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E-mail: michel.planat@femto-st.fr

Abstract. The d2 Pauli operators attached to a composite qudit in dimension d

may be mapped to the vectors of the symplectic module Z2

d
(Zd the modular ring).

As a result, perpendicular vectors correspond to commuting operators, a free cyclic

submodule to a maximal commuting set, and disjoint such sets to mutually unbiased

bases. For dimensions d = 6, 10, 15, 12, and 18, the fine structure and the incidence

between maximal commuting sets is found to reproduce the projective line over the

rings Z6, Z10, Z15, Z6 × F4 and Z6 ×Z3, respectively.
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Summary

The structure of commutation relations between (generalized) Pauli operators provides

the skeleton of mutually unbiased bases and quantum entanglement[1, 2]. However

an extensive study of them is recent and has mainly been tackled in power of prime

dimensions d = pN [1]-[4], except for the case of the smallest composite dimension

d = 6[5]. Commutation relations of two-qubit operators, and dually the incidence

relations between maximal commuting sets of them, have been shown to fit the

(symplectic) generalized quadrangle of order two, and several projective embeddings

have been proposed[2, 6]. For higher dimensions N > 2, and for composite dimensions,

the duality is lost: the geometrical space of points/observables exhibits several lines/sets

passing through n-tuples of distinguished points[5].

Remarkably the incidence between the twelve lines of the sextit system has been

shown to fit the grid like structure of the projective line P1(Z6) over the modular ring

Z6, but the multiline projective structure of the d2 = 36 Pauli observables (including

the unity matrix) has remained elusive[5]. In the higher composite dimensions explored

so far d = 2 × 5 = 10, d = 3 × 5 = 15, d = 2 × 32 = 18 and d = 22 × 3 = 12,

the incidence of the maximal commuting sets is found to reproduce the projective line

P1(R) over rings R = Z10, R = Z15, R = Z6 ×Z3 and R = Z6 ×F4, respectively. The

unexpected irruption of the Galois field of four elements F4, within the projective model

of the two-qubit/qutrit system, seems to forbid an easy generalization to an arbitrary

dimension d.

These numerical findings prompted the authors of [7] to develop a geometrical

analysis of the Pauli group G of (generalized) Pauli operators written in normal form

ωaXbZc, where ω = exp(2iπ/d), X and Z are the shift and clock operators, and a, b

and c are in the modular ring Zd. Another representation of the Pauli group is from

tensor products of shift and clock actions in prime dimension [8, 9]. Removing the phase

factor ωa of modulus one, one arrives at the d2 (including unity matrix) Pauli operators

useful in the theory of mutually unbiased bases [9, 10] and used in our previous papers

devoted to commutation relations [1]-[5]. This reduction may also be achieved by taking

the quotient of G by its center G′ (the set of all operators which commute with every

other one).

Ref [7] describes the commutation relations between operators in G, and thus in

G/G′, using vectors (b, c) ∈ Z2

d , their attached cyclic submodule

Zd(b, c) = {(ub, uc) : u ∈ Zd}, (1)

and the “points” of the projective line

P1(Zd) = {Zd(b, c) : (b, c) is admissible}. (2)

An admissible vector (b, c) is such that there exists another vector (x, y) for which the
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matrix

(

b c

x y

)

is invertible, which for a commutative ring is equivalent to have a

determinant equal to a unit of the ring. The equivalence class of (b, c) is a free cyclic

submodule Zd(b, c), of order d, and also a “point” of the projective line P1(Zd).

A crucial tool is the concept of a perpendicular set (b, c)⊥ which is defined as

(b, c)⊥ = {(u, v) ∈ Z2

d : (b, c) ⊥ (u, v)}, (3)

in which two vectors (b, c) and (u, v) are perpendicular if det

(

b c

u v

)

= 0. Note that

two vectors within a cyclic submodule are mutually perpendicular. According to [7],

operators in G which commute with a fixed operator correspond to a perpendicular set‡.

