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Brittle creep, damage and time-to-failure in rocks

We propose a numerical model based on static fatigue laws in order to model the time-dependent damage and deformation of rocks under creep. An empirical relation between time-to-failure and applied stress is used to simulate the behavior of each element of our finite element model. We first review available data on creep experiments, in order to study how the material properties and the loading conditions control the failure time. The main parameter that controls the failure time is the applied stress. Two commonly used models, an exponential t f ∼ exp(-bσ/σ 0 ) and a power law function

fit the data as well. These time-to-failure laws are used at the scale of each element to simulate its damage as a function of its stress history. An element is damaged by decreasing its young modulus, to simulate the effect of increasing crack density at smaller scales. Elastic interactions between elements and heterogeneity of the mechanical properties lead to the emergence of a complex macroscopic behavior, which is richer than the elementary one. In particular, we observe primary and tertiary creep regimes associated respectively with a power-law decay and increase of the rate of strain, damage event and energy release. Our model produces a power-law distribution of damage event sizes, with an average size that increases with time as a power-law until macroscopic failure. Damage localization emerges at the transition between primary and tertiary creep, when damage rate starts accelerating. The final state of the simulation shows highly damaged bands, similar to shear bands observed in laboratory experiments. The thickness and the orientation of these bands depend on the applied stress. This model thus reproduces many properties of rock creep, which were previously not modeled simultaneously.

Introduction

Rocks subjected to a constant stress, i.e., in creep conditions, deform at a strain rate variable with time. The study of the fracture and deformation of rocks under creep is useful to better understand the behavior of geological structures, such as volcanoes, landslides, rock massifs, and faults, which are subjected to a long-term loading.

Three regimes are usually observed during creep experiments: primary creep (decreasing strain rate), secondary creep (constant strain rate), and, for large enough stress, tertiary creep (increasing strain rate), ending by failure [Scholz , 1968b;Lockner , 1993a;[START_REF] Boukharov | The three processes of brittle crystalline rock creep[END_REF].

During primary creep, the strain rate usually decreases as a power-law of the time since the stress change. This experimental law was first observed for metals [START_REF] Andrade | The viscous flow in metals, and allied phenomena[END_REF], and then for many other materials, such as rocks [Lockner , 1993b] and glass/polyester composite materials [Nechad et al., 2005a]. Andrade's law, which describes the strain rate following a stress step, is similar to Omori's law [START_REF] Omori | On the aftershocks of eathquakes[END_REF] for earthquakes, which characterizes the power-law decay of aftershock rate as a function of the time after the mainshock. This similarity led several authors to suggest that aftershocks are triggered by the coseismic static (permanent) stress increase induced by the mainshock, and to apply brittle creep laws to model the temporal behavior of seismicity [e.g. Scholz , 1968b;[START_REF] Das | Theory of time-dependent rupture in the earth[END_REF][START_REF] Shaw | Generalized omori law for aftershocks and foreshocks from a simple dynamics[END_REF][START_REF] Main | A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences[END_REF][START_REF] Perfettini | Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the chi-chi earthquake, taiwan[END_REF].

The strain rate during secondary creep is nearly constant, and strongly depends on the applied stress. Lockner [1993b] and [START_REF] Ngwenya | A constitutive law for low-temperature creep of water-saturated sandstones[END_REF] found that both an exponential law and a power law provide a good fit to experimental measurements of the strain rate during secondary creep, for different values of the applied stress. The secondary creep regime is not always clearly observed. In some cases, there is rather a cross-over between decaying primary creep and accelerating tertiary creep than a purely stationary regime [Lockner , 1993b].

Creep experiments on heterogeneous materials have revealed a power-law acceleration of strain rate [START_REF] Voight | Materials science laws applies to time forecast of slope failure[END_REF][START_REF] Voight | A relation to describe rate-dependent material failure[END_REF][START_REF] Guarino | Failure time and critical behavior of fracture precursors in heterogeneous materials[END_REF]Nechad et al., 2005a, b] and acoustic emission rate [START_REF] Guarino | Failure time and microcrack nucleation[END_REF][START_REF] Guarino | Failure time and critical behavior of fracture precursors in heterogeneous materials[END_REF] during tertiary creep. Similar power-law accelerations of either strain rate or seismic event rate before rupture have also been observed for natural structures such as landslides [START_REF] Saito | Failure of soil due to creep[END_REF][START_REF] Saito | Forecasting the time of occurrence of a slope failure[END_REF][START_REF] Saito | Forecasting time of slope failure by tertiary creep[END_REF][START_REF] Petley | Patterns of movement in rotational and translational landslides[END_REF], volcanoes [Voight, 1988a] or cliff collapse [START_REF] Amitrano | Seismic precursory patterns before a cliff collapse and criticalpoint phenomena[END_REF].

Main [2000] suggested that the precursory acceleration of seismicity sometimes observed before large earthquakes is similar to the acceleration of deformation and damage during tertiary creep. However, for earthquakes, this precursory acceleration of seismicity is not systematic, but is only significant when averaging over a large number of sequences, and can be explained by the properties of earthquake triggering [START_REF] Helmstetter | Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws[END_REF].

Experimental observations, such as an increase of dilatancy and hydraulic permeability, a decrease of elastic modulus, and the recording of acoustic emission, attest that crack propagation is acting during creep [START_REF] Scholz | Static fatigue of quartz[END_REF][START_REF] Lockner | Development of fracture planesduring creep in granite[END_REF][START_REF] Kranz | Static fatigue of granite at 200c[END_REF][START_REF] Hirata | Fractal structure of spacial distribution of microfracturing in rock[END_REF][START_REF] Atkinson | Fracture mechanics of rock[END_REF]Lockner , 1993b;[START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF][START_REF] Kawada | Viscoelastic behavior and temporal fractal properties of lherzolite and marble: possible extrapolation from experimental results to the geological time-scale[END_REF]. Different approaches are used to model the time-dependent deformation of rocks. Constitutive laws, based on laboratory experiments, provide a relation between strain, stress, and strain rate [START_REF] Voight | Materials science laws applies to time forecast of slope failure[END_REF][START_REF] Lockner | A generalized law for brittle deformation of westerly granite[END_REF][START_REF] Shcherbakov | Damage and selfsimilarity in fracture[END_REF]. These models reproduce the behavior of different types of rocks under different loading conditions (creep, constant stress rate or strain rate). For instance, the constitutive law derived by [START_REF] Lockner | A generalized law for brittle deformation of westerly granite[END_REF] reproduces Andrade's law in the primary creep regime, as well as a power-law acceleration of the strain rate during tertiary creep.

Other approaches to model brittle creep often involve a network of a large number of elements, which interact by sharing the applied load equally among all intact elements (fiber bundle models) [START_REF] Coleman | Time dependence of mechanical breakdown phenomena[END_REF][START_REF] Coleman | Statistics and time dependence of mechanical breakdown in fibers[END_REF][START_REF] Vujosevic | Creep rupture of polymers -a statistical model[END_REF][START_REF] Ciliberto | The effect of disorder on the fracture nucleation process[END_REF][START_REF] Politi | Failure time in the fibre-bundle model with thermal noise and disorder[END_REF][START_REF] Hidalgo | Creep rupture of viscoelastic fiber bundles[END_REF][START_REF] Turcotte | Micro and macroscopic models of rock fracture[END_REF][START_REF] Pradhan | Failure properties of fiber bundles[END_REF]Nechad et al., 2005a, b]. Each element is supposed to represent the mesoscale, much larger than the size of one crack, and much smaller than the system size. These models only provide the temporal evolution of strain and damage during creep, but cannot model its spatial distribution (localization before failure), or the size distribution of damage events. A few models use elastic long-range interactions [START_REF] Sornette | Dendrites and fronts in a model of dynamical rupture with damage[END_REF], and can thus model the progressive nucleation, growth and fusion between microcracks, leading to a fractal network of micro-cracks [START_REF] Sornette | Dendrites and fronts in a model of dynamical rupture with damage[END_REF]. Each element has either an elastic-brittle [START_REF] Coleman | Time dependence of mechanical breakdown phenomena[END_REF][START_REF] Coleman | Statistics and time dependence of mechanical breakdown in fibers[END_REF][START_REF] Vujosevic | Creep rupture of polymers -a statistical model[END_REF][START_REF] Ciliberto | The effect of disorder on the fracture nucleation process[END_REF][START_REF] Politi | Failure time in the fibre-bundle model with thermal noise and disorder[END_REF][START_REF] Turcotte | Micro and macroscopic models of rock fracture[END_REF][START_REF] Pradhan | Failure properties of fiber bundles[END_REF][START_REF] Sornette | Dendrites and fronts in a model of dynamical rupture with damage[END_REF] or viscous-brittle rheology [START_REF] Hidalgo | Creep rupture of viscoelastic fiber bundles[END_REF]Nechad et al., 2005a, b]. The strength of each element depends on time, and on the stress or strain on this element. Complexity is introduced in these models using (i) thermal noise, by introducing a failure probability per time unit that depends on the stress or strain on each element, or by adding random fluctuations to the stress [START_REF] Coleman | Time dependence of mechanical breakdown phenomena[END_REF][START_REF] Coleman | Statistics and time dependence of mechanical breakdown in fibers[END_REF][START_REF] Vujosevic | Creep rupture of polymers -a statistical model[END_REF][START_REF] Ciliberto | The effect of disorder on the fracture nucleation process[END_REF][START_REF] Politi | Failure time in the fibre-bundle model with thermal noise and disorder[END_REF][START_REF] Turcotte | Micro and macroscopic models of rock fracture[END_REF][START_REF] Pradhan | Failure properties of fiber bundles[END_REF], and/or (ii) quenched disorder, i.e., frozen heterogeneity of the mechanical properties of each element [START_REF] Sornette | Dendrites and fronts in a model of dynamical rupture with damage[END_REF][START_REF] Ciliberto | The effect of disorder on the fracture nucleation process[END_REF][START_REF] Politi | Failure time in the fibre-bundle model with thermal noise and disorder[END_REF]Nechad et al., 2005a, b].

