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Abstract— In this paper we introduce a new class of space-time
trellis codes (STTC). We call them Balanced STTC (B-STTC)
because the points of the constellation are used with the same
probability. Comparing to known codes, the balanced codes offer
the best performance. Therefore, the systematic search for good
codes can be reduced to this class. We present here the design of
the 4-PSK balanced STTC with 2 transmit antennas. A complete
list of the best 4-state and several 16-state good balanced codes
are also given.

I. I NTRODUCTION

Barring complexity issues, STTC have been shown to
outperform other space-time coded systems. Tarokhet al.
[1] introduced the concept of STTC as an extension to the
conventional time-convolutional coding and derived criteria to
obtain optimal codes. For quasistatic flat Rayleigh or Rician
channels, performance is shown to be determined by the diver-
sity advantage quantified by the rank of certain matrices and
by the coding advantage that is quantified by the determinants
of these matrices. For rapidly changing flat Rayleigh chan-
nels, performance is determined by the diversity advantage
quantified by the generalized Hamming distance of certain
sequences and by the coding advantage that is quantified by
the generalized product distance of these sequences which
are constructed from pairs of distinct codewords. In [2] Chen
introduced the trace criterion which governs the coding for
systems with a great product of the numbers of transmit and
receive antennas.

Based on above criteria, many different STTC for 2 transmit
antennas have been found by a systematic code search [3]–[9].

Until now, no efficient construction method of STTC has
been proposed. The main contribution of this paper is the
description of a method of construction of a new class of
Balanced STTC (B-STTC) which offers the best performance.
Therefore, the systematic search for good codes can be reduced
to this class.

The rest of the paper is organized as follows. Section
II briefly describes the STTC. Their performance criteria,
depending on the channel properties, are presented in Section
III. The new class of balanced codes is introduced in Section
IV and their properties are listed in Section V. The design
of 4-PSK balanced space-time trellis codes for 2 transmit
antennas is described in Section VI. Finally, it is shown
in Section VII that the best B-STTC outperform or equal
previously known codes.

II. SPACE TIME TRELLIS CODING

We consider the case of4-PSK space-time trellis encoder
as shown on Fig.1.
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Fig. 1. Space-time trellis encoder with 4-PSK andnT transmit antennas

In the general case of a2n-PSK modulation, this encoder
is composed of one input block ofn bits and ν memory
blocks of n bits. At each timet ∈ Z, all the bits of a block
are replaced by then bits of the previous block. Theith

bit bt−j+1
i , i = 1 . . . n, of the jth block, j = 1 . . . ν + 1,

is associated tonT multiplier coefficients ck
i,j ∈ Z2n ,

k = 1 . . . nT wherenT is the number of transmit antennas. A
ST trellis encoder is thus classically defined by its generator
matrix C of nT × n(ν + 1) coefficients:

C =
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The encoder outputs for thekth antenna are computed as

yk
t =

n
∑

i=1

ν+1
∑

j=1

bt−j+1
i ck

i,j mod 2n (2)



whereyk
t ∈ Z2n represents the index of the2n-PSK symbol

sk
t = eyk

t
π
2 sent to thekth antenna. The modulated streams

for all antennas are then transmitted simultaneously.
At the receiver, each one of thenR antennas collects the
superpositions of the faded replicas of thenT transmitted sym-
bols. Each link between one transmit antenna and one receive
antenna is assumed to experience statistically independent flat
Rayleigh fading. Therefore, we can use the following model
of the received signal:

rl
t =

nT
∑

k=1

hkl,ts
k
t + nl

t (3)

where rl
t is the signal received at antennal at time t;

hkl,t is the complex path gain from transmit antennak to
receive antennal at time t; sk

t is the transmitted complex
symbol corresponding toyk

t ; and nt
l is the AWGN sample

for receive antennal at time t. The noise samples are
independent samples of a zero-mean complex Gaussian
random variable with spectral densityN0/2 per dimension.
Maximum likelihood decoding is then used to extract the
transmitted codeword.

