
HAL Id: hal-00172589
https://hal.science/hal-00172589v4

Preprint submitted on 12 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quantile-copula approach to conditional density
estimation.

Olivier P. Faugeras

To cite this version:
Olivier P. Faugeras. A quantile-copula approach to conditional density estimation.. 2007. �hal-
00172589v4�

https://hal.science/hal-00172589v4
https://hal.archives-ouvertes.fr


A quantile-copula approach to conditional

density estimation.

Olivier P. Faugeras

L.S.T.A, Université Paris 6
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Abstract

We present a new non-parametric estimator of the conditional density of the kernel
type. It is based on an efficient transformation of the data by quantile transform. By
use of the copula representation, it turns out to have a remarkable product form. We
study its asymptotic properties and compare its bias and variance to competitors
based on nonparametric regression. A comparative numerical simulation is provided.
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1 Introduction

1.1 Motivation

Let ((Xi, Yi); i = 1, . . . , n) be an independent identically distributed sample
from real-valued random variables (X, Y ) sitting on a given probability space.
For predicting the response Y of the input variable X at a given location x, it
is of great interest of estimating not only the conditional mean or regression
function E(Y |X = x), but the full conditional density f(y|x). Indeed, estimat-
ing the conditional density is much more informative, since it allows not only
to recalculate the conditional expected value E(Y |X) and conditional variance
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from the density, but also to provide the general shape of the conditional den-
sity. This is especially important for multi-modal or skewed densities, which
often arise from nonlinear or non-Gaussian phenomenas, where the expected
value might be nowhere near a mode, i.e. the most likely value to appear.
Moreover, for situations in which confidence intervals are preferred to point
estimates, the estimated conditional density is an object of obvious interest.

1.2 Estimation by kernel smoothing

A natural approach to estimate the conditional density f(y|x) of Y given
X = x would be to exploit the identity

f(y|x) =
fXY (x, y)

fX(x)
(1)

where fXY and fX denote the joint density of (X, Y ) and X, respectively. By
introducing Parzen-Rosenblatt kernel estimators of these densities, namely

f̂n,XY (x, y) : =
1

n

n
∑

i=1

K ′
h′(Xi − x)Kh(Yi − y)

f̂n,X(x) : =
1

n

n
∑

i=1

K ′
h′(Xi − x)

where Kh(.) = 1/hK(./h) and K ′
h′(.) = 1/h′K ′(./h′) are (rescaled) kernels

with their associated sequence of bandwidth h = hn and h′ = h′
n going to zero

as n → ∞, one can construct the quotient

f̂R
n (y|x) :=

f̂n,XY (x, y)

f̂n,X(x)

and obtain an estimator of the conditional density. Such an estimator was first
studied by Rosenblatt [26], and more recently by Hyndman et al. [17], who
slightly improved on Rosenblatt’s kernel based estimator.

1.3 Estimation by regression techniques

As pointed out by numerous authors, see e.g. Fan and Yao [7] chapter 6, this
approach is equivalent to the one arising from considering this conditional
density estimation problem in a regression framework. Indeed, let F (y|x) be
the cumulative conditional distribution function of Y given X = x. It stems
from the fact that

E
(1|Y −y|≤h|X = x

)

= F (y + h|x) − F (y − h|x) ≈ 2h.f(y|x)
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as h → 0, that, if one replace the expectation in the above expression by its
empirical counterpart, one can apply the usual local averaging methods and
perform a regression estimation on the synthetic data ((1/2h)1|Yi−y|≤h; i =
1, . . . , n). By a Bochner type theorem, one can even replace the transformed
data by its smoothed version

Y ′
i := Kh(Yi − y) :=

1

h
K
(

Yi − y

h

)

.

In particular, the popular Nadaraya-Watson regression estimator

f̂NW
n (y|x) :=

∑n
i=1 Y ′

i K
′
h′(Xi − x)

∑n
i=1 K ′

h′(Xi − x)

reduces itself to the same estimator of the conditional density of the double
kernel type as before

f̂NW
n (y|x) :=

∑n
i=1 Kh(Yi − y)K ′

h′(Xi − x)
∑n

i=1 K ′
h′(Xi − x)

= f̂R
n (y|x).

Taking advantage of this regression formulation, Fan, Yao and Tong [8] pro-
posed a conditional density estimator which generalizes the kernel one by use
of the local polynomial techniques. In particular, it allows to tackle with the
bias issues of the kernel smoothing. However, and unlike the former, it is no
longer guaranteed to have positive value nor to integrate to 1 with respect
to y. With these issues in mind, Hyndman and Yao [18] built on local poly-
nomial techniques and suggested two improved methods, the first one based
on locally fitting a log-linear model and the second one on constrained local
polynomial modeling. An overview can be found in Fan and Yao [7] (chapter
6 and 10). Very recently, Györfi and Kohler [15] studied a partitioning type
estimate and studied its properties in total variation norm and Lacour [20] a
projection-type estimate for Markov chains.

1.4 A product shaped estimator

However, these two equivalent approaches suffer from several drawbacks: first,
by its form as a quotient of two estimators, the probabilistic behavior of the
Nadaraya-Watson estimator (or its local polynomial counterpart) is tricky to
study. It is usually dealt with by a centering at expectation for both numerator
and denominator and a linearizing of the inverse, see e.g. [7], or [1] for details.
Second, at a conceptual level, one could argue that implementing regression
estimation techniques in this setting is, in a sense, unnatural: estimating a
density, even if it is a conditional one, should resort to density estimation
techniques only. Finally, practical implementations of these estimators can
lead to numerical instability when the denominator is close to zero.
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To remedy these problems, we propose an estimator which builds on the idea
of using synthetic data, i.e. a representation of the data more adapted to the
problem than the original one. By transforming the data by quantile trans-
forms and making use of the copula function, the estimator turns out to have
a remarkable product form

f̂n(y|x) = f̂Y (y)ĉn(Fn(x), Gn(y))

where f̂Y , ĉn, Fn(x), Gn(y) are estimators of the density fY of Y , the copula
density c, the c.d.f. F of X and G of Y respectively (see next section below
for definitions). Its study then reveals to be particularly simple: it reduces to
the ones already done on nonparametric density estimation.

The rest of the paper is organized as follows: in section 2, we introduce the
quantile transform and the copula representation which leads to the definition
of our estimator. In section 3, the main asymptotic results are established and
compared in section 4 to those of other competitors. Proofs are mainly based
on a series of auxiliary lemmas which are given in section 5.

2 Presentation of the estimator

For sake of simplicity and clarity of exposition, we limit ourselves to unidi-
mensional real valued input variables X. However, all the results of this article
can be easily extended to the multivariate case.