At the microscopic scale, other studies modeled the growth of individual cracks, and the resulting macroscopic strain [e.g. Lockner , 1993b;[START_REF] Miura | Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radiactive waste disposal system[END_REF]. Lockner [1993b] derived a law for the temporal evolution of strain based on reaction rate theory. His model recovers Andrade's law for the primary creep regime, and reproduces empirical laws between strain rate and stress during secondary creep. But this model cannot produce an accelerating tertiary creep because it does not include crack interactions.

To our knowledge, no model has attempted to model at the same time all properties of rocks under creep, including the temporal evolution of strain and damage during primary, secondary and tertiary creep, the progressive damage localization before failure, as well as the power-law distribution of acoustic event sizes.

In this paper, we develop a model for the time-dependent deformation and damage of rocks. Our model reproduces both the temporal evolution of damage and its spatial distribution. It is a 2D finite-element model with an elasticbrittle rheology. The damage parameter of each element, which represents the density of fractures in this element, evolves as a function of the stress history. It can be compared with acoustic emission recorded during creep experiments. We first review experimental results on the influence of the loading conditions (stress, fluid pressure, temperature) on the time to failure. We compare two models for the relation between time to failure and applied stress: exponential and power law functions of the applied stress. These relations are then used as an input for our numerical model, in order to characterize the damage of each element as a function of the load applied to this element.

Our model is an extension of the time-independent model introduced by [START_REF] Amitrano | From diffuse to localized damage through elastic interaction[END_REF] and [START_REF] Amitrano | Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b-value[END_REF].

In this previous model, an element is damaged (its Young's modulus decreased) only when its stress reaches a given threshold. The macroscopic behavior of the system is characterized by a power-law distribution of avalanches, damage localization, and a transition from brittle to ductile behavior as a function of the confining pressure or of the friction coefficient. These properties are not included in the elementary behavior, but emerge from the interaction between elements, showing that deformation process is a complex phenomenon [START_REF] Amitrano | Emerging complexity in a simple model of the mechanical behavior of rocks[END_REF].

This previous model was however unable to explain the delayed failure of rocks under a stress smaller than its instantaneous strength. The introduction of a time-to-failure law in our new model enable us to reproduce the time evolution of the strain and acoustic emission observed experimentally (primary, secondary, and tertiary creep regimes), as well as the progressive damage localization before failure. Analytical results are obtained for a simplified version of our model, which reveal the main mechanisms that control the temporal evolution of strain and damage. Table 1 summarizes the main notations used in this paper.

Time-to-failure of rocks

When subjected to a constant stress smaller than the instantaneous strength, rocks deform and eventually fail, after a time delay that depends on the applied stress. In this section, we first describe theoretical and empirical models for the relation between failure time and applied stress. We then review available experimental results to test which model best fits the data.

Delayed failure and sub-critical crack growth

The subcritical growth of microcracks, also called static fatigue, is suggested to be the main mechanism responsible for the brittle creep of rocks, and for delayed failure [START_REF] Scholz | Static fatigue of quartz[END_REF]Lockner , 1993b]. Laboratory experiments have monitored the subcritical growth of cracks, for a stress intensity factor K smaller than the critical intensity factor Kc which corresponds to instantaneous failure [see [START_REF] Atkinson | Fracture mechanics of rock[END_REF], for a review]. Macroscopic failure is thus assumed to occur when the crack density and/or the crack velocity reaches a threshold.

Subcritical cracking can be explained by the reaction rate theory, considering that atomic bonds may break due to thermal fluctuations. This is enhanced by the stress concentration at the crack tips [see Atkinson, 1991, p 128-130, for a more detailed presentation]. Therefore the subcritical crack growth depends on ambient conditions and is enhanced when temperature is increased. Considering an exponential dependence between stress and activation energy, [START_REF] Wiederhorn | Stress corrosion and static fatigue of glass[END_REF] proposed an empirical law for glasses that describe well a wide range of experimental observations, including for rocks [START_REF] Atkinson | Subcritical crack growth in geological materials[END_REF].

V = V0 exp -W0 + BK RT (1)
where V is the crack propagation velocity, R is the gas constant, T the temperature, W0 the activation energy, K the stress intensity factor, B and V0 are constants. The parameters W0, B and V0 depend on the material properties and on the environmental conditions. The stress intensity factor K is proportional to σ √ L, where L is the crack length, with an additional factor which depends on the crack shape. Considering a different stress dependence of the chemical reactions involved in static fatigue, a power law relation between crack velocity and intensity factor has been proposed by [START_REF] Charles | The static fatigue of glass[END_REF] for glass and applied to rocks [e.g. [START_REF] Atkinson | Subcritical crack growth in geological materials[END_REF]:

V = V0 K Kc q exp -W0 RT .
(2)

The exponent q is usually large, i.e, q ≈ 20, so that the power law form (2) is almost indistinguishable from the exponential law (1).

The relationships (1) and ( 2) describe the propagation of single cracks. They can be used to infer the time-to-failure of a sample as a function of the loading conditions.

Models for time to failure

The time-to-failure can be deduced from relations (1) or (2), using the definition K ∼ σ √ L, and assuming that failure occurs when the crack velocity diverges or when it reaches a given threshold [START_REF] Wiederhorn | Stress corrosion and static fatigue of glass[END_REF][START_REF] Das | Theory of time-dependent rupture in the earth[END_REF][START_REF] Shaw | Generalized omori law for aftershocks and foreshocks from a simple dynamics[END_REF]. This last hypothesis is in agreement with the experimental observations of [START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF], who observed that, for different stress values, the amount of acoustic emission, the permeability and the total deformation at failure vary by less than 20%, while the time-to-failure varies by several orders of magnitude. For an exponential relation (1), the average time-to-failure is related to the applied stress by [START_REF] Wiederhorn | Stress corrosion and static fatigue of glass[END_REF][START_REF] Das | Theory of time-dependent rupture in the earth[END_REF] 

t f = t0 exp -b σ σ0 (3) 
where σ is the major stress and σ0 is the instantaneous strength (i.e., t f = 0 for σ > σ0).

Assuming a power-law relation between V and K given by (2) , the time to failure is [START_REF] Charles | The static fatigue of glass[END_REF] 

t f = t ′ 0 σ σ0 -b ′ (4)
with an exponent b ′ = q -2. The relation (4) has also been observed experimentally [START_REF] Cruden | The static fatigue of brittle rock under uniaxial compression[END_REF]. In both cases, exponential (3) and power law (4) models, the constants t0 or t ′ 0 , b or b ′ , and σ0 depend on rock properties and ambient conditions [see Scholz , 1972, and references therein].

Although not observed in the laboratory because of time constraints there should be a lower cut-off for subcritical crack growth corresponding to the stress level under which corrosion blunts the crack tips [START_REF] Cook | Crack propagation thresholds: A measure of surface energy[END_REF][START_REF] Freiman | Effects of chemical environments on slow crack growth in glasses and ceramics[END_REF]. As no experimental values are available for estimating this cut-off, we have not included this phenomenon in our model.