Using this analogy, it seems natural to identify the elements of a free cyclic submodule,

which are mutually perpendicular, with the maximal commuting sets of Pauli operators,

as we already did it implicitely in [5]. A posteriori one should not be surprised that

the projective line P1(Z6) fits the incidence relations between the maximal commuting

sets of the sextit system. To complete the geometrical picture of commutation relations,

one needs to identify the (not necessarily admissible) vectors of Z2

d with the d2 Pauli

operators.

Let us summarize main results of [7]:

Theorem 1 asserts that a free cyclic module Zd(b
′, c′) containing a vector (b, c) is

contained in the perpendicular set (b, c)⊥. Only if (b, c) is admissible the corresponding

module equals (b, c)⊥.

It conforts our interpretation that the maximal sets of mutually commuting

operators [corresponding to Zd(b, c)] also define a base of operators [corresponding to

(b, c)⊥]. One immediate consequence concerns the application to mutually unbiased

bases. Any two vectors in one base should be perpendicular, while any two vectors

from distinct mutually unbiased bases should not. Using two non-zero distinct vectors

(b, c) and (b′, c′), the two vector sets Zd(b, c)/(0, 0) = {(ub, uc) : u ∈ Z∗
d} and

Zd(b
′, c′)/(0, 0) = {(vb′, vc′) : v ∈ Z∗

d} are disjoint only if uv(bc′ − cb′) 6= 0, i.e. uv 6= 0

and (b, c), (b′, c′) are not perpendicular. This cannot happen maximally since Zd is a

ring so that u or v may be zero divisors. The maximal number of mutually unbiased

bases in composite dimension may thus be reformulated as being the maximal number

of such disjoint vector sets in the relevant ring.

If the dimension d is the power of distinct primes pk, theorem 2 in [7] provides

quantitative results about (a) the number of points nd in which any vector (b, c) lies,

(b) the partitioning of (b, c)⊥ as the corresponding set theoretic union of points Zd(b, c)

and (c) the cardinality of (b, c)⊥. One gets

nd =
∏

k∈K

(pk + 1) and |(b, c)⊥| = d
∏

k∈K

pk, (4)

in which K is a subset of the indices related to the decomposition of the entries of (b, c)

into their principal ideals.

‡ This notion of perpendicularity related to the commutativity of the operators was already used within

the context of symplectic polar spaces as models of N -qubit systems (see [3] and Sec 4.1 of [2]).
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Commutation relations of the sextit system

The sextit system (d = 2 × 3 = 6) was investigated in our recent paper [5]. In this

dimension, the (generalized) Pauli operators are defined as

σi ⊗ σj , i ∈ {0, . . . , 3}, j ∈ {0, . . . , 8}, (i, j) 6= (0, 0). (5)

The orthonormal set of the qubits comprises the standard Pauli matrices σi =

(I2, σx, σy, σz), where I2 =

(

1 0

0 1

)

, σx =

(

0 1

1 0

)

, σz =

(

1 0

0 −1

)

and σy = iσxσz,

while the orthonormal set of the qutrits is taken as

σj = {I3, Z, X, Y, V, Z2, X2, Y 2, V 2}, where I3 is the 3 × 3 unit matrix, Z =








1 0 0

0 ω 0

0 0 ω2









, X =









0 0 1

1 0 0

0 1 0









, Y = XZ, V = XZ2 and ω = exp (2iπ/3).

The sextit operators can be conveniently labelled as follows: 1 = I2⊗σ1, 2 = I2⊗σ2,

· · ·, 8 = I2 ⊗ σ8 , a0 = σz ⊗ I2, 9 = σz ⊗ σ1,. . . , b0 = σx ⊗ I2, 17 = σx ⊗ σ1,. . . ,

c0 = σy ⊗ I2,. . . , 32 = σy ⊗ σ8, in which we singled out the three reference points a0, b0

and c0.
Then one can use the strategy already described in [2] for N -qudit systems. The