2.1 The quantile transform

The idea of transforming the data is not new. It has been used to improve
the range of applicability and performance of classical estimation techniques,
e.g. to deal with skewed data, heavy tails, or restrictions on the support (see
e.g. Devroye and Lugosi [6] chapter 14 and the references therein, and also
Van der Vaart [35] chapter 3.2 for the related topic of variance stabilizing
transformations in a parametric context). In order to make inference on Y from
X, a natural question which then arises is, what is the “best” transformation,
if this question has a sense. As one can note from the above references, the
“best” transformation is very linked to the distribution of the underlying data.
We will see below that, for our problem, the natural candidate is the quantile
transform.

The quantile transform is a well-known probabilistic trick which is used to
reduce proofs, e.g. in empirical process theory, for arbitrary real valued ran-
dom variables X to ones for random variables U uniformly distributed on the
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interval [0, 1]. It is based on the following well-known fact that whenever F is
continuous, the random variable U = F (X) is uniformly distributed on (0, 1)
and that conversely, when F is arbitrary, if U is a uniformly distributed ran-
dom variable on (0, 1), X is equal in law to F−1(U), where F−1 = Q is the
generalized inverse or quantile function of X. (See e.g. [28], chapter 1).

As a consequence, given a sample (X1, . . . , Xn) of random variables with com-
mon continuous c.d.f. F sitting on a probability space (Ω,A, P), one can al-
ways enlarge this probability space to carry a sequence (U1, . . . , Un) of uniform
(0, 1) random variables such that Ui = F (Xi), that is to say to construct a
pseudo-sample with a prescribed uniform marginal distribution.

2.2 The copula representation

Formally, a copula is a bi-(or multi)variate distribution function whose margi-
nal distribution functions are uniform on the interval [0, 1]. Indeed, Sklar [29]
proved the following fundamental result:

Theorem 2.1 For any bivariate cumulative distribution function FX,Y on R2,
with marginal cumulative distribution functions F of X and G of Y , there ex-
ists some function C : [0, 1]2 → [0, 1], called the dependence or copula function,
such as

FX,Y (x, y) = C(F (x), G(y)) , −∞ ≤ x, y ≤ +∞. (2)

If F and G are continuous, this representation is unique with respect to (F, G).
The copula function C is itself a cumulative distribution function on [0, 1]2 with
uniform marginals.

This theorem gives a representation of the bivariate c.d.f. as a function of each
univariate c.d.f. In other words, the copula function captures the dependence
structure among the components X and Y of the vector (X, Y ), irrespectively
of the marginal distribution F and G. Simply put, it allows to deal with the
randomness of the dependence structure and the randomness of the marginals
separately.

Copulas appears to be naturally linked with the quantile transform as formula
2 entails that C(u, v) = FX,Y (F−1(u), G−1(v)). For more details regarding cop-
ulas and their properties, one can consult for example the book of Joe [19].
Copulas have witnessed a renewed interest in statistics, especially in finance,
since the pioneering work of Deheuvels [4], who introduced the empirical cop-
ula process. Weak convergence of the empirical copula process was investigated
by Deheuvels [5], Van der Vaart and Wellner [36], Fermanian, Radulovic and
Wegkamp [11]. For the estimation of the copula density, refer to Gijbels and
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Mielniczuk [13], Fermanian [9] and Fermanian and Scaillet [10].

From now on, we assume that the copula function C(u, v) has a density c(u, v)
with respect to the Lebesgue measure on [0, 1]2 and that F and G are strictly
increasing and differentiable with densities f and g. C(u, v) and c(u, v) are
then the cumulative distribution function (c.d.f.) and density respectively of
the transformed variables (U, V ) = (F (X), G(Y )). By differentiating formula
(2), we get for the joint density,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
= f(x)g(y)c(F (x), G(y))

where c(u, v) := ∂2C(u,v)
∂u∂v

is the above mentioned copula density. Eventually,
we can obtain the following explicit formula of the conditional density

fY |X(x, y) =
fXY (x, y)

f(x)
= g(y)c(F (x), G(y)). (3)

2.3 Construction of the estimator

Starting from the previously stated product type formula (3), a natural plug-in
approach to build an estimator of the conditional density is to use

• a Parzen-Rosenblatt kernel type non parametric estimator of the marginal
density g of Y ,

ĝn(y) :=
1

nhn

n
∑

i=1

K0

(

y − Yi

hn

)

• the empirical distribution functions Fn(x) and Gn(y) for F (x) and G(y)
respectively,

Fn(x) =
1

n

n
∑

j=1

1Xj≤x and Gn(y) :=
1

n

n
∑

j=1

1Yj≤y.

Concerning the copula density c(u, v), we noted that c(u, v) is the joint density
of the transformed variables (U, V ) = (F (X), G(Y )). Therefore, c(u, v) can
be estimated by the bivariate Parzen-Rosenblatt kernel type non parametric
density (pseudo) estimator,

cn(u, v) :=
1

nanbn

n
∑

i=1

K
(

u − Ui

an
,
v − Vi

bn

)

(4)

where K is a bivariate kernel and an, bn its associated bandwidth. For simplic-
ity, we restrict ourselves to product kernels, i.e. K(u, v) = K1(u)K2(v) with
the same bandwidths an = bn.
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Nonetheless, since F and G are unknown, the random variables (Ui, Vi) are not
observable, i.e. cn is not a true statistic. Therefore, we approximate the pseudo-
sample (Ui, Vi), i = 1, . . . , n by its empirical counterpart (Fn(Xi), Gn(Yi)), i =
1, . . . , n. We therefore obtain a genuine estimator of c(u, v)

ĉn(u, v) :=
1

na2
n

n
∑

i=1

K1

(

u − Fn(Xi)

an

)

K2

(

v − Gn(Yi)

an

)

. (5)

Eventually, the conditional density estimator is written as

f̂n(y|x) :=

[

1

nhn

n
∑

i=1

K0

(

y − Yi

hn

)

]

.

[

1

na2
n

n
∑

i=1

K1

(

Fn(x) − Fn(Xi)

an

)

K2

(

Fn(y) − Gn(Yi)

an

)]

or, under a more compact form,

f̂n(y|x) := ĝn(y)ĉn(Fn(x), Gn(y)). (6)

Remark 1 To our knowledge, the estimator studied in this paper has never
been proposed in the literature. However, some connections can be made with
the nearest neighbor one proposed by Stute [32], [33] and [34] for conditional
cumulative distribution function and the Gasser and Müller [12] and Priestley
and Chao [24] one in the context of regression estimation. Indeed, these esti-
mators tackle the issue of having a random denominator by first transforming
the design X1, . . . , Xn to a uniform (random) one. This result in assigning
the surfaces under the kernel function instead of its heights as weights. Con-
trary to our estimator, they do not make transformations of the data in both
directions X and Y .

