know what types of messages they want to re-
ceive. Then they will receive only those types of messages and never be disturbed
by the others. Information carried in messages is serialised in XML format. The
design of this messaging system has proven to be simple, efficient, and easy to
maintain.

Thanks to that component-based architecture, we designed a docu-
ment/views relationship that gives us the possibility to have several different
views showing one document each with a different presentation.

If for some specific need one wants to design a new type of view, it is not
necessary for the designer of this new view to deal with all the program APIs.



SmartTools: A Generator of Interactive Environments Tools 357

It can be done by extending a default view component and adding some spe-
cific code to describe what happens when that view receives messages notifying
any modification of the document. This design makes SmartTools seamlessly
extensible for any kind of specific purpose.

It was not difficult using such a component-based architecture to take ad-
vantage of other tools developed at INRIA such as ProActive [4,11] to make a
distributed version of SmartTools. Another benefit is that SmartTools compo-
nents can be used by other applications without the need of the whole system.
We made some successful experiences of SmartTools components integration in
third parties environment [17,12,8].

We also easily connected new components like XML parsers (Sax, Xerces)
and some graphic components like a graph server based on the Koala Graphic
toolbox [3].

3 Semantic Analysis within the SmartTools Framework

For any tree manipulation, it is important to have a simple and powerful pro-
gramming technique. This technique may neither require a high level of expertise
nor an advanced knowledge about the tool.

With Java, an Object Oriented language, it is natural to use a well-known
programming technic: the Visitor Design Pattern [13,18]. The advantage of this
technique is the ability to reuse code and to specify dynamic semantic as an eval-
uator (see Figure 1). From the specification of an abstract syntax, it is possible
to automatically generate Java source code, like a default depth-first traversal
for example.

We have introduced a generic visitor concept to factorize identical behaviours
applying to the nodes of a tree. With this technique we have defined one visitor
only to graphically display the tree, for any language. We also use a Java Multi-
Methods implementation [12] to fill many deficiencies [18,19] due to the visitor
implementation based on the Java reflect APIs. Additionally with this technique,
we gain lisibility without losing efficiency.

We use DOM (level 2) as Tree API where each node has the same type. In
SmartTools we extend this behaviour by typing (sub-classing) each node accord-
ing to a given formalism (AST). Thus, we can use the Visitor Pattern technique
on DOM Tree. Many existing applications use visitor patterns (Generic Java
[10], Dynamic Java [2], ...) and connecting them in SmartTools is very easy.

4 Using XML Technologies

As XML will be more and more used as a communication protocol between
applications, we wanted to be able to handle any XML document in SmartTools
[20]. Any XML document importing a DTD (Document Type Definition) has a
typed structure. That DTD describes the nodes and their types, that is very
similar to our AST formalism.



358 I. Attali et al.

In order to obtain this result, we have specified and implemented a tool which
converts a DTD formalism into an AST equivalent formalism. With this con-
version, we automatically offer a structure editing environment for all languages
defined with XML in the SmartTools framework. It is important to note that
XML documents produced by SmartTools are well-formed.

So far, all the features of a DTD are not properly considered, by instance the
importation of other DTDs (and namespaces), but that should be fixed in the
near future. We are also studying XML schemas and RDF (Resource Description
Framework) schemas, the successors of DTD.

Thus any application that respects the implementation of the APIs, can be
XML-compliant. All the manipulated trees in SmartTools are Java DOM Trees
to ease the integration with other tools and to have a very open data structure.

We offer a tool to automatically generate parsers. This tool can be useful for
a designer to define a user-friendly concrete syntax for his language. But, extra
data are required in the definition of the language.

We have also integrated the XSL (XML Style-sheet Language) specifications
that describe the layout of a document as well as the XSLT (XSL Transforma-
tion).

5 Conclusion

SmartTools offers a quality development environment platform for research tools
and benefits from large fields of applications thanks to XML technologies. The
rapid evolution of SmartTools confirms our choices in term of modular architec-
ture which facilitates the integration of other Java developments. In particular
the choice of Java makes it possible to obtain a great quality graphical user inter-
face with low development effort. Moreover the XML components, thanks to an
open architecture, offers low cost advantages to SmartTools and broader appli-
cation fields. We already have some examples of successful and easy integration
of research tools [1,8,12], and technology transfer in industrial environment [5].
In both cases, the great quality of interactive environment, was the determinant
element.