Pauli operators are identified with the vertices of a (Pauli) graph and the mutually
commuting operators are identified with the edges. The maximal cliques of the graph
correspond to the maximal sets of mutually commuting operators. For the sextit system
one gets the twelve sets

L1 = {1, 5, a0, 9, 13}, L2 = {2, 6, a0, 10, 14}, L3 = {3, 7, a0, 11, 15}, L4 = {4, 8, a0, 12, 16},

M1 = {1, 5, b0, 17, 21}, M2 = {2, 6, b0, 18, 22}, M3 = {3, 7, b0, 19, 23}, M4 = {4, 8, b0, 19, 24},

N1 = {1, 5, c0, 25, 29}, N2 = {2, 6, c0, 26, 30}, N3 = {3, 7, c0, 27, 31}, N4 = {4, 8, c0, 28, 32}.

As emphasized in [5] the incidence between the maximal commuting sets leads

to a 3 × 4 grid-like structure isomorphic to the projective line P1(Z6) over the ring

Z6 = Z2 ×Z3. A subset of the commutation structure of the operators is illustrated in

Fig 1. Let us comment about the relationship between this geometrical representation

and the projective one described in the summary. Operators x belonging to the maximal

sets are of three distinct types§ (see also Fig 1)

(i) x is one of the reference points a0, b0 or c0, lies in four sets and the number of

points commuting with x is |x⊥| = 18,

(ii) x ∈ {1, 2, 3, 4, 5, 6, 7, 8} lies in three sets and |x⊥| = 12,

(iii) otherwise x lies in a single set and |x⊥| = 6.

These results clearly fits (4) with d = 6, p1 = 2 and p3 = 3.

Analogous results are indeed obtained for square free dimensions d = 2 × 5 = 10

and d = 3 × 5 = 15, so far explored.

§ The perpendicular set x⊥ includes the operator x itself and the unity operator[7]. But for maximal

commuting sets one usually ignores the unity operator which commutes with every other operator[2, 9]
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Figure 1. A sketch of a perpendicular set x⊥ attached to a point of type (ii) (see

the text for a definition). The whole structure comprises four similar sets having the

operators a0, b0 and c0 in common.

Commutation relations for qudits in dimension twelve

The qudit system in dimension d = 22 × 3 = 12 contains the even square 22. In this

dimension, the (generalized) Pauli operators are defined as

σi ⊗ σj ⊗ σk, i, j ∈ {0, . . . , 3}, k ∈ {0, . . . , 8}, (i, j, k) 6= (0, 0, 0). (6)

One proceeds as for the sextit system, one determines the Pauli graph of the 12-

dit and one extracts the maximal cliques. The incidence between the corresponding

maximal commuting sets is found to reproduce‖ the projective line over the ring

R = Zp1
× Zp2

× Fq2 , of order |R| = (p1 + 1)(p2 + 1)(q2 + 1) with p1 = q = 2 and

p2 = 3.

Operators x belonging to the maximal sets still are found to be of three distinct

types

(i) x is one of the reference points (it includes I3 in its tensor product), then one

finds that x lies in (p1 + 1)(p2 + 1) = 12 sets and |x⊥| = dp1p2 = 72.

(ii) x includes I2 ⊗ I2 in its tensor product, lies in (p1 + 1)(q2 + 1) = 15 sets and

|x⊥| = dp1q = 48 ,

(iii) otherwise x lies in p1 + 1 = 3 sets and |x⊥| = p1d = 24.

The commutation relations within a perpendicular set x⊥ of type (i) are illustrated

in Fig 2. It comprises three bundles of four lines each, organized in a parachute like

‖ For a classification of projective lines over small commutative rings see Ref [11].
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Figure 2. A sketch of a perpendicular set x⊥ (x is the reference point at the top of

the parachute like structure. It comprises twelve maximal commuting sets, each one

having eleven points (the unity operator is omitted). The three types of points (i), (ii)

and (iii) are described in the text.

structure. The lines of a specific bundle intersects at three distinguished points, each

one of type (i).