3 Asymptotic results

3.1 Notations and assumptions

We note the ith moment of a generic kernel (possibly multivariate) K as
mi(K) :=

∫

uiK(u)du, and the Lp norm of a function h by ||h||p :=
∫

hp. We
use the sign ≃ to denote the order of the bandwidths, i.e. hn ≃ un means that
hn = cnun with cn → c > 0. The support of the densities function f and c are
noted as supp(f) = {x ∈ R; f(x) > 0} and supp(c) = {(u, v) ∈ R2; c(u, v) >
0}, respectively.

For stating our results, we will have to make some regularity assumptions
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on the kernels and the densities which, although far from being minimal, are
somehow customary in kernel density estimation (see subsection 5.2 for discus-
sions and details). Set x and y two fixed points in the interior of supp(f) and
supp(g) respectively. In the remainder of this paper, we will always suppose
that

i) the c.d.f F of X and G of Y are strictly increasing and differentiable;
ii) the densities g and c are twice differentiable with continuous bounded

second derivatives on their support.

Moreover, we assume that the kernels K0 and K satisfy the following:

(i) K and K0 are of bounded support and of bounded variation;
(ii) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C;
(iii) K and K0 are first order kernels: m0(K) = 1, m1(K) = 0 and m2(K) <

+∞, and the same for K0.

In addition, in order to approximate ĉn by cn, we will impose the slightly more
stringent assumption on the bivariate kernel K, that it is twice differentiable
with bounded second partial derivatives.

3.2 Weak and strong consistency of the estimator

We have the following pointwise weak consistency theorem:

Theorem 3.1 Let the regularity conditions on the densities and kernels be
satisfied, if hn and an tends to zero as n → ∞ in such a way that nhn → ∞,
na2

n → ∞, then

f̂n(y|x) = f(y|x) + OP





1√
nhn

+ h2
n +

1
√

na2
n

+ a2
n



 .

Proof. Recall from 4 and 5 that cn and ĉn are estimators of the copula density
c based respectively on unobservable pseudo-data (F (Xi), G(Yi), and their
approximations (Fn(Xi), Gn(Yi)). The main ingredient of the proof follows
from the decomposition:

f̂n(y|x) − f(y|x) = ĝn(y)ĉn(Fn(x), Gn(y)) − g(y)c(F (x), G(y))

= [ĝn(y) − g(y)] ĉn(Fn(x), Gn(y))

+ g(y) [ĉn(Fn(x), Gn(y)) − c(F (x), G(y))]

: = D1 + D2

8



We proceed one step further in the decomposition of each terms, by first
centering at fixed locations,

D1 = [ĝn(y) − g(y)] [ĉn(Fn(x), Gn(y)) − ĉn(F (x), G(y))]

+ [ĝn(y) − g(y)] [ĉn(F (x), G(y)) − cn(F (x), G(y))]

+ [ĝn(y) − g(y)] [cn(F (x), G(y)) − c(F (x), G(y))]

+ [ĝn(y) − g(y)] [c(F (x), G(y))] (7)

D2 = g(y) [ĉn(Fn(x), Gn(y)) − ĉn(F (x), G(y))]

+ g(y) [ĉn(F (x), G(y))− cn(F (x), G(y))]

+ g(y) [cn(F (x), G(y))− c(F (x), G(y))] (8)

Convergence results for the kernel density estimators of section 5.2 entail that

ĝn(y) − g(y) = Op(h
2
n + 1/

√

nhn)

cn(F (x), G(y))− c(F (x), G(y)) = Op(a
2
n + 1/

√

na2
n)

by lemma 5.2 and 5.3 respectively. Approximation lemmas 5.4 and 5.5 of
sections 5.4 and 5.5 entail that

ĉn(F (x), G(y)) − cn(F (x), G(y)) = oP (a2
n + 1/

√

na2
n)

ĉn(Fn(x), Gn(y)) − ĉn(F (x), G(y)) = oP (a2
n + 1/

√

na2
n).

We therefore obtain that

D1 = OP

(

h2
n + 1/

√

nhn

)

OP

(

a2
n + 1/

√

na2
n

)

+ OP

(

h2
n + 1/

√

nhn

)

D2 = oP

(

a2
n + 1/

√

na2
n

)

+ OP

(

a2
n + 1/

√

na2
n

)

and the condition an → 0, hn → 0, na2
n → +∞, nhn → +∞ entails the

convergence of the estimator. 2

Remark 2 As a corollary, we get the rate of convergence, by choosing the
bandwidths which balance the bias and variance trade-off: for an optimal choice
of hn ≃ n−1/5 and an ≃ n−1/6, we get

f̂(y|x) = f(y|x) + OP (n−1/3).

Therefore, our estimator is rate optimal in the sense that it reaches the mini-
max rate n−1/3 of convergence, according to Stone [30].

Almost sure results can be proved in the same way: we have the following
strong consistency result
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Theorem 3.2 Let the regularity conditions on the densities and kernels be
satisfied. If in addition nhn/(ln ln n) → ∞ and na2

n/(ln ln n) → ∞ , then

f̂n(y|x) = f(y|x) + Oa.s.



a2
n +

√

ln ln n

na2
n

+ h2
n +

√

ln ln n

nhn



 .

Proof. It follows the same lines as the preceding theorem, but uses the a.s.
results of the consistency of the kernel density estimators of lemmas 5.2 and
5.3 and of the approximation lemmas 5.4 and 5.5. It is therefore omitted. 2

Remark 3 For hn ≃ (ln ln n/n)1/5 and an ≃ (ln ln n/n)1/6 which is the op-
timal trade-off between the bias and the stochastic term, one gets the optimal
rate (ln ln n/n)1/3.

3.3 Convergence in distribution

Theorem 3.3 Let the regularity conditions on the densities and kernels be
satisfied. hn → 0, an → 0, nhn → ∞ and na2

n → ∞ entail

√

na2
n

(

f̂n(y|x) − f(y|x)
)

d
; N

(

0, g(y)f(y|x)||K||22
)

.

For hn ≃ n−1/5, an ≃ n−1/6 one gets the usual rate n−1/3.

Proof. With the conditions on the bandwidths, all the terms in the pre-
vious decomposition 7 and 8, are negligible compared to (na2

n)−1/2 except
cn(F (x), G(y)) − c(F (x), G(y)), which is asymptotically normal by the result
of section 5, lemma 5.3

√

na2
ng(y) [cn(F (x), G(y)) − c(F (x), G(y))]

d
; N

(

0, g2(y)c(F (x), G(y)) ‖K‖2
2

)

.

