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Abstract— A new class of QPSK Space Time Trellis Codes
(STTC) for several transmit antennas is proposed in this paper.
We call these codes Balanced STTC because they use the points
of the constellation with the same probability. Comparing to
known codes, these codes offer the best performance. Therefore,
the systematic search for good codes can be reduced to this class.
It is shown that all the best published codes are balanced. The
paper presents the design of these balanced STTC and gives a
complete list of the best 4-state codes for 2 transmit antennas.
Several 16-state balanced codes for 2 and 3 transmit antennas
are also given.

I. I NTRODUCTION

Space Time Trellis Coded Modulation (STTCM) was intro-
duced in 1998 by Tarokhet al. [1] by combining channel
coding with the Multiple Input Multiple Output (MIMO)
concept to improve the data rate and the reliability of wireless
communications. Many performance criteria have been estab-
lished to maximize both diversity and coding gain of STTC.
The rank and determinant criteria for slow fading channels
with the Euclidian distance and the product distance criteria
for fast fading channels have been proposed in [1]. In [2]
Chen introduced the trace criterion which governs the coding
for systems with a great product of the numbers of transmit
(Tx) and receive (Rx) antennas.

Based on above criteria, many different STTC for 2 Tx
antennas have been found by a systematic code search [3]–
[6]. The performance study of these codes was carried out
over slow and fast Rayleigh fading channels to identify the
most efficient ones [7]. It has been shown that over slow
fading channels, the codes constructed with the trace criterion
give similar or even better results that the codes constructed
with the rank and the determinant criteria. Over fast fading
channels, “trace criterion codes” as Chen’s codes outperform
the other tested codes. In the same way, some codes for 3 Tx
antennas have been published in [6], [8]. All the codes which
achieve the best performance have the same property: they use
the points of the constellation with the same probability ifthe
data are generated by a binary memoryless source with equally
probable symbols. Therefore, we call these codes “Balanced-
STTC” (B-STTC) [9].

Until now, no efficient construction method of STTC has
been proposed and systematic code search has been employed
to obtain STTC with good performance [3]–[6]. The main
contribution of this paper is the description of a method of
construction of this new class of codes which offers the best

performance. Therefore, the systematic search for good codes
can be reduced to this class. A table with all the best 4-
state STTC and a table with some best 16-state STTC for
2 Tx antennas are given. Some best 16-state STTC for 3 Tx
antennas are also presented. Finally, the performance of all
these codes is evaluated by simulation.

The rest of the paper is organized as follows. Section II
briefly describes the STTC. The new class of balanced codes
is introduced in Section III and their properties are listedin
Section IV. The design of QPSK balanced space-time trellis
codes for several Tx antennas is described in Section V and
VI respectively. Finally, it is shown in Section VII that the
best B-STTC outperform or equal previously known codes.

II. SPACE TIME TRELLIS CODING

We consider the general case of2n-PSK space-time trellis
encoder as shown on Fig.1 (n = 2 for QPSK modulation).
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Fig. 1. ST trellis encoder for2n-PSK andnT Tx antennas

This encoder is composed of one input block ofn bits and
ν memory blocks ofn bits. At each timet ∈ Z, all the
bits of a block are replaced by then bits of the previous
block. The ith bit bt−j+1

i , i = 1 . . . n, of the jth block,
j = 1 . . . ν + 1, is associated tonT multiplier coefficients
ck
i,j ∈ Z2n , k = 1 . . . nT where nT is the number of Tx

antennas. A ST trellis encoder is thus classically defined by



its generator matrixC of nT × n(ν + 1) coefficients:
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III. B ALANCED CODES

A. Why balanced codes?

The concept of “balanced codes” is based on the observation
that all the good STTC proposed in the literature present the
same property: the generated symbols of the constellation are
equally probable.