III. D ESIGN CRITERIA

Design criteria have been proposed in [1] [2] to exploit the
nT nR spatial diversity order and to offer optimal coding gain.
Cases of slow and fast Rayleigh fading are mainly studied.
The transmittednT dimension symbolsst =

[

s1
t s

2
t . . . snT

t

]T
,

where [·]T denotes the transpose operator, are assumed to be
grouped in a frame of lengthLf .

A channel is said to be a slow Rayleigh fading channel
if, during a transmission of a frame, the complex path gains
hkl do not change with timet, but are independent from one
frame to the next one. In the case of a fast Rayleigh fading
channel, the complex path gainshkl,t are independent from a
nT dimension symbol to the next one. For each case, criteria
are derived from the minimization of the Pairwise Error
Probability (PEP), i.e. the probability of transmitting the
nT × Lf dimension coded frameS =

[

stst+1 . . . st+Lf−1

]

and deciding erroneously in favour of anothernT × Lf

dimension coded frameE =
[

etet+1 . . . et+Lf−1

]

. The
nT × nT product matrixA = BB

∗ is introduced where
B

∗ denotes the hermitian of thenT × Lf difference matrix
B = E − S described as follows :

B =
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A. The case of slow Rayleigh fading

In the case of slow Rayleigh fading channels, two criteria
have been proposed in [1]. Firstly, in order to maximize the
diversity advantage, the product matrixA has to be full rank

over all possible pairs(E,S). Since the maximal value of
rank(A) is nT , the achieved spatial diversity order is then
equal to the productnT nR. Secondly, in order to maximize
the coding gain, the minimum product

∏rank(A)
k=1 λk, where

λk are the nonzero eigenvalues ofA, has to be maximized by
choosing the generator matrixC. If rank(A) = nT , we can
note that

det(A) =

nT
∏

k=1

λk =

nT
∏

k=1
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The codes that can achieve the best performance present the
greatest value of the minimum product

∏rank(A)
k=1 λk. For a

full rank product matrix, the achieved coding advantage is
then equal todet(A)(1/nT ).

B. The case of fast Rayleigh fading

In the case of fast Rayleigh fading channels, different
criteria have been obtained in [1]. Tarokh defines the Hamming
distancedH(E,S) between two coded framesE and S as
the number of time intervals for which|et − st| 6= 0. In
order to maximize the diversity advantage over fast Rayleigh
fading channels, the minimal Hamming distancedH(E,S)
computed over all pairs of coded frames has to be maximized
by choosing the generator matrixC. The achieved spatial
diversity order is then equal to the productdH(E,S).nR.
In the same way, Tarokh introduces the product distance
d2

p(E,S) as the product of euclidian distance between the
Lf nT -dimension symbols composing the coded framesS and
E. The product distance is written

d2
p(E,S) =

Lf−1
∏

q=0

(

nT
∑

k=1

∣

∣

∣ek
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∣

∣

∣

2

)

=

Lf−1
∏

q=0

d2
E

(et+q , st+q) (6)

In order to maximize the coding gain, the minimum product
distanced2

p(E,S) computed over all pairs(E,S) has to be
maximized by choosing the generator matrixC. The achieved
coding advantage is then equal tod2

p(E,S)1/dH(E,S).

C. The case of a larger number of antennas

In [2], Chen proposes a new criterion which is valid in
the case of slow and fast Rayleigh fading channels since the
product rank(A).nR > 3. Under this assumption, the PEP
is minimized if the sum of all the eigenvalues of the product
matrix is maximized. For a square matrix, the sum of all the
eigenvalues is equal to the trace of the matrix. It can be written
as:

tr(A) =

nT
∑

k=1

λk =

nT
∑

k=1





Lf−1
∑

q=0

∣

∣ek
t+q − sk

t+q

∣

∣

2



 (7)

For each pair of coded frames, a matrixA and thentr(A)
can be computed. The minimum trace is the minimum of all
these valuestr(A). Since the productrank(A).nR > 3, the
minimization of the PEP amounts to use a code which has the
maximum value of the minimum trace.