An application of Slutsky’s lemma yields the desired result. 2

For a vector (y1, . . . , yd), one can get a multidimensional version of the con-
vergence in distribution (fidi convergence):

Corollary 3.4 With the same assumptions, for (y1, . . . , yd) in the interior of
supp(g) such that g(yi)f(yi|x) 6= 0,

√

na2
n









f̂n(yi|x) − f(yi|x)
√

g(yi)f(yi|x) ‖K‖2



 , i = 1, ..., m





d
; N (m)

where N (m) is the standard m-variate centered normal distribution with iden-
tity variance matrix.
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Proof. It simply follows from the use of the Cramér-Wold device and is there-
fore omitted. For details, see e.g. [1], theorem 2.3. 2

3.4 Asymptotic Bias, Variance and Mean square error

The asymptotic bias is calculated in the following proposition.

Proposition 3.5 With the assumptions of Theorem 3.1, we have

B0 := E(f̂n(y|x)) − f(y|x) = g(y)BK(c, x, y)
a2

n

2
+ o(a2

n)

with BK(c, x, y) := m2(K1)
∂2c(F (x),G(y))

∂u2 + m2(K2)
∂2c(F (x),G(y))

∂v2 .

Proof. (Sketch). By taking expectation in the decomposition 7 and 8,

ED1 = c(F (x), G(y))E[ĝn(y) − g(y)] + R1

ED2 = g(y)E ([cn(F (x), G(y)) − c(F (x), G(y))]) + R2

where we made appear the bias of ĝn and cn and where R1 and R2 stand for
the remaining terms. With the assumptions on the bandwidths and derivations
made tedious by the transformation of the data by the empirical margins, (see
Fermanian [9] theorem 1 for such a calculation), the terms in R2 are negligible
compared to the bias of cn. The bias of cn, which is simply the bias of a
bivariate kernel density estimator, is of order a2

n. Similarly, by bounding the
product terms in D1 by Cauchy-Schwarz inequality, routine analysis show that
the terms in R1 are negligible compared to the bias of ĝn, which is of order
h2

n. Since h2
n is itself negligible to a2

n, the main term in the decomposition is
g(y)E(cn(F (x), G(y)) − C(F (x), G(y))). Plugging the expression of the bias
given in lemma 5.3, yields the desired result. 2

The asymptotic variance has already been derived in theorem 3.3,

V0 := V ar(f̂(y|x)) = 1/(na2
n)g(y)f(y|x)||K||22 + o(1/(na2

n)).

Together with the computation of the asymptotic bias, we get the asymptotic
mean squared error as a corollary:

Corollary 3.6 With the previous assumptions, the Asymptotic Mean Squared
Error (AMSE) E0 at (x, y) is

E0 := B2
0 + V0

=
a4

ng2(y) (Bk(c, x, y))2

4
+

g(y)f(y|x)||K||22
na2

n

+ o

(

a4
n +

1

na2
n

)

11



which gives, for the choice of the usual bandwidths mentioned above,

E0 = n−2/3g2(y)

(

B2
K(c, x, y)

4
+ c(F (x), G(y))||K||22

)

+ o(n−2/3).

4 Comparison with other estimators

4.1 Presentation of alternative estimators

For convenience, we recall below the definition of other estimators of the con-
ditional density encountered in the literature and summarize their bias and
variance properties. We will note the bias of the ith estimator f̂ i

n(y|x) by Ei

and its variance by Vi.

(1) Double kernel estimator: as defined in the introduction section of our
paper by the following ratio,

f̂ (1)
n (y|x) :=

1
n

n
∑

i=1
K ′

h1
(Xi − x)Kh2

(Yi − y)

1
n

n
∑

i=1
K ′

h1
(Xi − x)

.

where h1 and h2 are the bandwidths. One then have, see e.g. [17],
• Bias:

B1 =
h2

1m2(K)

2



2
f ′(x)

f(x)

∂f(y|x)

∂x
+

∂2f(y|x)

∂x2
+

(

h2

h1

)2
∂2f(y|x)

∂y2





+ o
(

h2
1 + h2

2

)

• Variance:

V1 =
‖K‖2

2 f(y|x)

nh1h2f(x)

(

‖K‖2
2 − h2f(y|x)

)

+ o
(

1

nh1h2

)

(2) Local polynomial estimator: Set

R(θ, x, y) :=
n
∑

i=1

(

Kh2
(Yi − y) −

∑r

j=0
θj(Xi − x)j

)2

K ′
h1

(Xi − x),

then the local polynomial estimator is defined as

f̂ (2)
n (y|x) := θ̂0,

where θ̂xy := (θ̂0, θ̂1, . . . , θ̂r) is the value of θ which minimizes R(θ, x, y).
This local polynomial estimator, although it has a superior bias than
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the kernel one, is no longer restricted to be non-negative and does not
integrate to 1, except in the special case r = 0. From results of [8], we
get for the local linear estimator (see also [7] p. 256),
• Bias:

B2 =
h2

1m2(K
′)

2

∂2f(y|x)

∂x2
+

h2
2m2(K)

2

∂2f(y|x)

∂y2
+ o(h2

1 + h2
2)

• Variance:

V2 =
||K||22||K ′||22f(y|x)

nh1h2f(x)
+ o

(

1

nh1h2

)

(3) Local parametric estimator: As in [18] and [7], set

R1(θ, x, y) :=
n
∑

i=1

(Kh2
(Yi − y) − A(Xi − x, θ))2 K ′

h1
(Xi − x)

where A(x, θ) = l
(

∑r
j=0 θj(Xi − x)j

)

and l(.) is a monotonic function

mapping R 7→ R+, e.g. l(u) = exp(u). Then,

f̂ (3)
n (y|x) := A(0, θ̂) = l(θ̂0).

• Bias:

B3 = h2
1η(K ′)

(

∂2f(y|x)

∂x2
− ∂2A(0, θxy)

∂x2

)

+
h2

2m2(K)

2

∂2f(y|x)

∂y2

+ o(h2
1 + h2

2)

• Variance:

V3 =
τ(K, K ′)2f(y|x)

nh1h2f(x)
+ o

(

1

nh1h2

)

where η and τ are kernel dependent constants.
(4) Constrained local polynomial estimator: A simple device to force

the local polynomial estimator to be positive is to set θ0 = exp(α) in
the definition of R0 to be minimized. The constrained local polynomial
estimator f̂ 4

n(y|x) is then defined analogously as the local polynomial
estimator f̂ 2

n(y|x). We have, as in [18] and [7]:
• Bias:

B4 := h2
1

m2(K
′)

2

∂2f(y|x)

∂x2
+ h2

2

m2(K)

2

∂2f(y|x)

∂y2
+ o(h2

1 + h2
2)

• Variance:

V4 =
‖K‖2

2 f(y|x)

nh1h2f(x)
+ o

(

1

nh1h2

)

13



4.2 Asymptotic Bias and Variance comparison

All estimators have (hopefully) the same order n−1/3 and n−2/3 in their asymp-
totic bias and variance terms, for the usual bandwidths choice. The main
difference lies in the constant terms which depend on unknown densities.