Review of experimental data

The time-to-failure of rocks under creep is suggested empirically to decrease with the stress either exponentially or as a power law [Scholz , 1968b[START_REF] Scholz | Static fatigue of quartz[END_REF][START_REF] Cruden | The static fatigue of brittle rock under uniaxial compression[END_REF][START_REF] Kranz | The effect of confining pressure and difference stress on static fatigue of granite[END_REF][START_REF] Kranz | Static fatigue of granite at 200c[END_REF][START_REF] Boukharov | The three processes of brittle crystalline rock creep[END_REF][START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF][START_REF] Lockner | A generalized law for brittle deformation of westerly granite[END_REF][START_REF] Di Giovambattista | An analysis of the process of accelaration of seismic energy in laboratory experiments on destruction of rocks and before earthquakes on kamchatka and in italy[END_REF][START_REF] Masuda | Effects of water on rock strength in a brittle regime[END_REF][START_REF] Kawada | Viscoelastic behavior and temporal fractal properties of lherzolite and marble: possible extrapolation from experimental results to the geological time-scale[END_REF]. The same relations are found for other heterogeneous media such as concrete, glass fiber composite, plexiglass or chipboard wood panels [e.g. [START_REF] Guarino | Failure time and microcrack nucleation[END_REF][START_REF] Ciliberto | The effect of disorder on the fracture nucleation process[END_REF][START_REF] Purnell | A static fatigue model for the durability of glass reinforced cement[END_REF][START_REF] Guarino | Failure time and critical behavior of fracture precursors in heterogeneous materials[END_REF].

Hereafter we analyze data published in the literature [START_REF] Scholz | Static fatigue of quartz[END_REF][START_REF] Kranz | The effect of confining pressure and difference stress on static fatigue of granite[END_REF][START_REF] Kranz | Static fatigue of granite at 200c[END_REF][START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF][START_REF] Masuda | Effects of water on rock strength in a brittle regime[END_REF] in order to quantify the impact of the loading conditions (stress, confining pressure, temperature, saturation) on the time-to-failure of samples loaded under creep conditions (i.e. constant stress below the instantaneous strength σ0). We first test which time-to-failure relation, exponential (3) or power-law (4), better explains the data. In order to compare uniaxial (σ1 > σ2 = σ3 = 0) and triaxial (σ1 > σ2 = σ3 = 0) creep tests, the applied major stress σ has been normalized by the instantaneous strength σ0 (maximum value of the applied stress for short times, i.e., few minutes, failure). For each data set, we perform a linear least-squares fit for the exponential law log(t f ) = -bσ/σ0 + log(t0) and for the power law model log(t f ) = -b ′ log(σ/σ0) + log(t ′ 0 ). For each fit, we estimate the regression coefficients log(t0) or log(t ′ 0 ), and b or b ′ , and the linear correlation coefficient r between log(t f ) and σ/σ0 (exponential fit (3)) or log(σ/σ0) (powerlaw relation ( 4)). The results of these fits are presented in Table 2 and in Figure 1.

We find that, for all data sets, the exponential and power law fits are equivalent in terms of correlation coefficient. This small difference between the exponential and powerlaw fits can be attributed to both the high exponent values (b and b ′ ranging from 20 to 140) and to the narrow range of normalized stress (σ/σ0 ranging from 0.7 to 0.98). Under these conditions the two laws cannot be distinguished. For each law, the exponent b or b ′ indicates the stress dependence of the time to failure. A given variation of the applied stress has a stronger impact on the time-to-failure for a higher value of b or b ′ .

Most creep experiments are performed at room conditions (no confining pressure, temperature near 20 • C, water saturation corresponding to the ambient air), but a few authors have investigated the impact of environmental conditions on the time to failure. They found that the time-to-failure increases when increasing the confining pressure [START_REF] Kranz | The effect of confining pressure and difference stress on static fatigue of granite[END_REF][START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF][START_REF] Lockner | A generalized law for brittle deformation of westerly granite[END_REF], decreasing the temperature [START_REF] Scholz | Static fatigue of quartz[END_REF][START_REF] Kranz | Static fatigue of granite at 200c[END_REF] or the water saturation [START_REF] Scholz | Static fatigue of quartz[END_REF][START_REF] Kranz | Static fatigue of granite at 200c[END_REF][START_REF] Masuda | Effects of water on rock strength in a brittle regime[END_REF]. [START_REF] Scholz | Static fatigue of quartz[END_REF] observed experimentally the relation (3) for single-crystal quartz samples broken in uniaxial compression. He found that the characteristic time t0 in (3) decreases with the water concentration as t0 ∼ CH 2 O -α , and decreases with the temperature as t0 ∼ exp(W0/RT ). These results suggest that static fatigue of quartz can be explained by corrosion microcracking. The exponent b in (3) did not show any significant change with the water concentration or the temperature, though not enough experiments were performed to verify the independence of b and T . The bexponent was only sensitive to the microstructure, with a larger b-value for samples loaded along the c-axis than for the a-axis (see Table 1).

The triaxial tests of [START_REF] Kranz | The effect of confining pressure and difference stress on static fatigue of granite[END_REF] suggest an increase of b and t0 with the confining pressure σ3. But the number of samples in these experiments is very small, and more experiments should be done to confirm this result. This can be related to the impact of the confining pressure which tends to decrease the stress intensity factor K. Another explanation is that cracks close when increasing the confining pressure, so that part of the mechanical energy is consumed by friction. The experiments of [START_REF] Kranz | Static fatigue of granite at 200c[END_REF] give slightly larger values of b and t0 for the dry sample than for the wet sample. [START_REF] Kranz | Static fatigue of granite at 200c[END_REF] also found a decrease of b and t0 with the temperature, as expected for stress-corrosion cracking (1).

In this paper, we will consider only the effect of stress on the time-to-failure, using expressions (3) or ( 4). The influence of other parameters, such as temperature, water saturation and confining pressure, can be accounted for by changing the parameters t0, b and b ′ . For geological objects, such as volcanoes, landslides or faults, the pressure, the temperature and the water content may be very variable, e.g., as a function of depth, or change with time. We thus need to account for this variability when modeling the deformation and failure of geological objects, by changing the parameters of the time-to-failure law. For instance, it is well established that landslides movement accelerates in wet condition [e.g. [START_REF] Caine | The rainfall intensity-duration control debrisflows[END_REF]. Fluids decrease the effective normal stress, thus reducing the shear strength of the rock mass. But fluids also increase the strain rate and decrease the time to failure due to chemical reactions, as shown in the creep experiments of [START_REF] Scholz | Static fatigue of quartz[END_REF].

Description of the numerical model

The model we develop here is based on the progressive damage model of [START_REF] Amitrano | From diffuse to localized damage through elastic interaction[END_REF]. This model simulates a macroscopic behavior that ranges from brittle to ductile, associated to localized or diffuse damage respectively. This model also describes the evolution of acoustic emission (size and location of rupture avalanches) during the progressive damage process. It allows us to simulate a large range of observations, from the laboratory scale [START_REF] Amitrano | Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b-value[END_REF] to the Earth's crust scale [START_REF] Sue | Mechanical behavior of western alpine structures inferred from statistical analysis of seismicity[END_REF][START_REF] Amitrano | Emerging complexity in a simple model of the mechanical behavior of rocks[END_REF], but is restricted to the time-independent behavior of rocks, i.e., short times. We first summarize the main features of this model, and then focus on incorporating time dependence in the model.

Time-independent model

The system is discretized using a 2D finite element method with plane strain assumption. The model is based on progressive isotropic elastic damage. When the stress on an element exceeds a damage threshold, its elastic modulus Ei is modified according to

Ei(n + 1) = Ei(n)(1 -D0) , ( 5 
)
where D0 is a constant damage parameter (D0 = 0.1 in our simulation). After n damage events, the effective modulus Ei(n) of element i is given by

Ei(n) = (1 -D0) n Ei,0 = (1 -Di(n)) Ei,0 , (6) 
where Ei,0 is the initial Young's modulus, and the damage parameter is given by Di

(n) = 1 -(1 -D0) n .
This relation ( 6) describes the damage of a volume much larger than the defect size (i.e., cracks). The damage parameter Di(n) is related to crack density [see [START_REF] Kemeny | Effective moduli, nonlinear deformation and strength of a cracked elastic solid[END_REF], for a review]. Because of elastic interactions, stress redistribution around a damaged element can induce an avalanche of damage events. The total number of damaged elements during a single loading step is the avalanche size, which is comparable to the size of an acoustic emission in laboratory experiments.

The Mohr-Coulomb criterion is used as a damage threshold. The instantaneous strength σ0 is determined for each element by

σ0 = σ3 1 + sin φ 1 -sin φ + 2C cos φ 1 -sin φ , ( 7 
)
where C is the internal cohesion, φ the internal friction angle, and σ3 is the minor stress on the element. We choose this criterion because of its simplicity, and because it allows to check independently the influence of each parameter (C, φ, and normal stress σ3). Without time dependence, an avalanche occurs only when the stress is increased, by increasing the vertical displacement of the upper model boundary.