Indeed, if the binary input data is generated by a me-
moryless sourceS = {0, 1} with equally probable symbols,
then, in the case of 4 - PSK modulation, from a given state
X=[x1x2... xL]

T
∈Z

L
2 of the shift-register realized by(ν+1)

blocks ofn bits, the MIMO symbolY=[y1y2... ynT
]
T
∈ Z

nT

4

generated by the STTC encoder shown in Fig.1 is:

Y = C · X (2)

whereC is the generator matrix (1). This is a deterministic
relation. Therefore, the STTC is defined by a map:

Φ : Z
L
2 → Z

nT

4 (3)

which associates to the stateX an unique codewordY. Note
thatΦ(ZL

2 ) ⊆ Z
nT

4 represents the set of generated codewords
Y. A given codewordY can be obtained for several states
X ∈ Z

L
2 . Let n(Y) be the number of occurrences of the

codewordY.
By definition, a STTC isbalanced if and only if each

generated codewordY ∈ Φ(ZL
2 ) has the same number of

occurrencesn(Y) = n0 ≥ 1.
In addition, if Φ(ZL

2 ) = Z
nT

4 , then all the codewords are
generated and the STTC isfully balanced.

Due to the random sourceS = {0, 1}, from a given stateX
the encoder can have only 4 equally probable next states. The
matrix T of the transition probabilities between these states
corresponds to a Markov chain. Due to the symmetry of the
matrix T, the steady state probabilities of the statesX are
all equal. For a balanced code, by using (2), the generated
codewords Y are also equally probable. In other words, the
generated symbols of the constellation are equally probable.

B. Properties of balanced STTC

The design of the B-STTC is based on the following
properties:
Theorem 1 If a MIMO code with aL-length shift-register is
fully balanced thenL ≥ Lmin = n.nT = dim(ZnT

2n ).
Theorem 2 Let us consider a balanced MIMO code with a
L-length shift-register. Then, for any additional column matrix
Ci ∈ Z

nT

2n , the resulting MIMO code with a(L + 1)-length
shift-register is also balanced.

Definition 1 The vectorsC1,C2, . . . ,CL are linearly inde-
pendent if the equation

x1C1 + x2C2 + · · · + xLCL = 0 ∈ Z
nT

2n (4)

with xi ∈ {0, 1} holds if and only if allxi = 0 .
Definition 2 A set of linearly independent vectorsC1, . . . ,Cm

is called a base forZnT

2n if and only if

span(C1,C2, ...,Cm) =

{

m
∑

i=1

xiCi/xi ∈ {0, 1}

}

= Z
nT

2n .

In this case,m = n.nT is the dimension of the setZnT

2n .

IV. PROPERTIES OF THE BASES OFZnT

4

In the following, a method to design fully balanced codes
is presented. The properties of the bases ofZ

nT

4 , which
characterize the fully balanced codes are listed. Further,the
systematic search will be performed only for these fully
balanced codes.

Property 1: The null vector0 ∈ Z
nT

4 can not be used to
form a base.

Property 2: If the vectorCi ∈ Z
nT

4 is used to form a base,
thenCj = −Ci does not belong to this base.

Property 3: If the vectorsC1,C2, . . . ,Cm ∈ Z
nT

4 with
m < Lmin = n.nT are linearly independent, then the vectors

Cm+1 =

m
∑

i=1

λiCi ∈ Z
nT

4 , λi ∈ {−1, 0, 1} (5)

can not be used to obtainm + 1 linearly independent vectors.
Property 4: C0 = 2Z

nT

2 is a normal subgroup of the additive
groupZ

nT

4 . For each elementv ∈ Z
nT

2 we consider the coset
Cv = v + 2Z

nT

2 , where addition is inZnT

4 .
Property 5: If u1 ∈ Cu and v1 ∈ Cv thenu1 + v1 ∈ Cu⊕v,

where⊕ represents the addition inZnT

2 .
Property 6: If u1 ∈ Cu thenu1 + Cv = Cu⊕v.
Property 7: u + Cu = C0 = 2Z

nT

2 .
Property 8: The sum of two cosets is defined by

Cu + Cv = {u1 + v1/u1 ∈ Cu and v1 ∈ Cv} (6)

Property 9: The direct sum of two cosets is a coset:
Cu + Cv = Cu⊕v

Property 10: If u1 ∈ Cu then−u1 ∈ Cu.
Property 11: If p1, p2, ..., pnT

∈ Z
nT

2 \ {0} are linearly
independent then span(2p1, 2p2, ..., 2pnT

) = 2Z
nT

2 = C0.
Property 12: If p ∈ Z

nT

2 then the sum of 2 different
elements of the cosetCp is an element ofC0\{2p}.