Bias: Contrary to all the alternative estimators whose bias involves derivatives
of the full conditional density, one can note that our estimator’s bias only
involves the density of Y and the derivatives of the copula density. To make
things more explicit, the terms involved, e.g. in the local polynomial estimator,
write themselves as the sum of the derivatives of the conditional density,

h−2
n B2 ≈

∂2f(y|x)

∂x2
+

∂2f(y|x)

∂y2

that is to say,

h−2
n B2 ≈ f ′(x)g(y)

∂c(F (x), G(y))

∂u
+ f 2(x)g(y)

∂2c(F (x), G(y))

∂u2

+ 2g′(y)g(y)
∂c(F (x), G(y))

∂v
+ g3(y)

∂2c(F (x), G(y))

∂v2

whereas our (g(y)/2)BK(c, x, y) term, modulo the constants involved by the
kernel, is written as

a−2
n B0 ≈ g(y)

(

∂2c(F (x), G(y))

∂u2
+

∂2c(F (x), G(y))

∂v2

)

.

It then becomes clear that we have a simpler expression, with less unknown
terms, as is the case for competitors which do involve the density f and its
derivative f ′ of X and the derivative g′ of the Y density.

In a fixed bandwidth and asymptotic context, it seems difficult to compare
further. Nonetheless, we believe this feature of our estimator would be practi-
cally relevant when it comes to choosing the bandwidths. Indeed, bandwidth
selection is usually performed by minimizing local or global asymptotic error
criteria such as Asymptotic Mean Square Error (AMSE) or Asymptotic Mean
Integrated Square Error (AMISE), in which unknown terms have to be esti-
mated. Since in our approach, the asymptotic bias and variance involve less
unknown terms, we expect that a higher accuracy could be obtained in this
pre-estimation stage. Moreover, by having managed to separate the estimation
problem of the marginal from the copula density, we could use known optimal
data-dependent bandwidths selection procedures for density estimation such
as cross validation, separately for the density of Y and for the copula density.

Remark 4 Since the copula density c has a compact support [0, 1]2, our esti-
mator may suffer from bias issues on the boundaries, i.e. in the tails of X and
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Y . To correct these issues, one could apply one of the several known techniques
to reduce the bias of the kernel estimator on the edges (see e.g [7] chapter 5.5,
boundary kernels, reflection, transformation and local polynomial fitting). In
the tail of the distribution of X, this bias issue in the copula density estimator
is balanced by the improved variance, as shown below.

Variance: The variance of our estimator involves a product of the density
g(y) of Y by the conditional density f(y|x),

na2
nV0 ≈ g(y)f(y|x) = g2(y)c(F (x), G(y)

whereas competitors involve the ratio of f(y|x) by the density f(x) of X

f(y|x)

f(x)
=

g(y)

f(x)
c(F (x), G(y)).

It is a remarkable feature of the estimator we propose, that its variance does
not involve directly f(x), as is the case for the competitors, but only its contri-
bution to Y , through the copula density. This reflects the ability announced in
the introduction of the copula representation to have effectively separated the
randomness pertaining to Y alone, from the dependence structure of (X, Y ).
Moreover, our estimator also does not suffer from the unstable nature of com-
petitors who, due to their intrinsic ratio structure, get an explosive variance
for small value of the density f(x), making conditional estimation difficult,
e.g. in the tail of the distribution of X.

Remark 5 To make estimators comparable, we have restricted ourselves to
so-called fixed bandwidths estimators, i.e. nonparametric estimators where the
bandwidths are of the generic form hn = bnα or hn = b(ln n/n)α with α
and b real numbers. Improved behavior for all the preceding estimators can be
obtained with data-dependent bandwidths where hn = Hn(X1, . . . , Xn, x) can
be functions of the location and of the data.

4.3 Finite sample numerical simulation

4.3.1 Practical implementation of the estimator

Although the proposed estimator seems to compare favorably asymptotically,
some pitfalls linked to the copula density estimation may show up in the
practical implementation:

Infinities at the corners: many copula densities exhibit infinite values at
their corners. Therefore, to avoid that (Fn(Xi), Gn(Yi)) be equal to (1, 1), we
change the empirical distribution functions Fn and Gn to n/(n + 1)Fn and
n/(n + 1)Gn respectively.
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Boundary bias: since the copula density is of compact support [0, 1]2, the
kernel method of estimation may suffer from boundary bias. To alleviate this
issue, we suggest to use boundary-corrected kernels such as the beta kernels
Kx,b(t) = βx/b+1,(1−x)/b+1(t), where βa,b(t) denotes the pdf of a Beta(a,b) dis-
tribution, advocated by Chen [2], and used e.g. by [14] for estimating loss
distributions. The modified copula density pseudo estimator is thus defined as
cn(u, v) = n−1∑n

i=1 Ku,an
(Ui)Kv,an

(Vi).

Bandwidth selection: performance of nonparametric estimators depends
crucially on the bandwidths. For conditional density, bandwidth selection is a
more delicate matter than for density estimation due to the multidimensional
nature of the problem. Moreover, for ratio-type estimators, the difficulty is
increased by the local dependence of the bandwidths hy on hx implied by con-
ditioning near x. For the copula estimator, a supplemental issue comes from
the fact that the pseudo-data F (Xi), G(Yi) is not directly accessible. Inspec-
tion of the AMISE of the copula-based estimator suggest we can separate the
bandwidth choice of h for ĝ(y) from the bandwidth choice of an the copula
density estimator ĉn. A rationale for a data-dependent method is to separately
select h on the Yi data alone (e.g. by cross-validation or plug-in), from the an

of the copula density c based on the approximate data Fn(Xi), Gn(Yi). How-
ever, such a bandwidth selection would require deeper analysis and we leave a
detailed study of a practical data-dependent method for bandwidth selection
of the copula-quantile estimator, together with a global and local comparison
of the estimators at their respective optimal bandwidths for further research.

4.3.2 Model and comparison results

We simulated a sample of n = 100 variables (Xi, Yi), from the following model:
X, Y is marginally distributed as N (0, 1) and linked via Frank Copula .

C(u, v, θ) =
ln[(θ + θu+v − θu − θv)/(θ − 1)]

ln θ

with parameter θ = 100.