In the absence of heterogeneity, the behavior of the model is entirely homogenous, i.e., no damage localization occurs, and the local behavior is replicated at the macroscopic scale. It is necessary to introduce heterogeneity to obtain a macroscopic behavior different from those of the elements. In order to model material heterogeneity, the cohesion of each element C is drawn randomly from a uniform distribution in the range C1 -C2 (25-50 MPa). Due to this heterogeneity, the stress on each element is different from the macroscopic stress imposed at the upper boundary of the model. The other mechanical parameters are fixed (Young's modulus E=50 GPa, Poisson coefficient ν=0.25, internal friction coefficient tan φ=0.5).

According to this mesoscale approach, the model neglects the details of microcracking processes at small scale. It is well established that at the grain size the deformation is dominated by tensile cracks orientated parallel to σ1, particularly visible through the phenomenon of dilatancy [Scholz , 1968a;Lockner et al., 1991;[START_REF] Moore | The role of microfracturing in shear-fracture propagation in granite[END_REF][START_REF] Vermilye | The process zone: A microstrucutral view of fault growth[END_REF][START_REF] Katz | Microfracturing, damage, and failure of brittle granites[END_REF]. Small scale tensile cracks are simulated in our model by decreasing the Young's modulus of an element, to simulate the effect of increasing micro-crack density. This mesoscale approach may be used as an alternative [START_REF] Amitrano | Failure by damage accumulation in rocks[END_REF] to the microscopic approach, dedicated to the study of fracture propagation [e.g. Lockner and Madden, 1991a, b;[START_REF] Reches | Nucleation and growth of faults in brittle rocks[END_REF], and to the macroscopic approach based on constitutive laws [e.g. [START_REF] Lockner | A generalized law for brittle deformation of westerly granite[END_REF][START_REF] Kawada | Viscoelastic behavior and temporal fractal properties of lherzolite and marble: possible extrapolation from experimental results to the geological time-scale[END_REF]. This allow us to investigate the collective behavior of interacting elements and the emergence of a complex macroscopic behaviour.

Time-dependent model

In order to simulate the time-dependent behavior of rocks, we introduce a time-to-failure law to model the failure by static fatigue of each element i when subjected to a constant stress σi (major stress on this element) smaller than its instantaneous strength σ0,i. We use either the exponential (3) or the power-law (4) relation between the time-to-failure of each element and its normalized stress σi/σ0,i. The system is loaded by imposing a constant stress σ on its upper boundary. The simulation stops when the macroscopic strain reaches a threshold ǫc, as observed experimentally [e.g. [START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF][START_REF] Kranz | Static fatigue of granite at 200c[END_REF]. We use ǫc = 0.03.

An element fails either when the time t is equal to its failure time ti, or, during an avalanche, when the stress σi on this element reaches the rupture criterion σ0,i (7). The damage parameter, the stress, the strength, and the failure times of all elements are updated after each failure.

We characterize the state of each element by its failure time ti, and by a parameter pi that represents the proportion of consumed lifetime. This allows us to estimate the remaining time-to-failure for an element taking into account its stress history. The parameter ti gives the failure time of this element, measured from the beginning of the simulation, in the absence of interactions between elements. Initially, the failure time of the i th element is given by the time-to-failure law, i.e., ti(0) = t f (σi, σ0,i), and the proportion of consumed lifetime is pi(0) = 0. The time-to-failure t f (σi, σ0,i) is given either by the exponential (3) or the power-law (4) relation.

After each damage event, we update the damage, the stress, and the strength of each element, and then its consumed lifetime and its failure time. If element i was not broken during the first event at time t(1), the proportion of consumed lifetime is simply given by pi(1) = t1/ti(0). For all elements damaged during the avalanche, the proportion of consumed lifetime is reset to zero pi(1) = 0. The new failure time of each element, measured from the origine t = 0, is then given by

ti(1) = t1 + t f (σi, σ0,i) (1 -pi(1)) . ( 8 
)
After the n th avalanche, at time t(n), the proportion of consumed lifetime for elements that are not damaged during the n th avalanche is updated according to

pi(n) = pi(n -1) + t(n) -t(n -1) ti(n -1) -t(n -1) . ( 9 
)
For all elements damaged during the avalanche, the proportion of consumed lifetime is reset to zero:

pi(n) = 0 (10)
Extrapolating (8) to n > 1, the failure time after the n th avalanche is given by

ti(n) = t(n) + t f (σi, σ0,i) (1 -pi(n)) , (11) 
This approach ( 11) and ( 9) was experimentally tested to estimate the time-to-failure of samples subjected to a stress increase [START_REF] Guarino | Failure time and microcrack nucleation[END_REF] and gave satisfactory results.

In expression ( 11), the time-to-failure is independent of damage. In order to take into account experimental observations showing that the time-to-failure decreases linearly with the amount of damage [e.g. [START_REF] Ray | Effect of loading an strain rate on the mechanical behaviour of sandstone[END_REF], we introduce the damage factor (1 -Di(n)) in the previous expression ( 11)

ti(n) = tn + t f (σi, σ0,i) (1 -pi(n)) (1 -Di(n)) , (12) 
where Di(n) defined by ( 6) is the total damage parameter of element i after n damage events.

We have tested both laws ( 11) and ( 12) in our numerical simulations. Both laws give similar results in the primary creep regime, but the introduction of the damage parameter in ( 12) is necessary to obtain a power-law acceleration in the tertiary creep regime. In comparison, the choice of the exponential (3) or the power-law (4) time-to-failure relation has little influence in the simulations.

Results of the numerical simulations

Temporal evolution of strain and damage

Figure 2 shows the typical evolution of strain, number of damage events, and energy release up to failure, for two simulations with σ/σ0=0.80 and b=40 or b ′ =40. We obtain similar results for the exponential (3) and power-law (4) time-to-failure laws. For all values of σ and b or b ′ , and when decreasing the time-to-failure of each element with damage according to (12), we observe both primary and tertiary creep regimes, characterized respectively by decreasing and increasing strain rate. We observe a similar behavior for the number of damage events and for the cumulative energy release. The secondary creep regime does not appear in the simulations (no stationary regime), but may be rather defined as the transition between primary and tertiary creep corresponding to the minima of the strain rate. Figure 3 shows the rate of damage events, the strain rate, and the rate of energy release as a function of time (normalized by the failure time tc of each simulation), for different values of the applied stress.

During primary creep, both the strain rate ǫ(t), the rate of damage events ṅ(t) and the energy release rate Ẇ (t) decay with time approximately as a power-law, equivalent to Omori's law [START_REF] Omori | On the aftershocks of eathquakes[END_REF] for earthquakes, and known as Andrade's law [START_REF] Andrade | The viscous flow in metals, and allied phenomena[END_REF] for the strain rate in creep experiments:

ǫ(t) ∼ 1 t pǫ (13) ṅ(t) ∼ 1 t pn (14) Ẇ (t) ∼ 1 t p W (15)
with both exponents pǫ, pn and pW , slightly smaller than 1 (see Figure 3). Experimentally, the exponent pn was found equal to 0.5 ± 0.25 by [START_REF] Scholz | Static fatigue of quartz[END_REF], for quartz samples. [START_REF] Andrade | The viscous flow in metals, and allied phenomena[END_REF] suggested an exponent pǫ = 2/3 for metals. This value has been reproduced by numerical simulations based on interacting dislocations [START_REF] Miguel | Dislocation jamming and andrade creep[END_REF]. Nechad et al. [2005a] reported average values pǫ = 0.86 and pn = 0.63, estimated for 15 samples of fiberglass composites loaded under constant tension.

After the primary creep regime, the strain rate and the damage rate increase due to interactions between elements and due to increasing damage. However, this tertiary creep regime is observed only when using expression (12) for the failure time of each element as a function of damage, stress and strength. Otherwise, if the time-to-failure does not decrease with damage, the simulation reaches a constant stationary regime at large times, characterized by a constant strain rate and event rate. These results are understood qualitatively by the analytical study presented in section 5.

In the model, when using expression (12) for the failure time, we observe a power-law acceleration of the strain rate ǫ, of the rate of damage events ṅ, and of the energy release rate Ẇ

ǫ(t) ∼ 1 (tc -t) p ′ ǫ (16) ṅ(t) ∼ 1 (tc -t) p ′ n (17) Ẇ (t) ∼ 1 (tc -t) p ′ W ( 18 
)
The critical time tc in ( 16), ( 17) and ( 18) is the time of the end of the simulation, when the strain ǫ reaches the threshold ǫc. The exponent p ′ n is smaller than 1, typically p ′ n ≈ 0.8. The strain rate and energy release accelerate faster than the rate of damage events, with exponents p ′ W ≈ p ′ ǫ ≈ 1.3. These exponents do not depend on the applied stress (except for very large stress σ/σ0 = 0.95), and on b or b ′ (as long as b ≫ 1 or b ′ ≫ 1 as observed experimentally).

The macroscopic failure time tc has the same dependence with the applied stress as the time-to-failure of each element (given by ( 3) or ( 4)). We find at the macroscopic level the same law as we used as input at the scale of each element.