Property 13: One base ofZnT

4 contains at least one vector
in C0.

Property 14: One base ofZnT

4 contains at mostnT vectors
in the same coset.

Property 15: One base ofZnT

4 always containsnT vectors
which belong tonT cosetsCp1

, Cp2
, ..., CpnT

different from
C0 such as the vectorsp1, p2, ..., pnT

are linearly independent.
Similarly, the cosetsCp1

, Cp2
, ..., CpnT

are called linearly
independent.



V. DESIGN OF4-PSK STTCWITH 2 TX ANTENNAS

The design of the fully balanced codes includes 2 steps:

• First step: generation of all the bases ofZ
2
4.

• Second step: permutation of the column vectors of each
obtained base to generate all the fully balanced codes.

Table I shows the partition ofZ2
4 in 4 cosets.

TABLE I. Partition of Z
2
4 in cosets

C[

0

0

]

0

0

0

2

2

0

2

2

C[

0

1

]

0

1

0

3

2

1

2

3

C[

1

0

]

1

0

1

2

3

0

3

2

C[

1

1

]

1

1

1

3

3

1

3

3

There are two types of fully balanced codes ofZ
2
4:

• Type I codes which contain only1 non-null vector inC0

• Type II codes which contain2 non-null vectors inC0

A. Design of fully balanced codes of type I

The algorithm to obtain a base of type I is as follows:

1) Choose one vector2p ∈ C∗
0 = C0\ {0}.

2) Choose2 linearly independent vectors inCp.
3) Choose the last vector in a different coset.

There are96 bases of typeI in Z
2
4 [9].

B. Design of fully balanced codes of type II

The algorithm to obtain a base of type II is as follows:

1) Choose2 different vectors inC∗
0 .

2) Choose2 different cosetsCu andCv different fromC0.
3) For each of these2 cosets, choose one representative.

There are144 bases of typeII in Z
2
4 [9].

The total number of the bases ofZ
2
4 is: 96+144 = 240 bases.

VI. D ESIGN OF4-PSK STTCWITH 3 TX ANTENNAS

Similarly to the design of 4-PSK STTC with2 Tx antennas,
this section is focused on the design of bases ofZ

3
4.

One base ofZ3
4 contains at least one vector inC0 and at

most3 vectors inC0 (Properties 13, 14). Then, there are three
types of fully balanced codes ofZ3

4:

• Type I codes which contain only1 non-null vector inC0

• Type II codes which contain2 non-null vectors inC0

• Type III codes which contain3 non-null vectors inC0

Design of fully balanced codes of type III

The algorithm to obtain a typeIII base ofZ3
4 is as follows:

1) Choose3 linearly independent vectors ofC0.
2) Choose3 linearly independent vectorsu, v, w ∈ Z

3
2.

Therefore, the cosetsCu, Cv, Cw ∈ Z
3
4 are linearly

independent.
3) Choose the vectorsu1 ∈ Cu, v1 ∈ Cv, w1 ∈ Cw. Because

u1 + C0 = Cu, the whole cosetCu is generated. In the
similar way,Cv andCw are generated. By usingProperty
9, the other cosets are also generated.

Finally, the total sum of the bases for the fully balanced
codes of typeIII is 401 408 bases.

In a similar way, we obtain946 176 bases for the fully
balanced codes of typeII and 516 096 bases for the fully
balanced codes of typeI. Finally, the total number of the bases
in Z

3
4 is: 401 408 + 946 176 + 516 096 = 1 863 680 bases.

In the general case ofZnT

4 there arenT types fully balanced

codes. There areNB = 1

nT !

nT −1
∏

k=0

(2nT − 2k) bases ofZnT

2

andN2
B ∗ 2n2

T bases of typenT of Z
nT

4 .
Becausedim (ZnT

4 ) = 2nT , each permutation of2nT

vectors forming a base ofZnT

4 generates a different balanced
code. Therefore, there areNC = 2n2

T ∗ (2nT )! ∗N2
B balanced

STTC of typenT .