We restricted ourselves to simple, fixed for all x, y, rule-of-thumb methods
based on Normal reference rule to get a first picture. For the selection of an

of the copula density estimator, we applied Scott’s Rule on the data Fn(Xi).
We used Epanechnikov kernels for ĝ(y) and the other estimators. We plotted
the conditional density along with its estimations on the domain x ∈ [−5, 5]
and y ∈ [−3, 3] on figure 1. A comparison plot at x = 2 is shown on figure 2.
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Figure 1. 3D Plots. From left to right, top to bottom: true density, quantile-copula
estimator, double kernel, local polynomial (clipped).
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Figure 2. Comparison at x=2: conditional density=thick curve, quan-
tile-copula=continuous line, double kernel=dotted curve, local polynomial=dashed
curve.
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4.3.3 Clipping and Estimation in the tails

As mentioned earlier, as the performance of the estimators depends on the
performance of the bandwidths selection method, it is delicate to give a con-
clusive answer. However, we would like to illustrate at least one case where
the proposed estimator clearly outperforms its competitors. Indeed, one major
issue of alternative estimators already mentioned is their numerical explosion
when the estimated density f̂(x) is close to zero. In particular, if the kernel is
of compact support, the denominator is zero for the x whose distance from the
closest Xi exceeds half the bandwidth times the length of the support, thereby
allowing estimation only on a closed subset of X included in [min Xi, maxXi].
This is one of the reason why simulation studies are often performed either
with a marginal X density of bounded support and/or with a Gaussian ker-
nel. Note that the problem remains with a Gaussian kernel since the estimated
density can become quickly lower than the machine precision. To prevent from
this numerical explosion, the definition of the conditional density estimators
have to be modified either by

f̂(y|x) =











f̂XY (x,y)

f̂X(x)
if f̂X(x) > c

â(y) if f̂X(x) = 0
or by, f̂(y|x) =

f̂XY (x, y)

max{f̂(x), c}

where c > 0 is an arbitrary amount of clipping, and â(.) is an arbitrary density
estimator (usually chosen to be zero or ĝ(y)).

An illustration of these issues clearly appears in figure 1. The unclipped version
of the double kernel estimator is unable to estimate the conditional density for
|x| roughly > 3, and the clipped version of the local polynomial estimator with
c = 0.00001 and â(y) = ĝ(y) gives a wrong estimation in the tails, reflecting
the arbitrary choices in the clipping decision. To the contrary, the quantile-
copula estimator is surprisingly able to estimate the conditional density f(y|x)
at locations x where there is “no data”, i.e. in the tails of the distribution of
X. An explanation of this apparently paradoxal phenomenon comes from the
fact that the estimator is partially based on the ranks of Xi and Yi. Therefore,
it can recover “hidden” information on the density of X from the ordering
of the pairs (Xi, Yi). See Hoff [16] for a detailed explanation. We believe that
this feature might be of potential interest for applications, e.g. in statistical
inference of extreme values and rare events.

Discussion

The quantile transform and use of the copula formula has thus turned the con-
ditional density formula (1) of the ratio type into the product one (3). This
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formula was the backbone of our article where this product form appeared
to be especially appealing for statistical estimation: consistency and limit re-
sults where obtained by simple combination of the previous known ones on
(unconditional) density estimation. The estimator obtained shows interesting
asymptotic bias and variances properties compared to competitors. Although
its finite sample implementation does not give yet a clear and conclusive pic-
ture, it already yields some promising results, e.g. for estimation in the tails
of X, where the proposed estimator does not suffer from clipping issues.

5 Appendix : auxiliary results

In this section, we gather some preliminary results which we will need as basic
tools for the demonstrations of section 3. In subsection 5.1, we recall classical
results about the convergence of the Kolmogorov-Sminorv statistic. Next, we
make a brief overview of kernel density estimation and apply these results to
the estimators ĝn (section 5.2) and cn (section 5.3). Eventually, we need two
approximation lemmas of ĉn by cn in sections 5.4 and 5.5.

5.1 Approximation of the pseudo-variables F (Xi) by their estimates Fn(Xi)

For (Xi, i = 1, . . . , n) an i.i.d. sample of a real random variable X with common
c.d.f. F , the Kolmogorov-Smirnov statistic is defined as Dn := ‖Fn − F‖∞.
Glivenko-Cantelli, Kolmogorov and Smirnov, Chung, Donsker among others
have studied its convergence properties in increasing generality (See [28] and
[36] for recent accounts). For our purpose, we only need to formulate these
results in the following rough form:

Lemma 5.1 For an i.i.d. sample from a continuous c.d.f. F ,

‖Fn − F‖∞ = Oa.s.





√

ln ln n

n



 (9)

‖Fn − F‖∞ = OP

(

1√
n

)

. (10)

Since F is unknown, the random variables Ui = F (Xi) are not observed. As a
consequence of the preceding lemma 5.1, one can naturally approximate these
variables by the statistics Fn(Xi). Indeed,

|F (Xi) − Fn(Xi)| ≤ sup
x∈R

|F (x) − Fn(x)| = ‖Fn − F‖∞ a.s.

19



Thus, |F (Xi)−Fn(Xi)| is no more than an OP ((ln lnn/n)1/2) or an Oa.s.(n
−1/2).

These rates of approximation appears to be faster than those of statistical
estimation of densities, as is shown in the next subsection.

5.2 Convergence of the kernel density estimator ĝn

We recall below some classical results about the convergence of the Parzen-
Rosenblatt kernel non-parametric estimator f̂n of a d-variate density. Since its
inception by Rosenblatt [25] and Parzen [22], it has been studied by a great
deal of authors. See e.g. Scott [27], Prakasa Rao [23], Nadaraya [21] for details.
See also Bosq [1] chapter 2.

It is well known that the bias of the kernel density estimator depends on the
degree of smoothness of the underlying density, measured by its number of
derivatives or its Lipschitz order. In order to get the convergence of the bias
to zero, it suffices to assume that the density is continuous (See [22]). To get
further information on the rate of convergence of the estimator, it is necessary
to make further assumptions. Moreover, for kernel functions with unbounded
support, the rate of convergence also depends on the tail behavior of the
kernel (See Stute [31]). Therefore, for clarity of exposition and simplicity of
notations, we will make the customary assumptions that the density is twice
differentiable and that the kernel is of bounded support. We then have the
following results:

• Bias: With the previous assumptions, for a x in the interior of supp(f),
hn → 0 and nhd

n → ∞ entail that

Ef̂n(x) = f(x) +
h2

n

2

∫Rd

∑

1≤i,j≤d

∂2f(x)

∂xi∂xj

zizjK(z)dz + o(h2
n).

With the multivariate kernel K as a product of d order one kernels Ki, the
above sum reduces to the diagonal terms.

Ef̂n(x) = f(x) +
h2

n

2

∑

1≤i≤d

m2(Ki)
∂2f(x)

∂x2
i

+ o(h2
n).

• Variance: with the same assumptions,

V ar
[

f̂n(x)
]

=
f(x)

nhd
n

‖K‖2
2 + o

(

1

nhd
n

)

.