The curves in Figure 3 show that, when normalizing time by tc, the curves of ǫ(t), ṅ(t) or Ẇ (t) for different values of the applied stress are almost superposed. In particular, the transition time tm between primary and tertiary creep (given by the minima of ǫ(t)) is about half the failure time, i.e, tm ≈ tc/2. A similar result was previously obtained experimentally by Nechad et al. [2005a] for creep tests on glass-fiber composites, who observed tm ≈ 2/3 tc, and was also observed in a creep model of visco-elastic fibers [Nechad et al., 2005a].

Distribution of event sizes

Figure 4 shows the energy distribution P (∆W, t) and its evolution with time. For small stress σ/σ0 = 0.25, the instantaneous energy distribution is very narrow, with an average value and a standard deviation increasing with time. When integrating over the complete simulation, the event size distribution is close to a power-law P (∆W ) ∼ ∆W -1-β , with β ≈ 1, larger than the value β = 2/3 commonly observed for the distribution of earthquakes seismic moments [START_REF] Kagan | Universality of the seismic moment-frequency relation[END_REF]. For larger stresses, the event size distribution is almost independent of time. There is only a small increase of the fraction of large events before tc. However, the absence of a clear acceleration for large stress may be due to the small number of events observed very close to failure. Figure 5 shows the evolution of the median energy of damage events as a function of the time before failure, t-tc. For all values of the stress, the typical energy increases as a power-law before failure, with an exponent around 0.3. We observed similar results if we consider the average energy instead of the median, with larger fluctuations. Figure 6 shows the cumulative energy distribution, for all events in the simulation, for different stress values. For small stress σ/σ0 < 0.9, P (∆W ) is a power-law for small energies with an exponential fall-off, which progressively vanishes when stress increases. For larger stress, P (∆W ) shows a small excess of large events relative to the power-law distribution observed for small ∆W .

Spatial distribution of damage

Figure 7 shows the final damage state Di(n) defined by ( 6), for different values of the applied stress. We see that damage becomes more localized as stress increases. The thickness of the bands decreases with the applied stress. For σ/σ0 = 0.5, it is about the size of 10 elements (for a system of 32 by 16 elements). For larger stress σ/σ0 = 0.95, the width of the damage bands is only one element. The orientation of the shear bands relative to the major stress also depends on the applied stress, from ≈ 45 o for small stress σ/σ0 = 0.5, down to ≈ 30 o for larger stresses. For large stress (thin bands), the orientation and the width of the shear bands are constrained by the meshing structure.

In order to quantify the spatial structure of the damage, we have calculated the directional spatial correlogram (DSC) of the total damage Di(n) = 1 -Ei(n)/Ei,0 (where n is the number of damage events of element i). For a given direction d, the DSC is calculated as the autocorrelation function along this direction, i.e., the correlation between the damage value observed at point x and at point x ′ separated by a distance λ along direction d (at an angle α relative to the loading direction). The correlation is calculated as the covariance between D( x) and D( x

+ λ d) divided by the variance of D( x) DSC(α, λ) = r D( x), D( x + λ d) = var D( x), D( x + λ d) var (D( x)) . (19) 
We have calculated the DSC as a function of the distance λ for all values of α between 0 and 180 • , with a step of 5 • . This analysis reveals the spatial correlation of the damage and its anisotropy.

The direction of the bands is characterized by a long range correlation, and the perpendicular direction by a correlation length equivalent to the band thickness.

For each direction α, the DSC is maximum for short distances, and then decreases more or less continuously for increasing λ, as shown in Figure 8, for the directions parallel and perpendicular to the bands. Figure 8 shows that the correlation length is almost zero at short times, and then increases with time. For large distances (larger than the band width), DSC(α, λ) is maximum in the direction of the damage bands.

In order to quantify the damage anisotropy, we have calculated the difference between the correlogram in the direction α, and its perpendicular direction, integrated over all distances λ.

A(α) = λmax 0 [DSC(α, λ) -DSC(α + π/2, λ)] dλ . (20)
If the damage is anisotropic, the coefficient A is large in the direction of the damage band, as the difference between DSC in this direction and the perpendicular is maximal.

We can identify in Figure 9 the band direction α band = 30 o for which A(α) is maximum. Figure 9 shows A(α) for different times during the simulation. Each curve corresponds to a constant number n = 800 of events. Damage is initially isotropic (A(α) is near zero and is independent of α), and becomes anisotropic during tertiary creep. The time t/tc ≈ 0.5 when anisotropy appears coincides with the transition between primary and tertiary creep, when strain rate and damage rate start increasing.

Analytical study

In this section, analytical results are obtained for a simplified version of our model, which reveal the main mechanisms that control the temporal evolution of strain, energy and damage.

Relation between damage and strain

Considering a uniaxial stress state which can be described by the scalar value of the major stress σ (a similar analysis can be performed for a tensorial description of the stress state), we can estimate the strain variation induced by a single damage event. We can then derive an approximate analytical relation between the strain rate ǫ(t) and the rate of damage events ṅ(t) by assuming that

• the average number s of elements which breaks during each avalanche does not change with time (this is not always the case in the numerical simulations);

• before the avalanche, the Young's modulus of an element i that breaks is equal to the average Young's modulus of the system Ei =< E >= E;

• all elements have the same major stress, equal to the applied load σ, and the same axial deformation ǫ = Eσ.

Under these assumptions, the new Young's modulus of a damaged element after an avalanche is

E ′ i = Ei (1 -D0) = E (1 -D0).
The new average Young's modulus E ′ of the system of N elements after an avalanche of size s is

E ′ = E (N -s) N + E s (1 -D0) N = E N -s D0 N . (21) 
The deformation of the system after the avalanche is

ǫ ′ = σ E ′ = σ E N N -s D0 = ǫ sN N -s D0 . ( 22 
)
We can write the strain rate ǫ(t) as

ǫ(t) = ǫ ′ -ǫ ∆t = ǫ ∆t D0 N -s D0 ( 23 
)
where ∆t is the inter-event time at time t.

We can now compute the rate of damage events at time t as ṅ(t) = 1/∆t. Using (23), we get the relation between strain rate and damage rate:

ṅ(t) = ǫ(t) ǫ(t) N -s D0 s D0 (24) 

Relation between strain and released energy

The energy release induced by an avalanche of size s is given by the change in elastic energy (assuming a constant uniform stress σ on all elements)

∆W = 1 2 ∆(σ ǫ) = 1 2 σ ∆ǫ . ( 25 
)
Using expression (22), we obtain

∆W = σ ǫ 2 s D0 N -s D0 . ( 26 
)
The fact that energy release is proportional to strain explains why the exponents for strain rate and energy rate are very similar in our simulations, both during primary and tertiary creep. Differences between them can be related to the assumption of constant stress conditions, which is verified only on average. Note that both strain change and energy release increase as the Young's modulus E decreases (i.e., as damage increases). The relation between the energy release rate and the strain rate also depends on the avalanche size s. At the beginning of the simulation, during primary creep, the mean size of damage events is essentially equal to one. The energy rate is thus proportional to strain rate, thus pǫ = pW . During tertiary creep, the mean avalanche size increases, thus pW differs from pǫ.

Primary creep

We derive here an approximate analytical solution for the evolution of the damage rate, the strain rate, and the energy release rate during primary creep. In our model, interactions between elements are relatively weak at short times, so that the stress σi of each element is close to the externally applied stress σ. We consider only strength heterogeneity. The time at which each element first fails is thus close to its initial time-to-failure ti(0) = t f (σ, σ0,i). Assuming that no element has ruptured more than once, the damage rate ṅ in this regime is simply proportional to the probability distribution function (pdf) of t f (σ, σ0,i). The variability of t f (σ, σ0,i) results from the initial heterogeneity of the strength σ0.

Therefore, the damage rate in the primary creep regime is approximately equal to:

ṅ(t) = dN dt f (σ, σ0) = dN dσ0 dσ0 dt f (σ, σ0) (27) 
Initially, the strength σ0 has a uniform distribution between σ0 1 and σ0 2 (values of the strength estimated using the Coulomb criterion ( 7) for C = C1 and C = C2 respectively). Therefore, the first factor in ( 27) is dN/dσ0 = N/(σ0 2 -σ0 1 ).

The minimum time-to-failure is tmin = t f (σ, σ0 1 ) (time-tofailure corresponding to the minimum value of the cohesion C1).

If the time-to-failure has the exponential dependence with the normalized stress (3), then

dt f (σ, σ0) dσ0 = t0σb σ 2 0 exp(-b σ σ0 ) = [t log(t/t0)] 2 bσ , (28) 
where t = t f (σ, σ0). Expressions ( 27) and ( 28) give, for t ≥ tmin

ṅ(t) = N σb (σ0 2 -σ0 1 )t [log(t/t0)] 2 (29) 
For t ≪ t0, this function (29) looks like a power law ( 14) with an apparent exponent pn ≤ 1 decreasing slowly with time.