Commutation relations for qudits in dimension eighteen

The qudit system in dimension d = 2 × 32 = 18 contains the odd square 32. In this

dimension, the (generalized) Pauli operators are defined as

σi ⊗ σj ⊗ σk, i ∈ {0, . . . , 3}, j, k ∈ {0, . . . , 8}, (i, j, k) 6= (0, 0, 0). (7)

Again one determines the Pauli graph of the 18-dit and one computes the maximal

cliques. The incidence between the corresponding maximal commuting sets is found

to reproduce the projective line P1(R) over the ring R = Zp1
× Zp2

× Zp2
, of order

|R| = (p1 + 1)(p2 + 1)2 with p1 = 2 and p2 = 3.

Operators x belonging to the maximal sets are found to be of five distinct types

(i) x is one of the three reference points containing I3 ⊗ I3 in the tensor

decomposition, it lies in (p2 + 1)2 = 16 sets and |x⊥| = dp2

2
= 162,

(ii) x lies in (p1 + 1)(p2 + 1) = 12 sets and |x⊥| = dp1p2 = 108,

(iii) x lies in p2 + 1 = 4 sets and |x⊥| = dp2 = 54 ,

(iv) x lies in p1 + 1 = 3 sets and |x⊥| = dp1p2 = 108,
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Figure 3. A sketch of a perpendicular set x⊥ (x is the reference point [of type (i)] at

the top of the parachute like structure. It comprises sixteen maximal commuting sets,

each one having seventeen points (the unity operator is omitted). Only one bundle is

represented in detail. The five types of points (i) to (v) are described in the text.

(v) otherwise x lies in a single set and |x⊥| = dp2 = 54.

The perpendicular set attached to a point of type (i) is illustrated in Fig 3. The fine

structure of the bundles increases in complexity compared to Fig 2, each one comprising

four lines intersecting at five points, one of type (i), two of type (ii) and the remaining

two of type (iii).

Discussion and conclusion

It has been found that commuting operators associated to composite qudits in dimension

d correspond to perpendicular vectors within the symplectic module Z2

d . Moreover the

maximal commuting sets reflect the set-theoretic structure of free cyclic submodules

defined over some commutative ring R, distinct from the modular ring Zd as soon as

d contains squares in the prime number decomposition. An admissible vector, which

defines such a submodule, is of two types[11] (a) either one (at least) of its entries

is a unit of the ring R, or (b) both of its entries are zero divisors, not in the same

maximal ideal of R. Thus the maximal ideals predermine the projective line[11] and

the commutation structure of qudit operators.
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Figure 4. A sketch of the maximal ideals of rings Z2 × Z3 (illustrating the

qubit/qutrit)(a), Z2 ×Z3 ×Z3 (illustrating the two-qutrit/qubit (b) and Z2 ×Z3 ×F4

(illustrating the two-qubit/qutrit)(c). The ellipses feature maximal ideals, and their

intersection is marked by a small circle; the filled black circle is the zero element of the

ring (compare Fig 5 in [1]).

In Fig 4 we give a sketch of the interaction between maximal ideals of the rings

Z2 × Z3 (corresponding to the qubit/qutrit system), Z2 × Z3 × Z3 (corresponding to

the qubit/two-qutrit system) and Z2 × Z3 × F4 corresponding to the two-qubit/qutrit

system). To some extent one can identify the factors of the qudit system with the

maximal ideals, and the peculiar set theoric union/intersection of them governs the

whole commutation structure. The ideals themselves have a ring structure. For example

the three ideals in (c) are subsets isomorphic to Z2×Z3, Z2×F4 and Z3×F4 respectively.

The corresponding projective lines are 3×4, 3×5 and 4×5 grids. The last grid exhibits

a maximum number of four distant points, corresponding to the maximum number of

mutually unbiased bases in dimension twelve.

Further work should clarify whether a ring R is attached to any composite qubit.

This could have application to quantum chemistry[12], quantum channels [13] and the

non abelian hidden subgroup problem [14].
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