IV. BALANCED CODES

A. Why balanced codes?

The concept of “balanced codes” is based on the observation
that all the good STTC proposed in the literature present the
same property: the generated symbols of the constellation are
equally probable.

Indeed, if the binary input data is generated by a me-
moryless sourceS = {0, 1} with equally probable symbols,
then, in the case of 4 - PSK modulation, from a given state
X=[x1x2... xL]

T
∈Z

L
2 of the shift-register realized by(ν+1)

blocks ofn bits, the MIMO symbolY=[y1y2... ynT
]
T
∈ Z

nT

4

generated by the STTC encoder shown in Fig.1 is:

Y = C · X (8)

whereC is the generator matrix (1). This is a deterministic
relation. Therefore, the STTC is defined by a map:

Φ : Z
L
2 → Z

nT

4 (9)

which associates to the stateX an unique codewordY. Note
thatΦ(ZL

2 ) ⊆ Z
nT

4 represents the set of generated codewords
Y. A given codewordY can be obtained for several states
X ∈ Z

L
2 . Let n(Y) be the number of occurrences of the

codewordY.
By definition, a STTC isbalanced if and only if each

generated codewordY ∈ Φ(ZL
2 ) has the same number of

occurrencesn(Y) = n0 ≥ 1.
In addition, if Φ(ZL

2 ) = Z
nT

4 , then all the codewords are
generated and the STTC isfully balanced.

Due to the random sourceS = {0, 1}, from a given stateX
the encoder can have only 4 equally probable next states. The
matrix T of the transition probabilities between these states
corresponds to a Markov chain. Due to the symmetry of the
matrix T, the steady state probabilities of the statesX are
all equal. For a balanced code, by using (8), the generated
codewords Y are also equally probable. In other words, the
generated symbols of the constellation are equally probable.

B. Properties of balanced STTC

The design of the B-STTC is based on the following
properties:

Theorem 1:If a MIMO code with aL-length shift-register
is fully balanced thenL ≥ Lmin = n.nT . One can observe
that Lmin = dim(ZnT

2n ).
Theorem 2:Let us consider a balanced MIMO code with a

L-length shift-register. Then, for any additional column matrix
Ci ∈ Z

nT

2n , the resulting MIMO code with a(L + 1)-length
shift-register is also balanced.

Definition 1: The vectorsC1,C2, . . . ,CL are linearly in-
dependent if the equation

x1C1 + x2C2 + · · · + xLCL = 0 ∈ Z
nT

2n (10)

with xi ∈ {0, 1} holds if and only if xi = 0 for every
i = 1, 2, . . . , L.

Definition 2: A set of linearly independent vectors
C1,C2, . . . ,Cm is called a base forZnT

2n if and only if

span(C1,C2, ...,Cm) =

{

m
∑

i=1

xiCi/xi ∈ {0, 1} , i = 1, 2, ..., L

}

= Z
nT
2n .

In this case,m = n.nT is the dimension of the setZnT

2n .

V. DESIGN OF4-PSK STTCWITH 2 TRANSMIT ANTENNAS

The design of the fully balanced codes includes 2 steps:
• First step: generation of all the bases ofZ

2
4.

• Second step: permutation of the column vectors of each
obtained base to generate all the fully balanced codes.

A. Properties of the bases ofZ
2
4

In the following, the properties of the bases ofZ
2
4, which

characterize the fully balanced codes are listed. Further,by
using these properties, we can design all the base ofZ

2
4, then

the fully balanced codes.
Property 1: One base ofZ2

4 containsdim
(

Z
2
4

)

= 4 vectors.
Property 2: The null vector0 ∈ Z

2
4 can not be used to form

a base.
Property 3: If the vectorCi ∈ Z

2
4 is used to form a base,

thenCj = −Ci does not belong to this base.
Property 4: If the vectorsC1,C2, . . . ,Cm ∈ Z