• Pointwise asymptotic normality: under the previous conditions,

√

nhd
n

(

f̂n(x) − Ef̂n(x)
)

d
; N (0, f(x) ‖K‖2

2).
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For a choice of the bandwidth as hn ≃ n−1/(d+4), which realizes the optimal
trade-off between the bias and variance, one gets the rate n−2/(d+4), which
is the optimal speed of convergence in the minimax sense in the class of
density functions with bounded second derivatives, according to [30].

• Pointwise almost sure convergence: if moreover nhd
n/(ln ln n) → ∞ (see [3]),

we have that

f̂n(x) − Ef̂n(x) = Oa.s.

(
√

ln ln n

nhd
n

)

.

For a choice of the bandwidth as hn ≃ ((ln ln n)/n)1/(d+4), we get the rate

of convergence ((ln ln n)/n)2/(d+4):

f̂n(x) − f(x) = Oa.s.





(

ln ln n

n

)2/(d+4)


 .

Applied to our case (d = 1), we can summarize these results for further ref-
erence in the following lemma for the estimator ĝn of the density g of Y :

Lemma 5.2 With the previous assumptions, for a point y in the interior of
the support of g, and a bandwidth chosen such as hn ≃ n−1/5, we have

|ĝn(y) − g(y)| = Op(n
−2/5)

n2/5 [ĝn(y) − g(y)]
d
; N

(

0, g(y) ‖K0‖2
2

)

.

With the same assumptions, but for a bandwidth choice of hn ≃ (ln ln n/n)1/5,

ĝn(y) − g(y) = Oa.s.





(

ln ln n

n

)2/5


 . (11)

5.3 Convergence of cn(u, v)

As mentioned before, the assumptions that F and G be differentiable and
strictly increasing entail that c is the density of the transformed variables
(U, V ) := (F (X), G(Y )). Therefore, once one convinces oneself that cn(u, v)
is simply the kernel density estimator of the bivariate density c(u, v) of the
pseudo-variables (U, V ), one directly draws its convergence properties by ap-
plying the results of the preceding subsection with d = 2:

Lemma 5.3 For a choice of an ≃ n−1/6, for every (u, v) ∈ (0, 1)2, similar
results of those of lemma 5.2 hold for ĉn with a rate of convergence of n−1/3

and (ln ln n/n)1/3 respectively.
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5.4 An approximation lemma of ĉn(u, v) by cn(u, v)

The lemma of this section gives the rate of approximation of the kernel copula
density estimator ĉn(u, v) computed on the real data (Fn(Xi), Gn(Yi)) by its
analogue cn(u, v) computed on the pseudo-data (Ui, Vi) := (F (Xi), G(Yi)). A
similar result, but with a different proof, has been obtained in Fermanian [9]
theorem 1.

Lemma 5.4 Let (u, v) ∈ (0, 1)2. If the kernel K(u, v) = K1(u)K2(v) is twice
differentiable with bounded second derivatives, then

|ĉn(u, v) − cn(u, v)| = oP (a2
n + 1/

√

na2
n)

|ĉn(u, v) − cn(u, v)| = oa.s.

(
√

ln ln n

na2
n

)

Proof. We note ||.|| a norm for vectors. Set ∆ := ĉn(u, v) − cn(u, v) =
1

na2
n

n
∑

i=1
∆i,n(u, v) with

∆i,n(u, v) := K

(

u − Fn(Xi)

an
,
v − Gn(Yi)

an

)

− K

(

u − F (Xi)

an
,
v − G(Yi)

an

)

and define

Zi,n :=







F (Xi) − Fn(Xi)

G(Yi) − Gn(Yi)





 .

As mentioned in section 5.1, |Fn(Xi) − F (Xi)| ≤ ||Fn − F ||∞ and |Gn(Yi) −
G(Yi)| ≤ ||Gn − G||∞ a.s. for every i = 1, . . . , n. Lemma 5.1 thus entails that
the norm of Zi,n is independent of i and such that

||Zi,n|| = OP (1/
√

n) , i = 1, . . . , n (12)

||Zi,n|| = Oa.s.(
√

ln ln n/n) , i = 1, . . . , n (13)

Now, for every fixed (u, v) ∈ [0, 1]2, since the kernel K is twice differentiable,
there exists, by Taylor expansion, random variables Ũi,n and Ṽi,n such that,
almost surely,

∆ =
1

na3
n

n
∑

i=1

ZT
i,n∇K

(

u − F (Xi)

an
,
v − G(Yi)

an

)

+
1

2na4
n

n
∑

i=1

ZT
i,n∇2K

(

u − Ũi,n

an

,
v − Ṽi,n

an

)

Zi,n := ∆1 + ∆2
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where ZT
i,n denotes the transpose of the vector Zi,n and ∇K and ∇2K the

gradient and the Hessian respectively of the multivariate kernel function K

∇K =







∂K
∂u

∂K
∂v





 , ∇2K =







∂2K
∂u2

∂2K
∂u∂v

∂2K
∂u∂v

∂2K
∂v2







Negligibility of ∆2: By the boundedness assumption on the second-order deriva-
tives of the kernel, and equations 12 and 13,

∆2 = OP

(

1

na4
n

)

and ∆2 = Oa.s.

(

ln ln n

na4
n

)

.

Negligibility of ∆1: By centering at expectations,

∆1 =
1

na3
n

n
∑

i=1

ZT
i,n

(

∇K

(

u − F (Xi)

an
, . . .

)

− E∇K

(

u − F (Xi)

an
, . . .

))

+
1

na3
n

n
∑

i=1

ZT
i,nE∇K

(

u − F (Xi)

an
,
v − G(Yi)

an

)

:= ∆11 + ∆12

Negligibility of ∆12: Bias results on the bivariate gradient kernel estimator (See
Scott [27] chapter 6) entail that

E∇K

(

u − F (Xi)

an
,
v − G(Yi)

an

)

= a3
n∇c (u, v) + O(a5

n)

Cauchy-Schwarz inequality yields that

|∆12| ≤
n||Zi,n||

na3
n

∥

∥

∥

∥

∥

E∇K

(

u − F (Xi)

an

,
v − G(Yi)

an

)∥

∥

∥

∥

∥

In turn, with equations 12 and 13,

∆12 = OP (1/
√

n) and ∆12 = Oa.s(
√

ln ln n/n).