For a power-law relation between time-to-failure and strength (4), expression (27) gives, for t > tmin

ṅ(t) = N σ (σ0 2 -σ0 1 )b t0(t/t0) 1-1/b (30)
For b ≫ 1, the damage rate has a power law decay with an exponent pn = 1 -1/b slightly smaller than 1.

In both cases ( 29) and (30), the effective power-law decay of the damage rate during primary creep arises from the coupling between a uniform distribution of strength and the sharp increase of the time-to-failure with strength. The large values of the damage rate at short times correspond to the elements with the smallest cohesion. The elements with a larger strength have a much longer time-to-failure. The mechanism responsible for the power-law decay of the damage rate in our model is similar to previous models of creep or of aftershocks [Scholz , 1968b;[START_REF] Das | Theory of time-dependent rupture in the earth[END_REF][START_REF] Shaw | Generalized omori law for aftershocks and foreshocks from a simple dynamics[END_REF], except that these studies used a constant strength and a uniform distribution of stress, while the initial stress in our model is constant and only the strength is heterogeneous.

Expressions ( 29) and ( 30) are valid only when each element has ruptured only once, i.e., when time is small compared to the average time-to-failure t f (σ, σ0). This is the case during the beginning of the primary creep regime if the strength is very heterogenous (σ0,2 ≫ σ0,1) and for b ≫ 1 or b ′ ≫ 1, so that a small fluctuations of σ0 gives a large variation of t f (σ, σ0). Also, expressions ( 29) and ( 30) are valid as long as interactions between elements are negligible, when the strain is close to its initial value. Therefore these approximate solutions are better (fit the simulations over a larger time interval) if the damage parameter is small D0 ≪ 1.

We can also describe the evolution of strain and energy release during primary creep by using the relation ( 24) between strain and damage rate derived above. For the exponential time-to-failure law (3), the solution of the differential equation ( 24), for the damage rate given by ( 29) is

ǫ(t) = σ E0 exp [-a/ log(t/t0)] (31) ǫ(t) = aσ E0 exp [-a/ log(t/t0)] t [log(t/t0)] 2 (32) a = sD0 N -sD0 N σb σ0 2 -σ0 1 . ( 33 
)
For the power-law time-to-failure relation ( 4), we obtain using ( 24) and ( 30)

ǫ(t) = σ E0 exp a b t t0 1/b (34) ǫ(t) = σa E0t0b 2 exp a b t t0 1/b t0 t 1-1/b (35)
In both cases, exponential (32) and power-law (35), the strain rate decays as a power-law with an exponent pǫ ≈ 1 if b or b ′ ≫ 1,. The strain increases slowly with time at short times, in agreement with our assumption that interactions between elements are negligible during the early primary creep regime, as shown by the study of spatial damage structure (section 4.3). This result justifies our assumption that ǫ(t) is constant, equal to the initial elastic strain σ/E0, in order to derive the approximate relations for the damage rate (29,30).

Tertiary creep regime

After the primary creep regime, the strain rate and the damage rate increase due to interactions between elements and due to increasing damage. The time-to-failure of each element decreases on average with time because:

• the stress on undamaged elements increases on average after an avalanche, therefore the failure time estimated from (4) or (3) decreases;

• the time-to-failure of undamaged elements also decreases with time because the fraction of consumed failure time pi(n) in (9) increases with time;

• for damaged elements, the time-to-failure decreases proportionally to the damage ti(n 12) is used to update the time-to-failure of damaged elements.

) -t(n) ∼ (1 -D0) n , if equation (
We can explain the power-law singularity of the damage rate (17) in the tertiary creep regime in the case where the time-to-failure decreases with the damage (12). In this case, the main mechanism leading to the power-law acceleration of the damage rate is the decrease of the time-to-failure between 2 damage events. In this case, we can simplify the model by

• neglecting interactions between events, assuming that the stress on all elements does not change with time and is equal to the externally applied stress σi = σ. Therefore the time-to-failure of element i changes only when it is damaged, i.e., when t = ti(n), where n is the number of damage events of element i. And only one element breaks during each avalanche (s = 1).

• neglecting heterogeneity of strength, i.e., assuming σ0,i is equal to the average strength σ0 for all elements, in order to compute the average failure time of an element. In the numerical simulations, the elements that break have on average a strength smaller that the average strength σ0 (shorter time-to-failure). Thus assuming σ0,i = σ0 overestimates the time tc of the global failure. But this should not affect the temporal behavior of the damage rate derived below. Because in the tertiary creep regime all elements have been damaged several times, and because the strength is redrawn randomly after each damage event, assuming that σ0,i is constant is not too unrealistic, and allows us to derive simple analytical solutions.

Under these assumptions, and using ( 12) recursively for all damage events, the time-to-failure ti(n) of element i after the n th damage event is given by

ti(n) = ti(n -1) + t f (σ, σ0) (1 -D0) n = ti(0) + t f (σ, σ0) n j=1 (1 -D0) j = ti(0) + t f (σ, σ0) (1 -D0) n-1 j=0 (1 -D0) j = ti(0) + t f (σ, σ0) (1 -D0) 1 -(1 -D0) n D0 = t f (σ, σ0) 1 -(1 -D0) n+1 D0 (36) 
The time between 2 damage events of element i is given by, using (36),

∆t = ti(n + 1) -ti(n) = t f (σ, σ0) (1 -D0) n+1 = t f (σ, σ0) -D0 ti(n) (37)
The rate of damage at time t = ti(n) for the system of N independent elements is given by

ṅ(t) = N ∆t = N t f (σ, σ0) -D0t = N D0(tc -t) , ( 38 
)
where tc is the time of the macroscopic failure of the system, corresponding to the singularity of damage and deformation, which is given by

tc = t f (σ, σ0) D0 . ( 39 
)
Expression (38) describes a power-law singularity of the damage rate, similar to the numerical simulations (17) with p ′ n = 1. In this simplified model, the strain at time t = ti(n) obeys

ǫ(t) = σ E = σ E0(1 -D0) n = σ E0 1 -D0 1 -D0 t/t f (σ, σ0) = σ E0D0 t f (σ, σ0) (tc -t) (40)
and the strain rate is

ǫ(t) = σ E0D0 t f (σ, σ0) (tc -t) 2 (41)
corresponding to a value p ′ ǫ = 2 in ( 16). This analysis explains qualitatively the power-law singularity of the strain rate and of the rate of damage events found in the simulation, and the fact that p ′ ǫ > p ′ n (strain rate accelerates faster than damage rate).

These results suggest that interactions between elements are not essential to obtain a power-law acceleration of damage and strain during tertiary creep. Indeed, our simple analytical model described above, which neglects interactions, produces a power-law acceleration (41). But the values p ′ n = 1 and p ′ ǫ = 2 in our analytical study are larger than the values p ′ n ≈ 0.8 and p ′ ǫ ≈ 1.3 observed in the numerical simulations. Expressions ( 40), ( 41), and (38) are consistent (in the limit where N ≫ D0) with the relation between the damage rate, strain and strain rate given in ( 24).

If the time-to-failure of each element does not depend on damage, i.e., if ( 11) is used to update the time-tofailure of broken elements, then the recurrence time is constant ∆t = t f (σ, σ0). The damage rate is also constant ṅ(t) = N/t f (σ, σ0). In contrast, in the numerical simulations we found that the damage rate increases linearly with time in this case. For the strain rate, relation ( 24) predicts an exponential increase of the strain and strain rate (assuming N ≫ D0), as observed in the numerical simulations

ǫ(t) = σ E0 exp D0 t t f (σ, σ0) (42) ǫ 
(t) = σ E0 D0 t f (σ, σ0) exp D0 t t f (σ, σ0) . (43) 
In both cases, we found that the analytical expressions for the damage rate and for the strain rate predict an increase during tertiary creep that is slower than in the numerical simulations. The main factor that can explain these differences are elastic interactions between elements. Elastic interactions produce a spatial correlation of the stress, damage, and strength fields. As a consequence, the mean size of damage events increases with time, because avalanches can more easily propagate at larger distances. In contrast, our simple analytical study assumes a constant avalanche size. The power-law increase of the average event size with time may thus explain why the strain and damage acceleration during tertiary creep is faster (larger exponents p ′ ) in our simulations than in this simple analytical study.

Discussion

We have first analyzed experimental data to characterize the relation between the applied stress and the time-tofailure. We found that the exponential (3) and the powerlaw (4) relations cannot be distinguished from observations of creep experiments; both laws fit the data equally well. In both cases, the exponent b and b ′ are very large, showing that a small stress change produces a huge variation of the time-to-failure. Other factors, such as temperature or water saturation, also strongly influence the time-to-failure. These factors should be taken into account when modeling geological objects. The impact of the b-exponent in the numerical simulations is weak and only changes the time scale, i.e., the time of macroscopic failure.