2
4 with

m < 4 are linearly independant then the vectors

Cm+1 =

m
∑

i=1

λiCi ∈ Z
2
4, λi ∈ {−1, 0, 1} (11)

can not be used to obtainm + 1 linearly independent vectors.
Property 5: C0 = 2Z

2
2 is a normal subgroup of the additive

group Z
2
4. For each elementv ∈ Z

2
2 we consider the coset

Cv = v + 2Z
2
2, where addition is inZ2

4. Then,Z2
4 is divided

into 4 cosets.
Property 6: If u1 ∈ Cu and v1 ∈ Cv then u1 + v1 ∈ Cu⊕v

where⊕ represents the addition inZ2
2.

Property 7: If u1 ∈ Cu thenu1 + Cv = Cu⊕v.
Property 8: u + Cu = C0 = 2Z

2
2.

Property 9: The sum of two cosets is defined by

Cu + Cv = {u1 + v1/u1 ∈ Cu and v1 ∈ Cv} (12)

Property 10: The direct sum of two cosets is a coset:
Cu + Cv = Cu⊕v

Property 11: If u1 ∈ Cu then−u1 ∈ Cu.
Property 12: If p1, p2 ∈ Z

2
2\ {0} andp1 6= p2, then

span(2p1, 2p2) = 2Z
2
2 = C0.

Property 13: If pi ∈ Z
2
2 then the sum of 2 different elements

of the cosetCpi
is an element ofC0\{2pi}, for i = 1, 2, 3.

Property 14: One base ofZ2
4 contains at least one vectors

in C0.
Property 15: One base ofZ2

4 contains at most2 vectors in
the same coset.

Property 16: One base ofZ2
4 always contains2 vectors

which belong to2 cosetsCp1
, Cp2

different fromC0 such as the
vectorsp1, p2 are linearly independent. Similarly, the cosets
Cp1

, Cp2
are called linearly independent.



One base ofZ2
4 contains at least one vector inC0 and at

most 2 vectors inC0 (Property 14, 15). Then, there are two
types of fully balanced codes ofZ2

4:

• Type I codes which contain only1 non-null vector inC0

• Type II codes which contain2 non-null vectors inC0

B. Design of fully balanced codes of typeI

A base of a fully balanced code of type I contains only
one vector2pi ∈ C0\{0} = C∗

0 . A second vector2pj ∈ C∗
0 is

obtained as the sum of 2 different vectors of a cosetCpj
: there

are 3 possibilities to choose this coset. Due to the structure
of a cosetCpj

= {pj ,−pj , qj ,−qj}, there are4 different
ways to choose these2 vectors :{pj , qj}, {−pj , qj}, {pj ,−qj},
{−pj ,−qj}. The last vector can be chosen in a different
coset, so there are2 · 4 = 8 possibilities. Therefore, there
are3 · 4 · 8 = 96 different bases of type I inZ2

4.

C. Design of fully balanced codes of typeII

A base of a fully balanced coset code of typeII contains2
different vectors inC∗

0 = 2Z
2
2\{0}. These2 vectors generate

C0 = 2Z
2
2. Therefore, it is sufficient to choose a vectoru1 in

a cosetCu to obtain the whole cosetCu. In the same way, if
we choose another vectorv1 in a cosetCv, the whole coset
Cv is also generated. Moreover,u1 + v1 ∈ Cu⊕v. Therefore,
the sum of the vectoru1 + v1 with the cosetC0 givesCu⊕v.
Hence, all the vectors ofZ2

4 are generated.
The algorithm to obtain a base of type II is as follows:

1) Choose2 different vectors inC∗
0 (3 possibilities);

2) Choose2 different cosetsCu and Cv different from C0

(3 possibilities);
3) For each of these2 cosets, choose one representative

(4 possibilities for each coset).

Therefore, there are3 · 3 · 4 · 4 = 144 bases of typeII in Z
2
4.

Finally, the total number of the bases ofZ
2
4 is: 96+144 = 240

bases.