Acknowledgements. We have much benefited from discussions with Colas
Nahaboo, Thierry Kormann and Stéphane Hillion on the topic of XML tech-
nologies. We would also like to thank Gilles Roussel, Etienne Duris and Rémy
Forax for their helpful comments of their Java Multi-Methods implementation.

References

1. http://marcel.uni-mb.si/lisa/.
2. http://www-sop.inria.fr/koala/djava/index.html.
3. http://www-sop.inria.fr/koala/koala.html.
4. http://www-sop.inria.fr/sloop/javall/index.html.



SmartTools: A Generator of Interactive Environments Tools 359

5. http://www.cp8.bull.net/odyssey/javaa.htm.
6. Lex Augusteijn. The elegant compiler generation system. In Pierre Deransart and

Martin Jourdan, editors, Attribute Grammars and their Applications (WAGA),
volume 461 of Lecture Notes in Computer Science, pages 238–254. Springer-Verlag,
New York–Heidelberg–Berlin, September 1990. Paris.

7. Don Batory, Bernie Lofaso, and Smaragdakis. JTS: A tool suite for building gen-
voca generators. In 5th International Conference in Software Reuse, June 1998.

8. Frédéric Besson, Thomas Jensen, and Jean-Pierre Talpin. Polyhedral analysis for
synchronous languages. In Agostino Cortesi and Gilberto Filé, editors, Static Anal-
ysis, volume 1694 of Lecture Notes in Computer Science, pages 51–68. Springer,
1999.

9. Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and Valérie Pascual. Centaur: the system. SIGSOFT
Software Eng. Notes, 13(5):14–24, November 1988.

10. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
future safe for the past: Adding genericity to the java programming language. In
Proc. OPPSLA’98, October 1998.

11. D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless computing and meta-
computing in java. In Geoffrey C. Fox, editor, Concurrency Practice and Experi-
ence, volume 10 of Wiley and Sons, Ltd, pages 1043–1061, September 1998.

12. Rémi Forax, Etienne Duris, and Gilles Roussel. Java multi-method framework. In
International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS’00), November 2000.

13. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

14. Martin Jourdan, Didier Parigot, Catherine Julié, Olivier Durin, and Carole Le
Bellec. Design, implementation and evaluation of the FNC-2 attribute grammar
system. In Conf. on Programming Languages Design and Implementation, pages
209–222, White Plains, NY, June 1990. Published as ACM SIGPLAN Notices,
25(6).

15. Uwe Kastens, Peter Pfahler, and Matthias Jung. The eli system. In Kai Koskimies,
editor, Compiler Construction CC’98, volume 1383 of Lect. Notes in Comp. Sci.,
portugal, April 1998. Springer-Verlag. tool demonstration.

16. Paul Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering Methodology, 2(2):176–201, 1993.

17. Marjan Mernik, Nikolaj Korbar, and Viljem Zumer. LISA: A tool for automatic
language implementation. ACM SIGPLAN Notices, 30(4):71–79, April 1995.

18. Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In COMP-
SAC’98, 22nd Annual International Computer Software and Applications Confer-
ence, Vienna, Austria, August 1998.

19. Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approach to com-
piling adaptive programs. In Hanne Riis Nielson, editor, European Symposium on
Programming, pages 280–295, Linkoping, Sweden, 1996. Springer Verlag.

20. Claude Pasquier and Laurent Théry. A distributed editing environment for
xml documents. In First ECOOP Workshop on XML and Object Technology
(XOT2000), June 2000.

21. Thomas Reps and Tim Teitelbaum. The synthesizer generator. In ACM SIG-
SOFT/SIGPLAN Symp. on Practical Software Development Environments, pages
42–48. ACM press, Pittsburgh, PA, April 1984. Joint issue with Software Eng.
Notes 9, 3.Published as ACM SIGPLAN Notices, volume 19, number 5.



360 I. Attali et al.

Annex

Fig. 1. SmartTools