VII. C ODE PERFORMANCE

Before showing all the best codes based on the trace
criterion, we propose herein some trace properties of 4-state
4-PSK STTC:

• Property P1: the codes C =
[

C1C2 C3C4

]

,

C′=
[

– C1C2 C3C4

]

and C′′=
[

C1C2 – C3C4

]

have the
same minimum trace.

• Property P2: the codes C=
[

C1C2 C3C4

]

and

C′=
[

C2C1 C3C4

]

have the same minimum trace.

• Property P3: the codes C=
[

C1C2 C3C4

]

and

C′=
[

C3C4 C1C2

]

achieve the same minimum trace.
• Property P4: the same minimum trace is obtained by

using a permutation between the rows of the generator matrix
C, i.e, a permutation between the indices of the Tx antennas.

An exhaustive computer search is carried out to detect all
the 4-state 4-PSK STTC with 2 Tx antennas that achieve the
maximum rank and the maximum trace. A set of80 codes
with min (rank(A)) = 2 andmin (tr(A)) = 10 is found. All
these codes offer a minimum product distanced2

p = 4 ·6 = 24
which is the best product distance that can be achieved for
4-state 4-PSK STTC with 2 Tx antennas.

Table II contains all the 4-state fully balanced codes of
type II which offer the best performance over fast and slow
Rayleigh fading channels with two or more Rx antennas. There
are not other codes with better performance than the codes
given in this table.

TABLE II. 4-state 4-PSK fully B-STTC with 2 Tx antennas and
min (tr(A)) = 10

[

1 2 0 2
2 0 2 1

] [

1 2 0 2
2 0 2 3

] [

3 2 0 2
2 0 2 1

] [

3 2 0 2
2 0 2 3

]

[

2 1 2 0
0 2 1 2

] [

2 1 2 0
0 2 3 2

] [

2 3 2 0
0 2 1 2

] [

2 3 2 0
0 2 3 2

]

[

2 0 2 1
1 2 0 2

] [

2 0 2 3
1 2 0 2

] [

2 0 2 1
3 2 0 2

] [

2 0 2 3
3 2 0 2

]

[

0 2 1 2
2 1 2 0

] [

0 2 3 2
2 1 2 0

] [

0 2 1 2

2 3 2 0

] [

0 2 3 2
2 3 2 0

]

In this table, all the codes are related due to the trace
properties presented before.

For the 16-state 4-PSK STTC, the construction and the
research of the best codes are made from the 4-state 4-PSK



STTC by using Theorem 2. Table III contains all the 16-state
B-STTC which offer the best performance over fast and slow
Rayleigh fading channels with two or more Rx antennas. All
these codes havemin (tr(A)) = 16 and offer a minimum
product distanced2

p = 128. Among them, we found the code

proposed by Chen
[

1 2 1 2 3 2

2 0 3 2 2 0

]

(in bold in Tab. III).

TABLE III. 16-state 4-PSK fully B-STTC with 2 Tx antennas and
min (tr(A)) = 16

[

2 3 2 3 2 1
0 2 2 1 0 2

] [

2 1 2 3 2 3
0 2 2 1 0 2

] [

2 3 2 1 2 1
0 2 2 1 0 2

] [

2 1 2 1 2 3
0 2 2 1 0 2

]

[

0 2 2 1 0 2
2 3 2 3 2 1

] [

0 2 2 1 0 2
2 1 2 3 2 3

] [

0 2 2 1 0 2
2 3 2 1 2 1

] [

0 2 2 1 0 2
2 1 2 1 2 3

]

[

2 1 2 1 2 3
0 2 2 3 0 2

] [

2 3 2 1 2 1
0 2 2 3 0 2

] [

2 1 2 3 2 3
0 2 2 3 0 2

] [

2 3 2 3 2 1
0 2 2 3 0 2

]

[

0 2 2 3 0 2
2 1 2 1 2 3

] [

0 2 2 3 0 2
2 3 2 1 2 1

] [

0 2 2 3 0 2
2 1 2 3 2 3

] [

0 2 2 3 0 2
2 3 2 3 2 1

]