VI. CODE PERFORMANCE

Before showing all the best codes based on the trace
criterion, we propose herein some trace properties of 4-state
4-PSK STTC:

• Property P1: the codes C =
[

C1C2 C3C4

]

,

C′=
[

– C1C2 C3C4

]

and C′′=
[

C1C2 – C3C4

]

have
the same minimum trace value.

• Property P2: the codes C=
[

C1C2 C3C4

]

and

C′=
[

C2C1 C3C4

]

have the same minimum trace
value.

• Property P3: the codes C=
[

C1C2 C3C4

]

and

C′=
[

C3C4 C1C2

]

achieve the same minimum trace
value.

• PropertyP4: the same minimum trace value is obtained
by using a permutation between the rows of the generator
matrix C, i.e, a permutation between the indices of the
transmit antennas.

TABLE I

STRUCTURE OF4-STATE 4-PSKFULLY BALANCED STTC WITH 2

TRANSMIT ANTENNAS AND min (TR(A)) = 10

C =

[

2 0 2 1

1 2 0 2

]

C′ =

[

0 2 2
C4

2 1 2

]

∀C4 ∈
{[

1
1

]

,
[

1
3

]}

An exhaustive computer search is carried out to detect all
the 4-state 4-PSK STTC with 2 transmit antennas that achieve
the maximum rank and the maximum trace. A set of80 codes
with min (rank(A)) = 2 andmin (tr(A)) = 10 is found. All
these codes offer a minimum product distanced2

p = 4 ·6 = 24
which is the best product distance that can be achieved for
4-state 4-PSK STTC with 2 transmit antennas. Besides, it can
be observed that all these codes are fully balanced STTC of
type II. Since the minimum trace value has been obtained, all
these80 codes can be generated by using Table I with the
trace propertiesP1 to P4. As an example, if we choose from
Table I the generator matrixC, by using the propertiesP1 to
P3, we obtain the generator matrix

[

0 2 1 2
2 3 2 0

]

(in bold in
Tab. II) proposed by Chen [2].

The distance spectrum of all these 80 codes has been also
computed forLf = 3. Among them, there are 16 codes
which achieve 10 as the minimum euclidian distance with
the multiplicity 4 whereas the other 64 vectors have 10 as
the minimum euclidian distance with the multiplicity 6. Then,
all these 16 4-state fully balanced codes which offer the best
performance over fast and slow Rayleigh fading channels with
two or more receive antennas is given in Tab. II below.

TABLE II

4-STATE 4-PSKFULLY BALANCED STTC WITH 2 TRANSMIT ANTENNAS

AND min (TR(A)) = 10

[

1 2 0 2
2 0 2 1

] [

1 2 0 2
2 0 2 3

] [

3 2 0 2
2 0 2 1

] [

3 2 0 2
2 0 2 3

]

[

2 1 2 0
0 2 1 2

] [

2 1 2 0
0 2 3 2

] [

2 3 2 0
0 2 1 2

] [

2 3 2 0
0 2 3 2

]

[

2 0 2 1
1 2 0 2

] [

2 0 2 3
1 2 0 2

] [

2 0 2 1
3 2 0 2

] [

2 0 2 3
3 2 0 2

]

[

0 2 1 2
2 1 2 0

] [

0 2 3 2
2 1 2 0

] [

0 2 1 2
2 3 2 0

] [

0 2 3 2
2 3 2 0

]

In this table, all the codes are related due to the trace
properties presented before. The codes of the third line are
obtained from the codes of the first line by permuting the
indices of the antennas,i.e. the lines of the generator matrix
C. In the same way, the codes of the fourth line are obtained
from the codes of the second line of the table.

In order to confirm the utility of the fully balanced STTC,
an exhaustive computer search of all 4-state STTC has also
been carried out. The obtained results confirm that Table II
contains all the best STTC. There are not other codes with
better performance than the codes given in this table.