In order to model the time-dependent damage of rocks, we use these experimental laws at the scale of each element to estimate its time-to-failure as a function of its stress history. A broken element is damaged by decreasing its Young's modulus. The scale of each element is supposed to be much larger than the crack size. Elastic interactions between elements and heterogeneity of the mechanical properties lead to the emergence of a complex macroscopic behavior, which is different from the behavior of individual elements. The major interest of this model is to simulate at the same time the temporal evolution of damage and strain, the distribution of acoustic emission events, and the progressive damage localization.

In our model, we find that the time of macroscopic failure is proportional to the time-to-failure used as input at the scale of each element. The transition time between primary and tertiary creep is also proportional to the time of macroscopic failure. This suggests that the evolution of strain rate or acoustic emission during primary and secondary creep can be used to forecast the time of macroscopic failure of an object. A similar conclusion was reached by [START_REF] Scholz | Static fatigue of quartz[END_REF], based on creep experiments, who suggested that "microfracturing appears to be completely diagnostic of static fatigue, since the rate of microfracturing and the average time-tofailure behave similarly", i.e., the only characteristic time for the evolution of the damage rate during creep is the time of macroscopic failure. This is in agreement with the experimental and analytical results of Nechad et al. [2005a] for heterogeneous material: the macroscopic failure time was proportional to the duration of the primary creep regime.

During primary creep, we observe a power-law decrease of the rate of strain, damage event and released energy during primary creep, with an exponent ≈ 0.8. This value is comparable to the one observed for metal's [START_REF] Andrade | The viscous flow in metals, and allied phenomena[END_REF], for glass/polyester composite materials [Nechad et al., 2005a], and for earthquake aftershocks [START_REF] Omori | On the aftershocks of eathquakes[END_REF]. In our model, the power-law decay of damage, strain and energy rate at short times can be explained by the increase of the timeto-failure with the strength coupled with the heterogeneity of the initial strength of each element. A few other models have also reproduced this law for the relaxation of strain rate during primary creep [Lockner , 1993b[START_REF] Lockner | A generalized law for brittle deformation of westerly granite[END_REF]Nechad et al., 2005a]. In our simulations, the exponents pn, pW and pǫ are weakly sensitive to the applied stress and to the time-tofailure law used as input. During this regime, the damage is spatially non-correlated in our simulations (the correlation length is zero).

The secondary creep regime does not appear clearly in the numerical simulations, and can be rather defined as the transition between primary and tertiary creep, corresponding to the minimum value of the strain rate. Note that for very low stress values, one should take into account the self-healing and blunting of cracks, which may prevent subcritical crack growth. Therefore, there may be a minimum value of the applied stress under which a rock never fail, but continue to deform at a constant rate, or eventually stops to deform. In contrast, our model predicts that the system will always fail (reach the critical strain ǫc) in finite time, even for a very small applied stress.

The tertiary creep regime is characterized by an increase of the strain rate, the energy rate, and the damage rate ending by macroscopic failure. This acceleration follows a power-law as a function of the remaining time before failure if the time-to-failure of each element increases with damage according to (12). Otherwise, the acceleration of the strain and damage is slower, roughly linear with time for the rate of damage events, and exponential for the strain rate. The power-law acceleration of damage in our model is similar to the experiments of Guarino et al. [e.g. 2002] and Nechad et al. [2005a]. At a larger scale, the same behavior was observed for the increase in micro-seismicity recorded before a cliff collapse [START_REF] Amitrano | Seismic precursory patterns before a cliff collapse and criticalpoint phenomena[END_REF]. They observed a power law acceleration of both the event number and the seismic energy release until the collapse of the chalk cliff.

Damage localization emerges during tertiary creep, with the appearance of a non-zero correlation length (Figures 8 and9). The spatial correlation length further increases during tertiary creep, in agreement with the critical point theory, which predicts a power-law divergence of the correlation length [START_REF] Stanley | Introduction to phase transition and critical phenomena[END_REF]. The tertiary creep ends with the macroscopic failure of the model, i.e., the complete damage localization. These results are in agreement with laboratory creep experiment showing that damage becomes localized before failure [START_REF] Hirata | Fractal structure of spacial distribution of microfracturing in rock[END_REF]. The damage localization is often characterized by a decrease of the fractal dimension of the cloud of damage events [e.g. Lockner , 1993a;[START_REF] Hirata | Fractal structure of spacial distribution of microfracturing in rock[END_REF]. The limited size of our numerical model does not allow us to calculate the fractal dimension.

The final structure of the damage systematically shows a shear band (Figure 7). The thickness of the bands and their orientation relative to the applied stress decrease with the applied stress. To our knowledge, this relationship between the thickness of the shear band and the applied stress has not yet been observed in creep experiments. This could be explained by the scarcity of creep tests with very low applied stress, i.e., σ/σ0 < 0.5, because of technical difficulties for measuring low strain rates over times as long as several years [START_REF] Berest | Very slow creep tests on rock samples[END_REF]. Previous experimental studies have observed a damage localization along shear bands similar to our model [START_REF] Jaeger | Fundamentals of rock mechanics[END_REF][START_REF] Kranz | Microcracks in rocks: a review[END_REF][START_REF] Ramsey | Hybrid fracture and the transition from extension fracture to shear fracture[END_REF]. These studies observed a transition between a brittle (localized damage) to a ductile (diffuse deformation) behavior as the confining pressure increases. [START_REF] Amitrano | From diffuse to localized damage through elastic interaction[END_REF] reproduced this localized/diffuse transition with the time-independent version of our model. In this model, the thickness of the band increases and its orientation relatively to the major stress decreases as the confining pressure increases. This transition between a localized and diffuse behavior can be explained by the decrease of the slope of the failure criterion (friction coefficient) as the confining pressure increases. The change of the friction coefficient modifies the geometry of the damage zone after each damage event, and thus the damage localization [START_REF] Amitrano | From diffuse to localized damage through elastic interaction[END_REF][START_REF] Amitrano | Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b-value[END_REF]). This change of behavior with the confining pressure cannot explain the localized/diffuse transition in our model because the failure criterion is kept constant and no confining pressure is applied. Further investigations are needed to understand this new kind of diffuse/localized transition as a function of the applied stress.

This numerical result could be helpful for interpreting geological structures such as faults. The thickness of the damaged area surrounding a fault has been proposed to increase with its tangential displacement [e.g. [START_REF] Vermilye | The process zone: A microstrucutral view of fault growth[END_REF]], but this result is very controversial [see [START_REF] Evans | Thickness-displacement relationships for fault zones[END_REF]. [START_REF] Evans | Thickness-displacement relationships for fault zones[END_REF] wrote that "thickness-displacement relationship may exist for some populations, but may vary between populations depending on fault type, rock rheology and environmental parameters". Our model indicates that the thickness of the damage zone surrounding a fault should be larger in zones of low σ/σ0 values (or low strain rate) and lower in zones with high σ/σ0 values (or high strain rate). These results should be validated by field observations in areas where the tectonic stress/strain regime is known, and could explain the variability of damage zone thickness.

In our model, the event size distribution appears to depends on time and on stress. For low stress values, the mean size increases with time and the power-law distribution appears only when integrating over the whole simulation. For larger stress, the power-law distribution is observed from the beginning of the simulation and does not change as the macroscopic failure approaches. The results for large stress are similar to the creep experiments of Nechad et al. [2005b], who did not observe any change of P (∆W, t) with time. [START_REF] Amitrano | Seismic precursory patterns before a cliff collapse and criticalpoint phenomena[END_REF] observed an increase with time of the average energy of seismic events preceding a cliff collapse, which was interpreted either as a decrease of β with time, or as a constant β-exponent for small energies, with an exponential falloff above some typical energy ∆Wc increasing with time. A similar behavior has been observed during a creep test on porous rocks with increasing stress steps [START_REF] Amitrano | Complexite et dynamique de l'endommagement et de la rupture, mecanique, sismicite et invariance d'echelle des objets geologiques[END_REF]. The size distribution of acoustic emissions shows a transition between an exponential fall-off for low stress to a pure power-law with decreasing β for larger stress. In contrast, [START_REF] Guarino | Failure time and critical behavior of fracture precursors in heterogeneous materials[END_REF] observed an increase of the β exponent as the stress increases during creep test on artificial heterogeneous materials.

Conclusion

We propose a numerical model based on static fatigue laws in order to model the time-dependent damage and deformation of rocks. A time-to-failure law, established experimentally at the scale of a sample, is used to simulate the behavior of each element of our finite element model. Elastic interactions coupled with material heterogeneity lead to the emergence of a macroscopic behavior that is richer than the elementary one. In particular, we observe primary and tertiary creep regimes associated respectively with a power-law decay and increase of the rate of strain, damage event and energy release. Our model also produces a power-law distribution of damage event sizes, and damage localization along shear bands. This model thus reproduces many properties of rock creep, which were previously not modeled simultaneously.