[

3 2 3 2 1 2
2 0 1 2 2 0

] [

1 2 3 2 3 2
2 0 1 2 2 0

] [

3 2 1 2 1 2
2 0 1 2 2 0

] [

1 2 1 2 3 2
2 0 1 2 2 0

]

[

2 0 1 2 2 0
3 2 3 2 1 2

] [

2 0 1 2 2 0
3 2 1 2 1 2

] [

2 0 1 2 2 0
1 2 3 2 3 2

] [

2 0 1 2 2 0
1 2 1 2 3 2

]

[

1 2 1 2 3 2

2 0 3 2 2 0

] [

3 2 1 2 1 2
2 0 3 2 2 0

] [

1 2 3 2 3 2
2 0 3 2 2 0

] [

3 2 3 2 1 2
2 0 3 2 2 0

]

[

2 0 3 2 2 0
1 2 1 2 3 2

] [

2 0 3 2 2 0
3 2 1 2 1 2

] [

2 0 3 2 2 0
1 2 3 2 3 2

] [

2 0 3 2 2 0
3 2 3 2 1 2

]

Finally, the performance of all these 4-state and 16-state
codes is evaluated by simulation and described by the Frame
Error Rate (FER) and Bit Error Rate (BER) over fast Rayleigh
fading channels. The results are showed in Fig. 2. Note that
all the codes given in Tab. II achieve the same performance
than the code of Chen [2] and they offer better performance
than the codes proposed in [5].
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Fig. 2. Performance of B-STTC 4-PSK with 2 Tx and 2 Rx antennas
over fast Rayleigh fading channels, frame length 128 symbols

For the 16-state 4-PSK with 3 antennas, after having ana-
lyzed the fully balanced codes of typeIII, a set of7296 codes
with min (rank(A)) = 3 andmin (tr(A)) = 24 is found. All

of them achieve the same trace than

[

1 2 1 2 3 2

2 0 3 2 2 0

1 2 2 0 1 2

]

given in [8] and

[

1 1 3 2 2 2

2 3 2 0 2 0

3 2 3 2 0 2

]

proposed in [10].

Some of these7 296 codes are represented in Tab.IV. Similarly
to the case with 2 Tx antennas, by using the trace properties

for 3 Tx antennas, we can also generate the other codes with
the same performance from each code in Tab.IV.

TABLE IV. 16-state 4-PSK fully balanced STTC with 3 Tx antennas
andmin (tr(A)) = 24







0 2 2 0 2 3

0 2 2 2 3 2

2 0 1 2 2 1













2 0 2 3 0 2

0 2 2 2 1 2

1 2 2 1 2 0













0 2 2 3 0 2

3 2 2 3 2 0

2 0 2 2 1 2













0 2 0 0 0 1

0 2 2 0 1 0

2 0 2 1 0 0













2 2 0 2 2 1

1 2 2 0 2 3

2 0 0 2 1 2













3 2 2 3 0 2

2 2 2 1 2 0

2 0 3 2 0 2













1 2 2 3 2 0

2 0 2 3 0 2

0 2 2 2 1 2













0 1 0 0 0 2

0 1 3 2 3 2

2 0 1 2 0 0













0 2 2 0 2 3

3 2 0 2 2 2

2 0 1 2 2 1













2 3 0 2 0 2

2 3 3 2 2 0

2 2 2 0 1 2













3 2 2 3 2 0

3 2 2 0 0 2

2 2 0 2 2 3













3 2 3 0 2 0

1 2 2 1 0 2

3 2 0 0 2 2







VIII. C ONCLUSION

In this paper, a new class of 4-PSK Balanced STTC for
several transmit antennas has been proposed. These codes
generate the points of the constellation with the same prob-
ability. It has been shown that the best STTC belong to this
class. Therefore, the systematic search for good codes can be
reduced to this class. A method to design the balanced codes
has been described. A complete list of the best 4-state codes
with 2 transmit antennas and several 16-state codes for 2 and3
antennas have also been given. All the 4-state fully balanced
STTC listed in this paper are equivalent,i.e. they have the
same rank, trace and product distance. The simulation results
have shown that they outperform the other 4-state STTC for
2 transmit antennas.
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