For the 16-state 4-PSK STTC, the construction and the
research of the best codes are made from the 4-state 4-PSK
STTC by using Theorem 2. Table III herein contains all the



TABLE III

16-STATE 4-PSKFULLY BALANCED STTC WITH 2 TRANSMIT ANTENNAS

AND min (TR(A)) = 16

[

2 3 2 3 2 1
0 2 2 1 0 2

] [

2 1 2 3 2 3
0 2 2 1 0 2

] [

2 3 2 1 2 1
0 2 2 1 0 2

] [

2 1 2 1 2 3
0 2 2 1 0 2

]

[

0 2 2 1 0 2
2 3 2 3 2 1

] [

0 2 2 1 0 2
2 1 2 3 2 3

] [

0 2 2 1 0 2
2 3 2 1 2 1

] [

0 2 2 1 0 2
2 1 2 1 2 3

]

[

2 1 2 1 2 3
0 2 2 3 0 2

] [

2 3 2 1 2 1
0 2 2 3 0 2

] [

2 1 2 3 2 3
0 2 2 3 0 2

] [

2 3 2 3 2 1
0 2 2 3 0 2

]

[

0 2 2 3 0 2
2 1 2 1 2 3

] [

0 2 2 3 0 2
2 3 2 1 2 1

] [

0 2 2 3 0 2
2 1 2 3 2 3

] [

0 2 2 3 0 2
2 3 2 3 2 1

]

[

3 2 3 2 1 2
2 0 1 2 2 0

] [

1 2 3 2 3 2
2 0 1 2 2 0

] [

3 2 1 2 1 2
2 0 1 2 2 0

] [

1 2 1 2 3 2
2 0 1 2 2 0

]

[

2 0 1 2 2 0
3 2 3 2 1 2

] [

2 0 1 2 2 0
3 2 1 2 1 2

] [

2 0 1 2 2 0
1 2 3 2 3 2

] [

2 0 1 2 2 0
1 2 1 2 3 2

]

[

1 2 1 2 3 2
2 0 3 2 2 0

] [

3 2 1 2 1 2
2 0 3 2 2 0

] [

1 2 3 2 3 2
2 0 3 2 2 0

] [

3 2 3 2 1 2
2 0 3 2 2 0

]

[

2 0 3 2 2 0
1 2 1 2 3 2

] [

2 0 3 2 2 0
3 2 1 2 1 2

] [

2 0 3 2 2 0
1 2 3 2 3 2

] [

2 0 3 2 2 0
3 2 3 2 1 2

]

16-state Balanced STTC which offer the best performance
over fast and slow Rayleigh fading channels with two or more
receive antennas. All these codes havemin (tr(A)) = 16 and
offer a minimum product distanced2

p = 128. Among them,

we found the code proposed by Chen
[

1 2 1 2 3 2
2 0 3 2 2 0

]

(in bold in Tab. III).

Finally, the performance of all these 4-state and 16-state
codes for 2 transmit antennas is evaluated by simulation with
1 and 2 receive antennas over fast Rayleigh fading channels.
Each simulated frame consists of 128 symbols transmitted
from each transmit antennas. The Frame Error Rate (FER)
performance are shown in Fig. 2.

Note that all the codes given in Tab. II achieve the same
performance,i.e. the performance of the Chen’s code [2] : full
rank,min (tr(A)) = 10, d2

p = 24. These codes outperform the
codes proposed in [7].
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Fig. 2. FER performance of the 4-PSK STTC with two transmit antennas

VII. C ONCLUSION

In this paper, a new class of 4-PSK STTC for two transmit
antennas has been proposed. These codes generate the points
of the constellation with the same probability. It has been
shown that the best STTC belong to this class. Therefore,
the systematic search for good codes can be drastically
reduced to this class. The design of these balanced codes
has been described. A complete list of the best 4-state codes
and several 16-state codes for 2 transmit antennas have also
been given. All the fully balanced STTC listed in this paper
are equivalent,i.e. they have the same rank, trace, product
distance and distance spectrum. The simulation results have
shown that they outperform the other STTC for 2 transmit
antennas.
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