Our approach thus appears to be an interesting and promising alternative to the microscopic approach, dedicated to the study of fracture propagation, and to the macroscopic approach based on constitutive laws. It shows that the complex behavior of creeping rocks observed at a given scale may result from the interactions of elements at a smaller scale.

In this paper, we have considered only the case of a stress step (creep), but we could simulate any arbitrary time-dependent loading, imposing either the applied stress, strain, or strain rate. Note that our model has an elasticbrittle behavior. Therefore the strain is entirely reversible; removing the applied stress brings the strain back to zero. In contrast, real rocks have some viscous irreversible deformation. We could modify the behavior of each element in our model to take into account this effect, e.g., by integrating permanent deformation steps associated with damage. [START_REF] Scholz | Static fatigue of quartz[END_REF], (2) [START_REF] Kranz | The effect of confining pressure and difference stress on static fatigue of granite[END_REF], (3) [START_REF] Kranz | Static fatigue of granite at 200c[END_REF], (4) [START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF], (5) [START_REF] Masuda | Effects of water on rock strength in a brittle regime[END_REF]. The tests presented in the upper plot concern different rock types: BG: Barre granite, WG: Westerly granite, IG: Indiana granite, DS: Darley Dale sandstone. The applied stress σ is normalized by the instantaneous strength σ0 (estimated by the strength for short failure times). For [START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF], the tests were performed at constant pore pressure Pp = 50 MPa and confining pressure σ3 = 75 MPa. In this case, the legend indicates the effective confining pressure σ ′ 3 = σ3 -Pp = 25 MPa. The middle plot shows the impact of the confining pressure on the time-to-failure of Barre Granite. The lower plot shows the impact of temperature and water saturation. respectively. Table 2. Results of the fits for both the exponential (3) and the power law (4) time-to-failure relations, using data from the literature. We have estimated the parameters log(t 0 ) or log(t ′ 0 ) and b or b ′ using a linear regression in semilog or loglog plots for the exponential and power-law relations respectively. r is the correlation coefficient, and Np the number of creep tests. b Data from Figure 1 of [START_REF] Scholz | Static fatigue of quartz[END_REF], for single-crystal quartz loaded along the c-axis direction c Data from Figure 3 of [START_REF] Scholz | Static fatigue of quartz[END_REF], for single-crystal quartz loaded along the a-axis direction. Only the average time-to-failure for 3 values of the applied stress (σ=1820, 1880 an 1920 MPa) were used for the fit. We have estimated the median energy of damage events for a sliding window of 40 events. We have multiplied the median energy by an arbitrary factor for plotting purposes, the median energy at a given time t/tc is almost independent of the applied stress. The dashed black line is a power-law with an exponent of 0.3 for reference. 
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Figure 1 .

 1 Figure1. Failure time (in sec) for laboratory creep tests with a variety of loading conditions, realized by different studies (1)[START_REF] Scholz | Static fatigue of quartz[END_REF], (2)[START_REF] Kranz | The effect of confining pressure and difference stress on static fatigue of granite[END_REF], (3)[START_REF] Kranz | Static fatigue of granite at 200c[END_REF], (4)[START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF], (5)[START_REF] Masuda | Effects of water on rock strength in a brittle regime[END_REF]. The tests presented in the upper plot concern different rock types: BG: Barre granite, WG: Westerly granite, IG: Indiana granite, DS: Darley Dale sandstone. The applied stress σ is normalized by the instantaneous strength σ0 (estimated by the strength for short failure times). For[START_REF] Baud | Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission[END_REF], the tests were performed at constant pore pressure Pp = 50 MPa and confining pressure σ3 = 75 MPa. In this case, the legend indicates the effective confining pressure σ ′ 3 = σ3 -Pp = 25 MPa. The middle plot shows the impact of the confining pressure on the time-to-failure of Barre Granite. The lower plot shows the impact of temperature and water saturation. respectively.

Figure 2 .

 2 Figure2. Typical temporal evolution of (a) strain (removing the initial elastic strain), (b) number of damage events, and (c) energy release, for two simulations with σ/σ0 = 0.80, and using a power-law relation (4) with b ′ =40 (thick gray line), or an exponential (3) (thin black line) time-to-failure relation with b=40. Time is normalized by the macroscopic failure time.
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 3 Figure3. Rate of damage events (a,d), strain (b,e), and energy (c,f) for different values of the applied stress σ/σ0 (see caption), using the exponential time-to-failure law (3) with b=40, and using expression (12) for the timeto-failure of each element as a function of damage, stress and strength. The upper and lower plots show the same data with different axes, to illustrate the power-law decay during primary creep and the power-law acceleration during tertiary creep. In each plot the dashed black line represents a power-law relation with exponent of 1 for reference.

Figure 4 .

 4 Figure 4. Energy distribution for two simulations using an exponential time-to-failure law with b = 40, and with time-to-failure decreasing with damage according to (12). Each plot corresponds to different values of the applied stress (a) σ/σ0 = 0.25 and (b) σ/σ0 = 0.95. Each colored line with dots corresponds to a different time window.Each window has the same number of events N/10, where the total number of events in each simulation is N = 25283 for σ/σ0 = 0.25 and N = 972 for σ/σ0 = 0.95. The normalized time t/tc of the center of each window is given in the caption. The thick black line is the energy distribution for the whole simulation.

Figure 5 .

 5 Figure5. Typical energy release per damage event as a function of the time before failure, for different values of the applied stress (see value of σ/σ0 in the caption), using the exponential time-to-failure law (3) with b = 40. We have estimated the median energy of damage events for a sliding window of 40 events. We have multiplied the median energy by an arbitrary factor for plotting purposes, the median energy at a given time t/tc is almost independent of the applied stress. The dashed black line is a power-law with an exponent of 0.3 for reference.
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 678 Figure 6. Cumulative energy distribution, integrated over all times, for simulations with an exponential timeto-failure law with b = 40, and with time-to-failure decreasing with damage according to (12). Each curve corresponds to different values of the applied stress σ/σ0 (see caption). The dashed line shows a power-law distribution with exponent β = 1 for reference.

Figure 9 .

 9 Figure9. Coefficient of anisotropy, A(α) defined in (20), as a function of the direction α, for successive time steps, with a step of N/10 between 2 curves, N being the total number of event. The legend indicates the corresponding value of t/tc. The applied stress is σ/σ0 = 0.75. The time-to-failure is given by expression (4) with b ′ =40.
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 1 Mathematical symbols

	Symbol	Eq. or Description
		section	
	α	(19)	Orientation relative to major stress
	a, B	(32, 1) Constants
	A(α)	(20)	Characteristics of damage
	b, b ′	(3,4) Exponent of time-to-failure laws
	β	4.2	Exponent of the energy pdf
	C, C1, C2	(7)	Cohesion, min and max initial values
	CH20	(2)	Water concentration
	D0 = 0.1	(5)	Constant damage parameter
	Di(n), D	(6)	Damage of element i after n events
	DSC	(19)	Damage correlogram
	E0 = 50 GPa,	(5)	Young modulus (initial, average,
	< E >, Ei,n	(5)	and for element i after n events)
	ǫ, ǫc = 0.03	3	Strain, final strain
	φ = 60 o	(7)	Internal friction angle
	K, Kc	(1,2) Intensity factor, critical value
	L	(2)	Crack length
	λ, λc	(19)	Distance, correlation length
	N = 640	(21)	Number of elements in the model
	n	(5)	Number of damage events
	ν = 0.25	(3)	Poisson coefficient
	P (W, t)	4.2	Energy pdf at time t
	pn, pǫ, pW	(13-15) Exponents of damage, energy and
			strain rate for primary creep
	p ′ N , p ′ ǫ , p ′ W	(16-18) Exponents for tertiary creep
	pi(n)	(9)	Fraction of consumed time-to-failure
	q	(2)	Exponent of subcritical crack growth
	r	(19)	Linear correlation coefficient
	R	(1)	Gas constant
	s	(21)	Avalanche size
	σ	(3)	Mean major stress
	σi	(11)	Major stress on element i
	σ0, σ0,i	(1,7) Strength, average and for element i
	σ0 1 , σ0 2	(29)	Min and max initial strength
	σ1, σ2, σ3	(7)	Major, intermediate and minor main stress
	T	(1)	Temperature
	t(n)	(11)	Time of n th damage event
	ti(n)	(11)	Failure time of element i after n events
	t f (σ, σ0)	(3,4) Time-to-failure
	tc	(16)	Time of macroscopic failure
	tm		Transition time, primary to tertiary creep
	∆t	(23)	Average inter-event time
	t0		
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