Negligibility of ∆11: Set Ai = ∇K
(

u−F (Xi)
an

, . . .
)

− E∇K
(

u−F (Xi)
an

, . . .
)

. Then,

|∆11| ≤
||Zn||
na3

n

n
∑

i=1

||Ai||

Boundedness assumption on the derivative of the kernel imply that ||Ai|| ≤ 2C
a.s. We apply Hoeffding inequality for independent, centered, bounded by M ,
but non identically distributed random variables (ηj) (e.g. see [1]),

P (
n
∑

j=1

ηj > t) ≤ exp

(

− t2

2nM2

)

. (14)
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Here, for every ǫ > 0, with M = 2C, ηi = ||Ai|| −E||Ai||, t = ǫn1/2(ln lnn)1/2,
we get that

P
(

∑n

i=1
(||Ai|| − E||Ai||) > ǫ

√
n ln ln n

)

6 exp

(

−ǫ2 ln lnn

4M2

)

=
1

(lnn)δ

with a δ > 0 and where the r.h.s. goes to zero as n → ∞. Therefore,
∑n

i=1 (||Ai|| − E||Ai||) = OP (
√

n ln ln n).

For the almost sure negligibility, we get similarly by inequality 14 that, for
every ǫ > 0, with t = ǫn(1+δ)/2 and δ > 0,

P
(

∑n

i=1
(||Ai|| − E||Ai||) > ǫn(1+δ)/2

)

6 exp

(

−ǫ2nδ

4M2

)

and the series on the r.h.s is convergent. In turn, the Borell-Cantelli lemma
imply that

∑n
i=1 (||Ai|| − E||Ai||) = Oa.s.(n

(1+δ)/2).

It remains to evaluate E||Ai||. First, we have that E||Ai|| ≤ 2E||∇K((u −
F (Xi))/an, . . .)||. Second, since K is differentiable and of product form K(u, v)
= K1(u)K2(v), each sub-kernel is of bounded variations and can be written
as a difference of two monotone increasing functions. For example, set K1 =
Ka

1 − Kb
1 and define K∗ := (Ka

1 + Kb
1)K2. We have,

∣

∣

∣

∣

∣

∂K

∂u

∣

∣

∣

∣

∣

6
(

|(Ka
1 )′| + |(Kb

1)
′|
)

K2 = ((Ka
1 )′ + (Kb

1)
′)K2 :=

∂K∗

∂u

where the equality proceeds from the positivity of the derivatives. As a con-
sequence,

E

∣

∣

∣

∣

∣

∂K

∂u
((u − F (Xi))/an, . . .)

∣

∣

∣

∣

∣

≤ E
∂K∗

∂u
((u − F (Xi))/an, . . .)

and similarly for the other partial derivative. The r.h.s. of the previous inequal-
ity is, after an integration by parts, of order a3

n by the results on the kernel
estimator of the gradient of the density (See Scott [27] chapter 6). Therefore,
∑n

i=1 E||Ai|| = O(na3
n).

Recollecting all elements, we eventually obtain that

∆11 = OP

(
√

n ln ln n + na3
n√

nna3
n

)

= OP

(
√

ln ln n

na3
n

+
1√
n

)

= oP





1
√

na2
n



 .

∆11 = Oa.s.





n(1+δ)/2 + na3
n

na3
n

√

ln ln n

n





= Oa.s.





√

ln lnn

na2
n

1

n(1−δ)/2a2
n

+

√

ln ln n

n



 = oa.s.

(
√

ln ln n

na2
n

)
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for δ small enough (< 1/3 for an ≃ n−1/6). 2

5.5 An approximation lemma for ĉn(Fn(x), Gn(y)) by ĉn(F (x), G(y))

The lemma of this subsection gives the rate of deviation of the kernel copula
density estimator ĉn from a varying location (Fn(x), Gn(y)) to a fixed location
(F (x), G(y)).

Lemma 5.5 With the same assumptions as in the preceding lemma, we have

ĉn(Fn(x), Gn(y)) − ĉn(F (x), G(y)) = oP



a2
n +

1
√

na2
n





ĉn(Fn(x), Gn(y)) − ĉn(F (x), G(y)) = Oa.s.





√

ln ln n

n





Proof. We proceed similarly as in the preceding lemma. Set

∆n(x, y) := ĉn(Fn(x), Gn(y)) − ĉn(F (x), G(y)) =
1

na2
n

n
∑

i=1

∆′
i,n(x, y) (15)

with

∆′
i,n(x, y) := K

(

Fn(x) − Fn(Xi)

an
,
Gn(y) − Gn(Yi)

an

)

− K

(

F (x) − Fn(Xi)

an
,
G(y) − Gn(Yi)

an

)

and define

Zn(x, y) :=







Fn(x) − F (x)

Gn(y) − G(y)







We first express ∆′
i,n(x, y) at a fixed location (F (x), G(y)) by a Taylor expan-

sion and by bounding uniformly the second order terms,

∆′
i,n(x, y) = ZT

n (x, y)
∇K

an

(

F (x) − Fn(Xi)

an

,
G(y) − Gn(Yi)

an

)

+
||Zn||2∞

a2
n

R1

(16)

where R1 is uniformly bounded almost surely: R1 = Oa.s.(1). We then go from
the data (Fn(Xi), Gn(Yi)) to the pseudo but fixed w.r.t. n data (F (Xi), G(Yi)).
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By a second Taylor expansion,

∇K

an

(

F (x) − Fn(Xi)

an
,
G(y) − Gn(Yi)

an

)

=
∇K

an

(

F (x) − F (Xi)

an
,
G(y) − G(Yi)

an

)

+ ZT
i,n

∇2K

2a2
n

(

F (x) − F (Xi)

an
,
G(y) − G(Yi)

an

)

+
||Zn||∞

a2
n

R2. (17)

where R2 = oa.s.(1) uniformly in i, x and y. Therefore, plugging 16 and 17 in
15, we get

∆n(x, y) =
ZT

n (x, y)

na2
n

n
∑

i=1

∇K

an

(

F (x) − F (Xi)

an
,
G(y) − G(Yi)

an

)

+
ZT

n (x, y)

na2
n

n
∑

i=1

Zt
i,n

∇2K

2a2
n

(

F (x) − F (Xi)

an

,
G(y) − G(Yi)

an

)

+ R3
||Zn||2∞

a4
n

.

with the remainder term R3 = Oa.s.(1) uniformly. As before, the properties of
the kernel (derivate) density estimator (See Scott [27] chapter 6) entails that

1

na3
n

n
∑

i=1

∇K

(

F (x) − F (Xi)

an
,
G(y) − G(Yi)

an

)

= OP (a2
n + 1/

√

na4
n).

Therefore, using 12 and bounding uniformly the Hessian, 15 becomes

∆n(x, y) = OP



a2
n||Zn||∞ +

||Zn||∞
√

na4
n



+ OP

(

||Zn||2∞
a4

n

)

= oP



a2
n +

1
√

na2
n



 .

Similarly, one gets with 13 and the strong consistency of the estimator of the

gradient of the density that ∆n(x, y) = Oa.s.

(√

ln lnn
n

)

. 2
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